Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

What do we know about Toll-Like Receptors Involvement in Gout Arthritis?

Author(s): Cássia Regina Silva*, André Lopes Saraiva, Mateus Fortes Rossato, Gabriela Trevisan and Sara Marchesan Oliveira

Volume 23, Issue 4, 2023

Published on: 27 October, 2022

Page: [446 - 457] Pages: 12

DOI: 10.2174/1871530322666220523145728

Price: $65

Abstract

Toll-like receptors (TLRs) are a well-characterized family of cell-bound pattern recognition receptors able to identify and respond to conserved structures of external microorganisms or Pathogen Molecular-Associated Pattern (PAMPs). They can also interact with Damage-Associated Molecular Patterns (DAMPs) involved with any infectious and sterile cell stress of tissue injury. Accumulated knowledge about TLRs has revealed that these receptors and intracellular signaling pathways triggered through TLR activation contribute to the physiopathology of different inflammatory diseases, including arthritic conditions. Mostly, the literature focuses on exploring TLRs in rheumatoid and osteoarthritis. However, TLRs also seem to be an essential mediator for monosodium urate (MSU) crystals-induced gouty arthritis, both in animal models and humans. Accordingly, naked MSU crystals have a highly negatively charged surface recognized by TLRs; intracellular adapter protein MyD88 are significant mediators of MSU crystals-induced IL1β production in mice, and gouty patients demonstrate a robust positive correlation between TLR4 mRNA level and serum IL1β. Here, we revised the literature evidence regarding the involvement of TLRs in gout arthritis pathogenesis, with particular reference to TLR2 and TLR4, by analyzing the actual literature data.

Keywords: MSU, TLR2, TLR4, inflammation, pain, Pattern Recognition Receptors (PRR).

Graphical Abstract
[1]
Vidya, M.K.; Kumar, V.G.; Sejian, V.; Bagath, M.; Krishnan, G.; Bhatta, R. Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals. Int. Rev. Immunol., 2018, 37(1), 20-36.
[http://dx.doi.org/10.1080/08830185.2017.1380200] [PMID: 29028369]
[2]
Hug, H.; Mohajeri, M.H.; La Fata, G. Toll-like receptors: Regulators of the immune response in the human gut. Nutrients, 2018, 10(2), E203.
[http://dx.doi.org/10.3390/nu10020203] [PMID: 29438282]
[3]
Huang, Q.; Ma, Y.; Adebayo, A.; Pope, R.M. Increased macrophage activation mediated through toll-like receptors in rheumatoid arthritis. Arthritis Rheum., 2007, 56(7), 2192-2201.
[http://dx.doi.org/10.1002/art.22707] [PMID: 17599732]
[4]
Ospelt, C.; Brentano, F.; Rengel, Y.; Stanczyk, J.; Kolling, C.; Tak, P.P.; Gay, R.E.; Gay, S.; Kyburz, D. Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: Toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum., 2008, 58(12), 3684-3692.
[http://dx.doi.org/10.1002/art.24140] [PMID: 19035519]
[5]
Tamaki, Y.; Takakubo, Y.; Hirayama, T.; Konttinen, Y.T.; Goodman, S.B.; Yamakawa, M.; Takagi, M. Expression of Toll-like receptors and their signaling pathways in rheumatoid synovitis. J. Rheumatol., 2011, 38(5), 810-820.
[http://dx.doi.org/10.3899/jrheum.100732] [PMID: 21324962]
[6]
Lacerte, P.; Brunet, A.; Egarnes, B.; Duchêne, B.; Brown, J.P.; Gosselin, J. Overexpression of TLR2 and TLR9 on monocyte subsets of active rheumatoid arthritis patients contributes to enhance responsiveness to TLR agonists. Arthritis Res. Ther., 2016, 18(1), 10.
[http://dx.doi.org/10.1186/s13075-015-0901-1] [PMID: 26759164]
[7]
Rossato, M.F.; Hoffmeister, C.; Trevisan, G.; Bezerra, F.; Cunha, T.M.; Ferreira, J.; Silva, C.R. Monosodium urate crystal interleukin-1β release is dependent on Toll-like receptor 4 and transient receptor potential V1 activation. Rheumatology (Oxford), 2020, 59(1), 233-242.
[http://dx.doi.org/10.1093/rheumatology/kez384] [PMID: 31298290]
[8]
Liu-Bryan, R.; Scott, P.; Sydlaske, A.; Rose, D.M.; Terkeltaub, R. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum., 2005, 52(9), 2936-2946.
[http://dx.doi.org/10.1002/art.21238] [PMID: 16142712]
[9]
Ghaemi-Oskouie, F.; Shi, Y. The role of uric acid as an endogenous danger signal in immunity and inflammation. Curr. Rheumatol. Rep., 2011, 13(2), 160-166.
[http://dx.doi.org/10.1007/s11926-011-0162-1] [PMID: 21234729]
[10]
Qing, Y.F.; Zhang, Q.B.; Zhou, J.G.; Jiang, L. Changes in Toll-Like Receptor (TLR)4-NFκB-IL1β signaling in male gout patients might be involved in the pathogenesis of primary gouty arthritis. Rheumatol. Int., 2014, 34(2), 213-220.
[http://dx.doi.org/10.1007/s00296-013-2856-3] [PMID: 24036988]
[11]
Fitzgerald, K.A.; Kagan, J.C. Toll-like receptors and the control of immunity. Cell, 2020, 180(6), 1044-1066.
[http://dx.doi.org/10.1016/j.cell.2020.02.041] [PMID: 32164908]
[12]
Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol., 2010, 11(5), 373-384.
[http://dx.doi.org/10.1038/ni.1863] [PMID: 20404851]
[13]
Hornef, M.W.; Normark, B.H.; Vandewalle, A.; Normark, S. Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J. Exp. Med., 2003, 198(8), 1225-1235.
[http://dx.doi.org/10.1084/jem.20022194] [PMID: 14568981]
[14]
Khakpour, S.; Wilhelmsen, K.; Hellman, J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun., 2015, 21(8), 827-846.
[http://dx.doi.org/10.1177/1753425915606525] [PMID: 26403174]
[15]
Bolívar, S.; Santana, R.; Ayala, P.; Landaeta, R.; Boza, P.; Humeres, C.; Vivar, R.; Muñoz, C.; Pardo, V.; Fernandez, S.; Anfossi, R.; Diaz-Araya, G. Lipopolysaccharide activates toll-like receptor 4 and prevents cardiac fibroblast-to-myofibroblast differentiation. Cardiovasc. Toxicol., 2017, 17(4), 458-470.
[http://dx.doi.org/10.1007/s12012-017-9404-4] [PMID: 28220374]
[16]
Li, J.; Csakai, A.; Jin, J.; Zhang, F.; Yin, H. Therapeutic developments targeting toll-like receptor-4-mediated neuroinflammation. ChemMedChem, 2016, 11(2), 154-165.
[http://dx.doi.org/10.1002/cmdc.201500188]
[17]
Jin, M.S.; Lee, J.O. Structures of the toll-like receptor family and its ligand complexes. Immunity, 2008, 29(2), 182-191.
[http://dx.doi.org/10.1016/j.immuni.2008.07.007] [PMID: 18701082]
[18]
Santos-Sierra, S. Targeting toll-like receptor (Tlr) pathways in inflammatory arthritis: Two better than one? Biomolecules, 2021, 11(9), 1291.
[http://dx.doi.org/10.3390/biom11091291] [PMID: 34572504]
[19]
Iwahashi, M.; Yamamura, M.; Aita, T.; Okamoto, A.; Ueno, A.; Ogawa, N.; Akashi, S.; Miyake, K.; Godowski, P.J.; Makino, H. Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum., 2004, 50(5), 1457-1467.
[http://dx.doi.org/10.1002/art.20219] [PMID: 15146415]
[20]
Sørensen, L.K.; Havemose-Poulsen, A.; Sønder, S.U.; Bendtzen, K.; Holmstrup, P. Blood cell gene expression profiling in subjects with aggressive periodontitis and chronic arthritis. J. Periodontol., 2008, 79(3), 477-485.
[http://dx.doi.org/10.1902/jop.2008.070309] [PMID: 18315430]
[21]
Goh, F.G.; Midwood, K.S. Intrinsic danger: Activation of Toll-like receptors in rheumatoid arthritis. Rheumatology (Oxford), 2012, 51(1), 7-23.
[http://dx.doi.org/10.1093/rheumatology/ker257] [PMID: 21984766]
[22]
Gómez, R.; Villalvilla, A.; Largo, R.; Gualillo, O.; Herrero-Beaumont, G. TLR4 signalling in osteoarthritis--finding targets for candidate DMOADs. Nat. Rev. Rheumatol., 2015, 11(3), 159-170.
[http://dx.doi.org/10.1038/nrrheum.2014.209] [PMID: 25512010]
[23]
Termeer, C.; Benedix, F.; Sleeman, J.; Fieber, C.; Voith, U.; Ahrens, T.; Miyake, K.; Freudenberg, M.; Galanos, C.; Simon, J.C. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med., 2002, 195(1), 99-111.
[http://dx.doi.org/10.1084/jem.20001858] [PMID: 11781369]
[24]
Roelofs, M.F.; Boelens, W.C.; Joosten, L.A.B.; Abdollahi-Roodsaz, S.; Geurts, J.; Wunderink, L.U.; Schreurs, B.W.; van den Berg, W.B.; Radstake, T.R. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J. Immunol., 2006, 176(11), 7021-7027.
[http://dx.doi.org/10.4049/jimmunol.176.11.7021] [PMID: 16709864]
[25]
Pierer, M.; Wagner, U.; Rossol, M.; Ibrahim, S. Toll-like receptor 4 is involved in inflammatory and joint destructive pathways in collagen-induced arthritis in DBA1J mice. PLoS One, 2011, 6(8), e23539.
[http://dx.doi.org/10.1371/journal.pone.0023539] [PMID: 21858160]
[26]
He, Z.; Shotorbani, S.S.; Jiao, Z.; Su, Z.; Tong, J.; Liu, Y.; Shen, P.; Ma, J.; Gao, J.; Wang, T.; Xia, S.; Shao, Q.; Wang, S.; Xu, H. HMGB1 promotes the differentiation of Th17 via up-regulating TLR2 and IL-23 of CD14+ monocytes from patients with rheumatoid arthritis. Scand. J. Immunol., 2012, 76(5), 483-490.
[http://dx.doi.org/10.1111/j.1365-3083.2012.02759.x] [PMID: 22809173]
[27]
Arleevskaya, M.I.; Larionova, R.V.; Brooks, W.H.; Bettacchioli, E.; Renaudineau, Y. Toll-like receptors, infections, and rheumatoid arthritis. Clin. Rev. Allergy Immunol., 2020, 58(2), 172-181.
[http://dx.doi.org/10.1007/s12016-019-08742-z] [PMID: 31144208]
[28]
McDougall, J.J. Arthritis and pain. Neurogenic origin of joint pain. Arthritis Res. Ther., 2006, 8(6), 220.
[http://dx.doi.org/10.1186/ar2069] [PMID: 17118212]
[29]
Major, T.J.; Dalbeth, N.; Stahl, E.A.; Merriman, T.R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol., 2018, 14(6), 341-353.
[http://dx.doi.org/10.1038/s41584-018-0004-x] [PMID: 29740155]
[30]
Wu, M.; Ye, T.; Wang, Q.; Guo, C. Gout: A disease involved with complicated immunoinflammatory responses: A narrative review. Clin. Rheumatol., 2020, 39(10), 2849-2859.
[31]
Joosten, L.A.B.; Netea, M.G.; Mylona, E.; Koenders, M.I.; Malireddi, R.K.; Oosting, M.; Stienstra, R.; van de Veerdonk, F.L.; Stalenhoef, A.F.; Giamarellos-Bourboulis, E.J.; Kanneganti, T.D.; van der Meer, J.W. Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum., 2010, 62(11), 3237-3248.
[http://dx.doi.org/10.1002/art.27667] [PMID: 20662061]
[32]
Mylona, E.E.; Mouktaroudi, M.; Crisan, T.O.; Makri, S.; Pistiki, A.; Georgitsi, M.; Savva, A.; Netea, M.G.; van der Meer, J.W.; Giamarellos-Bourboulis, E.J.; Joosten, L.A. Enhanced interleukin-1β production of PBMCs from patients with gout after stimulation with Toll-like receptor-2 ligands and urate crystals. Arthritis Res. Ther., 2012, 14(4), R158.
[http://dx.doi.org/10.1186/ar3898] [PMID: 22762240]
[33]
Sims, J.E.; Smith, D.E. The IL-1 family: Regulators of immunity. Nat. Rev. Immunol., 2010, 10(2), 89-102.
[http://dx.doi.org/10.1038/nri2691] [PMID: 20081871]
[34]
Dumusc, A.; So, A. Interleukin-1 as a therapeutic target in gout. Curr. Opin. Rheumatol., 2015, 27(2), 156-163.
[http://dx.doi.org/10.1097/BOR.0000000000000143] [PMID: 25633244]
[35]
So, A.K.; Martinon, F. Inflammation in gout: Mechanisms and therapeutic targets. Nat. Rev. Rheumatol., 2017, 13(11), 639-647.
[http://dx.doi.org/10.1038/nrrheum.2017.155] [PMID: 28959043]
[36]
Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol., 2009, 27(1), 519-550.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132612] [PMID: 19302047]
[37]
Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-241.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[38]
Tschopp, J.; Martinon, F.; Burns, K. NALPs: A novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol., 2003, 4(2), 95-104.
[http://dx.doi.org/10.1038/nrm1019] [PMID: 12563287]
[39]
Broz, P.; Dixit, V.M. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat. Rev. Immunol., 2016, 16(7), 407-420.
[http://dx.doi.org/10.1038/nri.2016.58] [PMID: 27291964]
[40]
Schlesinger, N.; Thiele, R.G. The pathogenesis of bone erosions in gouty arthritis. Ann. Rheum. Dis., 2010, 69(11), 1907-1912.
[http://dx.doi.org/10.1136/ard.2010.128454] [PMID: 20705636]
[41]
Rock, K.L.; Kataoka, H.; Lai, J.J. Uric acid as a danger signal in gout and its comorbidities. Nat. Rev. Rheumatol., 2013, 9(1), 13-23.
[http://dx.doi.org/10.1038/nrrheum.2012.143] [PMID: 22945591]
[42]
Giamarellos-Bourboulis, E.J.; Mouktaroudi, M.; Bodar, E.; van der Ven, J.; Kullberg, B.J.; Netea, M.G.; van der Meer, J.W. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1 β by mononuclear cells through a caspase 1-mediated process. Ann. Rheum. Dis., 2009, 68(2), 273-278.
[http://dx.doi.org/10.1136/ard.2007.082222] [PMID: 18390571]
[43]
Crișan, T.O.; Cleophas, M.C.P.; Oosting, M.; Lemmers, H.; Toenhake-Dijkstra, H.; Netea, M.G.; Jansen, T.L.; Joosten, L.A. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann. Rheum. Dis., 2016, 75(4), 755-762.
[http://dx.doi.org/10.1136/annrheumdis-2014-206564] [PMID: 25649144]
[44]
Yokose, C.; McCormick, N.; Choi, H.K. Dietary and lifestyle-centered approach in gout care and prevention. Curr. Rheumatol. Rep., 2021, 23(7), 51.
[http://dx.doi.org/10.1007/s11926-021-01020-y] [PMID: 34196878]
[45]
Torres, R.; Macdonald, L.; Croll, S.D.; Reinhardt, J.; Dore, A.; Stevens, S.; Hylton, D.M.; Rudge, J.S.; Liu-Bryan, R.; Terkeltaub, R.A.; Yancopoulos, G.D.; Murphy, A.J. Hyperalgesia, synovitis and multiple biomarkers of inflammation are suppressed by interleukin 1 inhibition in a novel animal model of gouty arthritis. Ann. Rheum. Dis., 2009, 68(10), 1602-1608.
[http://dx.doi.org/10.1136/ard.2009.109355] [PMID: 19528034]
[46]
Silva, C.R.; Oliveira, S.M.; Hoffmeister, C.; Funck, V.; Guerra, G.P.; Trevisan, G.; Tonello, R.; Rossato, M.F.; Pesquero, J.B.; Bader, M.; Oliveira, M.S.; McDougall, J.J.; Ferreira, J. The role of kinin B1 receptor and the effect of angiotensin I-converting enzyme inhibition on acute gout attacks in rodents. Ann. Rheum. Dis., 2016, 75(1), 260-268.
[http://dx.doi.org/10.1136/annrheumdis-2014-205739] [PMID: 25344431]
[47]
Edgeworth, J.; Gorman, M.; Bennett, R.; Freemont, P.; Hogg, N. Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J. Biol. Chem., 1991, 266(12), 7706-7713.
[http://dx.doi.org/10.1016/S0021-9258(20)89506-4] [PMID: 2019594]
[48]
Ryckman, C.; Gilbert, C.; de Médicis, R.; Lussier, A.; Vandal, K.; Tessier, P.A. Monosodium urate monohydrate crystals induce the release of the proinflammatory protein S100A8/A9 from neutrophils. J. Leukoc. Biol., 2004, 76(2), 433-440.
[http://dx.doi.org/10.1189/jlb.0603294] [PMID: 15107458]
[49]
Ryckman, C.; McColl, S.R.; Vandal, K.; de Médicis, R.; Lussier, A.; Poubelle, P.E.; Tessier, P.A. Role of S100A8 and S100A9 in neutrophil recruitment in response to monosodium urate monohydrate crystals in the air-pouch model of acute gouty arthritis. Arthritis Rheum., 2003, 48(8), 2310-2320.
[http://dx.doi.org/10.1002/art.11079] [PMID: 12905486]
[50]
Holzinger, D.; Nippe, N.; Vogl, T.; Marketon, K.; Mysore, V.; Weinhage, T.; Dalbeth, N.; Pool, B.; Merriman, T.; Baeten, D.; Ives, A.; Busso, N.; Foell, D.; Bas, S.; Gabay, C.; Roth, J. Myeloid-related proteins 8 and 14 contribute to monosodium urate monohydrate crystal-induced inflammation in gout. Arthritis Rheumatol., 2014, 66(5), 1327-1339.
[http://dx.doi.org/10.1002/art.38369] [PMID: 24470119]
[51]
Vogl, T.; Tenbrock, K.; Ludwig, S.; Leukert, N.; Ehrhardt, C.; van Zoelen, M.A.; Nacken, W.; Foell, D.; van der Poll, T.; Sorg, C.; Roth, J. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med., 2007, 13(9), 1042-1049.
[http://dx.doi.org/10.1038/nm1638] [PMID: 17767165]
[52]
Chen, C.J.; Shi, Y.; Hearn, A.; Fitzgerald, K.; Golenbock, D.; Reed, G.; Akira, S.; Rock, K.L. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest., 2006, 116(8), 2262-2271.
[http://dx.doi.org/10.1172/JCI28075] [PMID: 16886064]
[53]
Lioté, F.; Prudhommeaux, F.; Schiltz, C.; Champy, R.; Herbelin, A.; Ortiz-Bravo, E.; Bardin, T. Inhibition and prevention of monosodium urate monohydrate crystal-induced acute inflammation in vivo by transforming growth factor β1. Arthritis Rheum., 1996, 39(7), 1192-1198.
[http://dx.doi.org/10.1002/art.1780390718] [PMID: 8670330]
[54]
Landis, R.C.; Yagnik, D.R.; Florey, O.; Philippidis, P.; Emons, V.; Mason, J.C.; Haskard, D.O. Safe disposal of inflammatory monosodium urate monohydrate crystals by differentiated macrophages. Arthritis Rheum., 2002, 46(11), 3026-3033.
[http://dx.doi.org/10.1002/art.10614] [PMID: 12428246]
[55]
Yagnik, D.R.; Evans, B.J.; Florey, O.; Mason, J.C.; Landis, R.C.; Haskard, D.O. Macrophage release of transforming growth factor β1 during resolution of monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum., 2004, 50(7), 2273-2280.
[http://dx.doi.org/10.1002/art.20317] [PMID: 15248227]
[56]
Huang, Q.; Gao, W.; Mu, H.; Qin, T.; Long, F.; Ren, L.; Tang, H.; Liu, J.; Zeng, M. HSP60 Regulates monosodium urate crystal-induced inflammation by activating the TLR4-NF- κ B-MyD88 signaling pathway and disrupting mitochondrial function. Oxid. Med. Cell. Longev., 2020, 2020, 8706898.
[http://dx.doi.org/10.1155/2020/8706898]
[57]
Terkeltaub, R.; Curtiss, L.K.; Tenner, A.J.; Ginsberg, M.H. Lipoproteins containing apoprotein B are a major regulator of neutrophil responses to monosodium urate crystals. J. Clin. Invest., 1984, 73(6), 1719-1730.
[http://dx.doi.org/10.1172/JCI111380] [PMID: 6725556]
[58]
Ortiz-Bravo, E.; Sieck, M.S.; Schumacher, H.R., Jr Changes in the proteins coating monosodium urate crystals during active and subsiding inflammation. Immunogold studies of synovial fluid from patients with gout and of fluid obtained using the rat subcutaneous air pouch model. Arthritis Rheum., 1993, 36(9), 1274-1285.
[http://dx.doi.org/10.1002/art.1780360912] [PMID: 8216421]
[59]
Terkeltaub, R.A.; Dyer, C.A.; Martin, J.; Curtiss, L.K. Apolipoprotein (apo) E inhibits the capacity of monosodium urate crystals to stimulate neutrophils. Characterization of intraarticular apo E and demonstration of apo E binding to urate crystals in vivo. J. Clin. Invest., 1991, 87, 20-26.
[60]
Gupta, H.; Dai, L.; Datta, G.; Garber, D.W.; Grenett, H.; Li, Y.; Mishra, V.; Palgunachari, M.N.; Handattu, S.; Gianturco, S.H.; Bradley, W.A.; Anantharamaiah, G.M.; White, C.R. Inhibition of lipopolysaccharide-induced inflammatory responses by an apolipoprotein AI mimetic peptide. Circ. Res., 2005, 97(3), 236-243.
[http://dx.doi.org/10.1161/01.RES.0000176530.66400.48] [PMID: 16002747]
[61]
Ali, K.; Middleton, M.; Puré, E.; Rader, D.J. Apolipoprotein E suppresses the type I inflammatory response in vivo. Circ. Res., 2005, 97(9), 922-927.
[http://dx.doi.org/10.1161/01.RES.0000187467.67684.43] [PMID: 16179587]
[62]
Zhu, Y.; Kodvawala, A.; Hui, D.Y. Apolipoprotein E inhibits Toll-Like Receptor (TLR)-3- and TLR-4-mediated macrophage activation through distinct mechanisms. Biochem. J., 2010, 428(1), 47-54.
[http://dx.doi.org/10.1042/BJ20100016] [PMID: 20218969]
[63]
Scott, P.; Ma, H.; Viriyakosol, S.; Terkeltaub, R.; Liu-Bryan, R. Urate crystals inflammatory potential of monosodium engagement of CD14 mediates the engagement of CD14 mediates the inflammatory potential of monosodium urate crystals 1. J. Immunol., 2006, 177(9), 6370-6378.
[http://dx.doi.org/10.4049/jimmunol.177.9.6370]
[64]
Murakami, T.; Ockinger, J.; Yu, J.; Byles, V.; McColl, A.; Hofer, A.M.; Horng, T. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl. Acad. Sci. USA, 2012, 109(28), 11282-11287.
[http://dx.doi.org/10.1073/pnas.1117765109] [PMID: 22733741]
[65]
Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N.; Chen, S.; Ramanujan, V.K.; Wolf, A.J.; Vergnes, L.; Ojcius, D.M.; Rentsendorj, A.; Vargas, M.; Guerrero, C.; Wang, Y.; Fitzgerald, K.A.; Underhill, D.M.; Town, T.; Arditi, M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity, 2012, 36, 401-414.
[http://dx.doi.org/10.1016/j.immuni.2012.01.009.Oxidized]
[66]
So, A.; Ives, A.; Joosten, L.A.B.; Busso, N. Targeting inflammasomes in rheumatic diseases. Nat. Rev. Rheumatol., 2013, 9(7), 391-399.
[http://dx.doi.org/10.1038/nrrheum.2013.61] [PMID: 23670136]
[67]
Lefrançais, E.; Roga, S.; Gautier, V.; Gonzalez-de-Peredo, A.; Monsarrat, B.; Girard, J.P.; Cayrol, C. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc. Natl. Acad. Sci. USA, 2012, 109(5), 1673-1678.
[http://dx.doi.org/10.1073/pnas.1115884109] [PMID: 22307629]
[68]
Netea, M.G.; van de Veerdonk, F.L.; van der Meer, J.W.M.; Dinarello, C.A.; Joosten, L.A.B. Inflammasome-independent regulation of IL-1-family cytokines. Annu. Rev. Immunol., 2015, 33, 49-77.
[69]
Sugawara, S.; Uehara, A.; Nochi, T.; Yamaguchi, T.; Ueda, H.; Sugiyama, A.; Hanzawa, K.; Kumagai, K.; Okamura, H.; Takada, H. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J. Immunol., 2001, 167(11), 6568-6575.
[http://dx.doi.org/10.4049/jimmunol.167.11.6568] [PMID: 11714826]
[70]
Lopes, S.M.; Trimbo, S.L.; Mascioli, E.A.; Blackburn, G.L. Human plasma fatty acid variations and how they are related to dietary intake. Am. J. Clin. Nutr., 1991, 53(3), 628-637.
[http://dx.doi.org/10.1093/ajcn/53.3.628] [PMID: 2000815]
[71]
Nguyen, M.T.A.; Favelyukis, S.; Nguyen, A.K.; Reichart, D.; Scott, P.A.; Jenn, A.; Liu-Bryan, R.; Glass, C.K.; Neels, J.G.; Olefsky, J.M. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem., 2007, 282(48), 35279-35292.
[http://dx.doi.org/10.1074/jbc.M706762200] [PMID: 17916553]
[72]
Netea, M.G.; Kullberg, B.J.; Blok, W.L.; Netea, R.T.; van der Meer, J.W. The role of hyperuricemia in the increased cytokine production after lipopolysaccharide challenge in neutropenic mice. Blood, 1997, 89(2), 577-582.
[http://dx.doi.org/10.1182/blood.V89.2.577] [PMID: 9002961]
[73]
Jablonski, K.; Young, N.A.; Henry, C.; Caution, K.; Kalyanasundaram, A.; Okafor, I.; Harb, P.; Schwarz, E.; Consiglio, P.; Cirimotich, C.M.; Bratasz, A.; Sarkar, A.; Amer, A.O.; Jarjour, W.N.; Schlesinger, N. Physical activity prevents acute inflammation in a gout model by downregulation of TLR2 on circulating neutrophils as well as inhibition of serum CXCL1 and is associated with decreased pain and inflammation in gout patients. PLoS One, 2020, 15(10), e0237520.
[http://dx.doi.org/10.1371/journal.pone.0237520] [PMID: 33002030]
[74]
Braga, T.T.; Forni, M.F.; Correa-Costa, M.; Ramos, R.N.; Barbuto, J.A.; Branco, P.; Castoldi, A.; Hiyane, M.I.; Davanso, M.R.; Latz, E.; Franklin, B.S.; Kowaltowski, A.J.; Camara, N.O. Soluble uric acid activates the NLRP3 inflammasome. Sci. Rep., 2017, 7(1), 39884.
[http://dx.doi.org/10.1038/srep39884] [PMID: 28084303]
[75]
Souza, A.C.P.; Tsuji, T.; Baranova, I.N.; Bocharov, A.V.; Wilkins, K.J.; Street, J.M.; Alvarez-Prats, A.; Hu, X.; Eggerman, T.; Yuen, P.S.; Star, R.A. TLR4 mutant mice are protected from renal fibrosis and chronic kidney disease progression. Physiol. Rep., 2015, 3(9), e12558.
[http://dx.doi.org/10.14814/phy2.12558] [PMID: 26416975]
[76]
Pulskens, W.P.; Teske, G.J.; Butter, L.M.; Roelofs, J.J.; van der Poll, T.; Florquin, S.; Leemans, J.C. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS One, 2008, 3(10), e3596.
[http://dx.doi.org/10.1371/journal.pone.0003596] [PMID: 18974879]
[77]
Trevisan, G.; Hoffmeister, C.; Rossato, M.F.; Oliveira, S.M.; Silva, M.A.; Silva, C.R.; Fusi, C.; Tonello, R.; Minocci, D.; Guerra, G.P.; Materazzi, S.; Nassini, R.; Geppetti, P.; Ferreira, J. TRPA1 receptor stimulation by hydrogen peroxide is critical to trigger hyperalgesia and inflammation in a model of acute gout. Free Radic. Biol. Med., 2014, 72, 200-209.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.021] [PMID: 24780252]
[78]
Chen, L.; Hsieh, M.S.; Ho, H.C.; Liu, Y.H.; Chou, D.T.; Tsai, S.H. Stimulation of inducible nitric oxide synthase by monosodium urate crystals in macrophages and expression of iNOS in gouty arthritis. Nitric Oxide, 2004, 11(3), 228-236.
[http://dx.doi.org/10.1016/j.niox.2004.09.003] [PMID: 15566969]
[79]
Jaramillo, M.; Naccache, P.H.; Olivier, M. Monosodium urate crystals synergize with IFN-γ to generate macrophage nitric oxide: Involvement of extracellular signal-regulated kinase 1/2 and NF-κ B. J. Immunol., 2004, 172(9), 5734-5742.
[http://dx.doi.org/10.4049/jimmunol.172.9.5734] [PMID: 15100320]
[80]
Miyasaka, N.; Hirata, Y. Nitric oxide and inflammatory arthritides. Life Sci., 1997, 61(21), 2073-2081.
[http://dx.doi.org/10.1016/S0024-3205(97)00585-7] [PMID: 9395248]
[81]
Slomiany, B.L.; Slomiany, A. Helicobacter pylori LPS-induced gastric mucosal spleen tyrosine kinase (Syk) recruitment to TLR4 and activation occurs with the involvement of protein kinase Cδ. Inflammopharmacology, 2018, 26(3), 805-815.
[http://dx.doi.org/10.1007/s10787-017-0430-4] [PMID: 29353412]
[82]
Desaulniers, P.; Fernandes, M.; Gilbert, C.; Bourgoin, S.G.; Naccache, P.H. Crystal-induced neutrophil activation. VII. Involvement of Syk in the responses to monosodium urate crystals. J. Leukoc. Biol., 2001, 70(4), 659-668.
[http://dx.doi.org/10.1189/jlb.70.4.659] [PMID: 11590204]
[83]
Popa-Nita, O.; Naccache, P.H. Crystal-induced neutrophil activation. Immunol. Cell Biol., 2010, 88(1), 32-40.
[http://dx.doi.org/10.1038/icb.2009.98] [PMID: 19949421]
[84]
Liu, H.; Xiong, J.; He, T.; Xiao, T.; Li, Y.; Yu, Y.; Huang, Y.; Xu, X.; Huang, Y.; Zhang, J.; Zhang, B.; Zhao, J. High uric acid-induced epithelial-mesenchymal transition of renal tubular epithelial cells via the TLR4/NF-kB signaling pathway. Am. J. Nephrol., 2017, 46(4), 333-342.
[http://dx.doi.org/10.1159/000481668] [PMID: 29017152]
[85]
Xiao, J.; Fu, C.; Zhang, X.; Zhu, D.; Chen, W.; Lu, Y.; Ye, Z. Soluble monosodium urate, but not its crystal, induces toll like receptor 4-dependent immune activation in renal mesangial cells. Mol. Immunol., 2015, 66(2), 310-318.
[http://dx.doi.org/10.1016/j.molimm.2015.03.250] [PMID: 25909495]
[86]
Shi, Y.; Evans, J.E.; Rock, K.L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature, 2003, 425(6957), 516-521.
[http://dx.doi.org/10.1038/nature01991] [PMID: 14520412]
[87]
Chen, C.J.; Kono, H.; Golenbock, D.; Reed, G.; Akira, S.; Rock, K.L. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med., 2007, 13(7), 851-856.
[http://dx.doi.org/10.1038/nm1603] [PMID: 17572686]
[88]
Kono, H.; Chen, C.J.; Ontiveros, F.; Rock, K.L. Uric acid promotes an acute inflammatory response to sterile cell death in mice. J. Clin. Invest., 2010, 120(6), 1939-1949.
[http://dx.doi.org/10.1172/JCI40124] [PMID: 20501947]
[89]
Pruenster, M.; Vogl, T.; Roth, J.; Sperandio, M. S100A8/A9: From basic science to clinical application. Pharmacol. Ther., 2016, 167, 120-131.
[http://dx.doi.org/10.1016/j.pharmthera.2016.07.015] [PMID: 27492899]
[90]
Rousseau, L.S.; Paré, G.; Lachhab, A.; Naccache, P.H.; Marceau, F.; Tessier, P.; Pelletier, M.; Fernandes, M. S100A9 potentiates the activation of neutrophils by the etiological agent of gout, monosodium urate crystals. J. Leukoc. Biol., 2017, 102(3), 805-813.
[http://dx.doi.org/10.1189/jlb.3MA0117-020R] [PMID: 28550118]
[91]
Kienhorst, L.B.E.; van Lochem, E.; Kievit, W.; Dalbeth, N.; Merriman, M.E.; Phipps-Green, A.; Loof, A.; van Heerde, W.; Vermeulen, S.; Stamp, L.K.; van Koolwijk, E.; de Graaf, J.; Holzinger, D.; Roth, J.; Janssens, H.J.; Merriman, T.R.; Broen, J.C.; Janssen, M.; Radstake, T.R. Gout is a chronic inflammatory disease in which high levels of interleukin-8 (CXCL8), myeloid-related protein 8/myeloid-related protein 14 complex, and an altered proteome are associated with diabetes mellitus and cardiovascular disease. Arthritis Rheumatol., 2015, 67(12), 3303-3313.
[http://dx.doi.org/10.1002/art.39318] [PMID: 26248007]
[92]
Tanga, F.Y.; Nutile-McMenemy, N.; DeLeo, J.A. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc. Natl. Acad. Sci. USA, 2005, 102(16), 5856-5861.
[http://dx.doi.org/10.1073/pnas.0501634102] [PMID: 15809417]
[93]
Bettoni, I.; Comelli, F.; Rossini, C.; Granucci, F.; Giagnoni, G.; Peri, F.; Costa, B. Glial TLR4 receptor as new target to treat neuropathic pain: Efficacy of a new receptor antagonist in a model of peripheral nerve injury in mice. Glia, 2008, 56(12), 1312-1319.
[http://dx.doi.org/10.1002/glia.20699] [PMID: 18615568]
[94]
Buchanan, M.M.; Hutchinson, M.; Watkins, L.R.; Yin, H. Toll-like receptor 4 in CNS pathologies. J. Neurochem., 2010, 114(1), 13-27.
[PMID: 20402965]
[95]
Wu, F.X.; Bian, J.J.; Miao, X.R.; Huang, S.D.; Xu, X.W.; Gong, D.J.; Sun, Y.M.; Lu, Z.J.; Yu, W.F. Intrathecal siRNA against Toll-like receptor 4 reduces nociception in a rat model of neuropathic pain. Int. J. Med. Sci., 2010, 7(5), 251-259.
[http://dx.doi.org/10.7150/ijms.7.251] [PMID: 20714435]
[96]
Lacagnina, M.J.; Watkins, L.R.; Grace, P.M. Toll-like receptors and their role in persistent pain. Pharmacol. Ther., 2018, 184, 145-158.
[http://dx.doi.org/10.1016/j.pharmthera.2017.10.006] [PMID: 28987324]
[97]
Raghavendra, V.; Tanga, F.Y.; DeLeo, J.A. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur. J. Neurosci., 2004, 20(2), 467-473.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03514.x] [PMID: 15233755]
[98]
Zhao, X.H.; Zhang, T.; Li, Y.Q. The up-regulation of spinal Toll-like receptor 4 in rats with inflammatory pain induced by complete Freund’s adjuvant. Brain Res. Bull., 2015, 111, 97-103.
[http://dx.doi.org/10.1016/j.brainresbull.2015.01.002] [PMID: 25592618]
[99]
Guerrero, A.T.G.; Pinto, L.G.; Cunha, F.Q.; Ferreira, S.H.; Alves-Filho, J.C.; Verri, W.A., Jr; Cunha, T.M. Mechanisms underlying the hyperalgesic responses triggered by joint activation of TLR4. Pharmacol. Rep., 2016, 68(6), 1293-1300.
[http://dx.doi.org/10.1016/j.pharep.2016.08.006] [PMID: 27689757]
[100]
Bobacz, K.; Sunk, I.G.; Hofstaetter, J.G.; Amoyo, L.; Toma, C.D.; Akira, S.; Weichhart, T.; Saemann, M.; Smolen, J.S. Toll-like receptors and chondrocytes: The lipopolysaccharide-induced decrease in cartilage matrix synthesis is dependent on the presence of toll-like receptor 4 and antagonized by bone morphogenetic protein 7. Arthritis Rheum., 2007, 56(6), 1880-1893.
[http://dx.doi.org/10.1002/art.22637] [PMID: 17530716]
[101]
Sillat, T.; Barreto, G.; Clarijs, P.; Soininen, A.; Ainola, M.; Pajarinen, J.; Korhonen, M.; Konttinen, Y.T.; Sakalyte, R.; Hukkanen, M.; Ylinen, P.; Nordström, D.C. Toll-like receptors in human chondrocytes and osteoarthritic cartilage. Acta Orthop., 2013, 84(6), 585-592.
[http://dx.doi.org/10.3109/17453674.2013.854666] [PMID: 24237425]
[102]
Schelbergen, R.F.P.; Blom, A.B.; van den Bosch, M.H.J.; Slöetjes, A.; Abdollahi-Roodsaz, S.; Schreurs, B.W.; Mort, J.S.; Vogl, T.; Roth, J.; van den Berg, W.B.; van Lent, P.L. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum., 2012, 64(5), 1477-1487.
[http://dx.doi.org/10.1002/art.33495] [PMID: 22127564]
[103]
Hu, F.; Li, Y.; Zheng, L.; Shi, L.; Liu, H.; Zhang, X.; Zhu, H.; Tang, S.; Zhu, L.; Xu, L.; Yang, Y.; Li, Z. Toll-like receptors expressed by synovial fibroblasts perpetuate Th1 and Th17 cell responses in rheumatoid arthritis. PLoS One, 2014, 9(6), e100266.
[http://dx.doi.org/10.1371/journal.pone.0100266] [PMID: 24936783]
[104]
Agalave, N.M.; Larsson, M.; Abdelmoaty, S.; Su, J.; Baharpoor, A.; Lundbäck, P.; Palmblad, K.; Andersson, U.; Harris, H.; Svensson, C.I. Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain, 2014, 155(9), 1802-1813.
[http://dx.doi.org/10.1016/j.pain.2014.06.007] [PMID: 24954167]
[105]
Miller, R.E.; Belmadani, A.; Ishihara, S.; Tran, P.B.; Ren, D.; Miller, R.J.; Malfait, A.M. Damage-associated molecular patterns generated in osteoarthritis directly excite murine nociceptive neurons through Toll-like receptor 4. Arthritis Rheumatol., 2015, 67(11), 2933-2943.
[http://dx.doi.org/10.1002/art.39291] [PMID: 26245312]
[106]
Farooq, M.; Batool, M.; Kim, M.S.; Choi, S. Toll-like receptors as a therapeutic target in the era of immunotherapies. Front. Cell Dev. Biol., 2021, 9, 756315.
[http://dx.doi.org/10.3389/fcell.2021.756315] [PMID: 34671606]
[107]
Villalvilla, A. da Silva, Jame’s A.; Largo, Raque; Gualillo, O.; Vieira. Paulo Cezar 6‐Shogaol inhibits chondrocytes’ innate immune responses and cathepsin‐K activity. 2014, 256-266.
[http://dx.doi.org/10.1002/mnfr.201200833]
[108]
Gradišar, H.; Keber, M.M.; Pristovšek, P.; Jerala, R. MD-2 as the target of curcumin in the inhibition of response to LPS. J. Leukoc. Biol., 2007, 82(4), 968-974.
[http://dx.doi.org/10.1189/jlb.1206727] [PMID: 17609337]
[109]
Lee, J.Y.; Lee, B.H.; Lee, J.Y. Gambogic acid disrupts toll-like receptor4 activation by blocking lipopolysaccharides binding to myeloid differentiation factor 2. Toxicol. Res., 2015, 31(1), 11-16.
[http://dx.doi.org/10.5487/TR.2015.31.1.011] [PMID: 25874028]
[110]
Zhou, Y.; Li, W.; Zhang, X.; Zhang, H.; Xiao, Y. Global profiling of cellular targets of gambogic acid by quantitative chemical proteomics. Chem. Commun. (Camb.), 2016, 52(97), 14035-14038.
[http://dx.doi.org/10.1039/C6CC07581A] [PMID: 27853763]
[111]
Chen, L.; Fu, W.; Zheng, L.; Wang, Y.; Liang, G. Recent progress in the discovery of myeloid differentiation 2 (MD2) modulators for inflammatory diseases. Drug Discov. Today, 2018, 23(6), 1187-1202.
[http://dx.doi.org/10.1016/j.drudis.2018.01.015] [PMID: 29330126]
[112]
Rice, T.W.; Wheeler, A.P.; Bernard, G.R.; Vincent, J.L.; Angus, D.C.; Aikawa, N.; Demeyer, I.; Sainati, S.; Amlot, N.; Cao, C.; Ii, M.; Matsuda, H.; Mouri, K.; Cohen, J. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit. Care Med., 2010, 38(8), 1685-1694.
[http://dx.doi.org/10.1097/CCM.0b013e3181e7c5c9] [PMID: 20562702]
[113]
Monnet, E.; Choy, E.H.; McInnes, I.; Kobakhidze, T.; de Graaf, K.; Jacqmin, P.; Lapeyre, G.; de Min, C. Efficacy and safety of NI-0101, an anti-toll-like receptor 4 monoclonal antibody, in patients with rheumatoid arthritis after inadequate response to methotrexate: A phase II study. Ann. Rheum. Dis., 2020, 79(3), 316-323.
[http://dx.doi.org/10.1136/annrheumdis-2019-216487] [PMID: 31892533]
[114]
Franco‐Trepat, E.; Alonso‐Pérez, A.; Guillán‐Fresco, M.; Jorge-Mora, A.; Crespo-Golmar, A.; Lopez-Fagundez, M.; Pazos-Perez, A.; Gualillo, O.; Bravo, S.B.; Bahamonde, R.G. Amitriptyline blocks innate immune responses mediated by TLR4 & IL1R: Preclinical and clinical evidence in OA and gout. Br. J. Pharmacol., 2022, 179(2), 270-286.

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy