Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Detection of Transdermal Drug Delivery Efficiency by Shock Wave

Author(s): Yu-Jie Xie, Sheng-Jian Wu, Jian-Xiong Wang, Wei-Zhang, Fu-Hua Sun, Yue Hu, Akira Miyamoto, Fang-Yuan Xu and Chi Zhang*

Volume 20, Issue 8, 2023

Published on: 01 August, 2022

Page: [1188 - 1194] Pages: 7

DOI: 10.2174/1567201819666220525093528

Price: $65

Abstract

Objective: This study aimed to observe the drug distribution ex-vivo after transdermal drug delivery (TDD) by Shock Wave (SW) and to explore the different effects of the two types of shock waves.

Materials and Methods: Nine female Sprague-Dawley (SD) rats were randomly divided into 3 groups:

(i) control group; (ii) RESW group (0.35mJ/mm2, 2 Hz, 400 pulse); (iii) FESW group (0.16mJ/mm2, 2 Hz, 400 pulse). Micro positron emission tomography/computed tomography (PET/CT) was used to observe the distribution of [18]F-NaF. Furthermore, 12 SD rats were randomly divided into 4 groups:

(i) control group; (ii) FESW group 1 (0.03mJ/mm2, 2 Hz, 400 pulse); (iii) FESW group 2 (0.16mJ/mm2, 2 Hz, 400 pulse); (iv) FESW group 3 (0.35mJ/mm2, 2 Hz, 400 pulse). High-performance liquid chromatography (HPLC) tested diclofenac sodium and glucose percutaneously TDD by FESW. Statistical significance was conducted by analysis of variance of repeated measurement.

Results: The micro PET/CT observed FESW could penetrate [18]F-NaF through the skin, while RESW could not. The second study found the higher the energy of the FESW, the more diclofenac sodium and glucose penetration. Repeated measures analysis of variance found a within-subject effect (diclofenac sodium, F = 4.77, p = 0.03), (glucose, F = 8.95, p = 0.006), significant differences between the control group, FESW group 1, and FESW group 2 (p < 0.05).

Conclusion: The study found that FESW can penetrate [18]F-NaF, sugar and diclofenac sodium into the rat body. FESW has a good indication of drug penetration, which provides new biological evidence for route administration.

Keywords: Shock wave, transdermal drug delivery, radial extracorporeal shock wave, focused shock wave, micro positron emission tomography/computed tomography, high-performance liquid chromatography.

[1]
Hsiao, C.C.; Huang, W.H.; Cheng, K.H.; Lee, C.T. Low-energy extracorporeal shock wave therapy ameliorates kidney function in diabetic nephropathy. Oxid. Med. Cell. Longev., 2019, 2019, 8259645.
[http://dx.doi.org/10.1155/2019/8259645] [PMID: 31354913]
[2]
Xiang, J.; Wang, W.; Jiang, W.; Qian, Q. Effects of extracorporeal shock wave therapy on spasticity in post-stroke patients: A systematic review and meta-analysis of randomized controlled trials. J. Rehabil. Med., 2018, 50(10), 852-859.
[http://dx.doi.org/10.2340/16501977-2385] [PMID: 30264850]
[3]
Alkhamaali, Z.K.; Crocombe, A.D.; Solan, M.C.; Cirovic, S. Finite element modelling of radial shock wave therapy for chronic plantar fasciitis. Comput. Methods Biomech. Biomed. Engin., 2016, 19(10), 1069-1078.
[http://dx.doi.org/10.1080/10255842.2015.1096348] [PMID: 26465270]
[4]
Mattyasovszky, S.G.; Langendorf, E.K.; Ritz, U.; Schmitz, C.; Schmidtmann, I.; Nowak, T.E.; Wagner, D.; Hofmann, A.; Rommens, P.M.; Drees, P. Exposure to radial extracorporeal shock waves modulates viability and gene expression of human skeletal muscle cells: A controlled in vitro study. J. Orthop. Surg. Res., 2018, 13(1), 75.
[http://dx.doi.org/10.1186/s13018-018-0779-0] [PMID: 29625618]
[5]
Chuang, Y.C.; Huang, T.L.; Tyagi, P.; Huang, C.C. Urodynamic and immunohistochemical evaluation of intravesical botulinum toxin a delivery using low energy shock waves. J. Urol., 2016, 196(2), 599-608.
[http://dx.doi.org/10.1016/j.juro.2015.12.078] [PMID: 26724396]
[6]
Luh, J.J.; Huang, W.T.; Lin, K.H.; Huang, Y.Y.; Kuo, P.L.; Chen, W.S. Effects of extracorporeal shock wave-mediated transdermal local anesthetic drug delivery on rat caudal nerves. Ultrasound Med. Biol., 2018, 44(1), 214-222.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2017.09.010] [PMID: 29107354]
[7]
Economidou, S.N.; Lamprou, D.A.; Douroumis, D. 3D printing applications for transdermal drug delivery. Int. J. Pharm., 2018, 544(2), 415-424.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.031] [PMID: 29355656]
[8]
Nawaz, A.; Wong, T.W. Microwave as skin permeation enhancer for transdermal drug delivery of chitosan-5-fluorouracil nanoparticles. Carbohydr. Polym., 2017, 157, 906-919.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.080] [PMID: 27988008]
[9]
Rejinold, N.S.; Shin, J.H.; Seok, H.Y.; Kim, Y.C. Biomedical applications of microneedles in therapeutics: Recent advancements and implications in drug delivery. Expert Opin. Drug Deliv., 2016, 13(1), 109-131.
[http://dx.doi.org/10.1517/17425247.2016.1115835] [PMID: 26559052]
[10]
Abo Al-Khair, M.A.; El Khouly, R.M.; Khodair, S.A.; Al Sattar Elsergany, M.A.; Hussein, M.I.; Eldin Mowafy, M.E. Focused, radial and combined shock wave therapy in treatment of calcific shoulder tendinopathy. Phys. Sportsmed., 2021, 49(4), 480-487.
[11]
Ameen, D.; Michniak-Kohn, B. Development and in vitro evaluation of pressure sensitive adhesive patch for the transdermal delivery of galantamine: Effect of penetration enhancers and crystallization inhibition. Eur. J. Pharm. Biopharm., 2019, 139, 262-271.
[12]
Azagury, A.; Khoury, L.; Enden, G.; Kost, J. Ultrasound mediated transdermal drug delivery. Adv. Drug Deliv. Rev., 2014, 72, 127-143.
[http://dx.doi.org/10.1016/j.addr.2014.01.007] [PMID: 24463344]
[13]
Park, J.; Lee, H.; Lim, G.S.; Kim, N.; Kim, D.; Kim, Y.C. Enhanced transdermal drug delivery by sonophoresis and simultaneous application of sonophoresis and iontophoresis. AAPS PharmSciTech, 2019, 20(3), 96.
[http://dx.doi.org/10.1208/s12249-019-1309-z] [PMID: 30694397]
[14]
Snook, K.A.; Van Ess, R.II.; Werner, J.R.; Clement, R.S.; Ocon-Grove, O.M.; Dodds, J.W.; Ryan, K.J.; Acosta, E.P.; Zurlo, J.J.; Mulvihill, M.L. Transdermal delivery of enfuvirtide in a porcine model using a low-frequency, low-power ultrasound transducer patch. Ultrasound Med. Biol., 2019, 45(2), 513-525.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2018.10.003] [PMID: 30583819]
[15]
Irmler, I.M.; Gebhardt, P.; Hoffmann, B.; Opfermann, T.; Figge, M.T.; Saluz, H.P.; Kamradt, T. 18 F-Fluoride positron emission tomography/ computed tomography for noninvasive in vivo quantification of pathophysiological bone metabolism in experimental murine arthritis. Arthritis Res. Ther., 2014, 16(4), R155.
[http://dx.doi.org/10.1186/ar4670] [PMID: 25053370]
[16]
Jeon, T.J.; Kim, S.; Park, J.; Park, J.H.; Roh, E.Y. Use of 18F-sodium fluoride bone PET for disability evaluation in ankle trauma: A pilot study. BMC Med. Imaging, 2018, 18(1), 34.
[http://dx.doi.org/10.1186/s12880-018-0277-1] [PMID: 30236078]
[17]
Beheshti, M.; Rezaee, A.; Geinitz, H.; Loidl, W.; Pirich, C.; Langsteger, W. Evaluation of prostate cancer bone metastases with 18F-NaF and 18F-fluorocholine PET/CT. J. Nucl. Med., 2016, 57(Suppl. 3), 55s-60s.
[18]
Hayer, S.; Zeilinger, M.; Weiss, V.; Dumanic, M.; Seibt, M.; Niederreiter, B. Multimodal [(18) F]FDG PET/CT is a direct readout for inflammatory bone repair: A longitudinal study in TNFalpha transgenic mice. J. Bone Miner. Res., 2019, 34(9), 1632-1645.
[19]
Dweck, M.R.; Chow, M.W.; Joshi, N.V.; Williams, M.C.; Jones, C.; Fletcher, A.M.; Richardson, H.; White, A.; McKillop, G.; van Beek, E.J.; Boon, N.A.; Rudd, J.H.; Newby, D.E. Coronary arterial 18F-sodium fluoride uptake: A novel marker of plaque biology. J. Am. Coll. Cardiol., 2012, 59(17), 1539-1548.
[http://dx.doi.org/10.1016/j.jacc.2011.12.037] [PMID: 22516444]
[20]
Bernhardsson, M.; Sandberg, O.; Ressner, M.; Koziorowski, J.; Malmquist, J.; Aspenberg, P. Shining dead bone-cause for cautious interpretation of [18F]NaF PET scans. Acta Orthop., 2018, 89(1), 124-127.
[http://dx.doi.org/10.1080/17453674.2017.1372097] [PMID: 28914114]
[21]
Raynor, W.; Houshmand, S.; Gholami, S.; Emamzadehfard, S.; Rajapakse, C.S.; Blomberg, B.A.; Werner, T.J.; Høilund-Carlsen, P.F.; Baker, J.F.; Alavi, A. Evolving role of molecular imaging with (18)F-sodium fluoride PET as a biomarker for calcium metabolism. Curr. Osteoporos. Rep., 2016, 14(4), 115-125.
[http://dx.doi.org/10.1007/s11914-016-0312-5] [PMID: 27301549]
[22]
Kim, Y.; Lee, H.Y.; Yoon, H.J.; Kim, B.S. Utility of 18F-fluorodeoxy glucose and 18F-sodium fluoride positron emission tomography/ computed tomography in the diagnosis of medication-related osteonecrosis of the jaw: A preclinical study in a rat model. J. Craniomaxillofac. Surg., 2016, 44(4), 357-363.
[23]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[24]
López-Marín, L.M.; Rivera, A.L.; Fernández, F.; Loske, A.M. Shock wave-induced permeabilization of mammalian cells. Phys. Life Rev., 2018, 26-27, 1-38.
[http://dx.doi.org/10.1016/j.plrev.2018.03.001] [PMID: 29685859]
[25]
Merino, G.; Kalia, Y.N.; Guy, R.H. Ultrasound-enhanced transdermal transport. J. Pharm. Sci., 2003, 92(6), 1125-1137.
[http://dx.doi.org/10.1002/jps.10369] [PMID: 12761802]
[26]
Meaney, P.M.; Cahill, M.D.; ter Haar, G.R. The intensity dependence of lesion position shift during focused ultrasound surgery. Ultrasound Med. Biol., 2000, 26(3), 441-450.
[http://dx.doi.org/10.1016/S0301-5629(99)00161-1] [PMID: 10773375]
[27]
Foldager, C.B.; Kearney, C.; Spector, M. Clinical application of extracorporeal shock wave therapy in orthopedics: Focused versus unfocused shock waves. Ultrasound Med. Biol., 2012, 38(10), 1673-1680.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2012.06.004] [PMID: 22920552]
[28]
Gerdesmeyer, L.; Maier, M.; Haake, M.; Schmitz, C. [Physicaltechnical principles of extracorporeal shockwave therapy (ESWT)]. Orthopade, 2002, 31(7), 610-617.
[http://dx.doi.org/10.1007/s00132-002-0319-8] [PMID: 12219657]
[29]
Speed, C. A systematic review of shockwave therapies in soft tissue conditions: Focusing on the evidence. Br. J. Sports Med., 2014, 48(21), 1538-1542.
[http://dx.doi.org/10.1136/bjsports-2012-091961] [PMID: 23918444]
[30]
Kraemer, R.; Sorg, H.; Forstmeier, V.; Knobloch, K.; Liodaki, E.; Stang, F.H.; Mailaender, P.; Kisch, T. Immediate dose-response effect of high-energy versus low-energy extracorporeal shock wave therapy on cutaneous microcirculation. Ultrasound Med. Biol., 2016, 42(12), 2975-2982.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2016.08.010] [PMID: 27662701]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy