Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Transdermal Insulin Delivery and Microneedles-based Minimally Invasive Delivery Systems

Author(s): Yichuan Hong, Haojie Yu*, Li Wang, Xiang Chen, Yudi Huang, Jian Yang and Shuning Ren

Volume 28, Issue 39, 2022

Published on: 02 November, 2022

Page: [3175 - 3193] Pages: 19

DOI: 10.2174/1381612828666220608130056

Price: $65

Abstract

Diabetes has become a serious threat to human health, causing death and pain to numerous patients. Transdermal insulin delivery is a substitute for traditional insulin injection to avoid pain from the injection. Transdermal methods include non-invasive and invasive methods. As the non-invasive methods could hardly get through the stratum corneum, minimally invasive devices, especially microneedles, could enhance the transappendageal route in transcutaneous insulin delivery, and could act as connectors between the tissue and outer environment or devices. Microneedle patches have been in quick development in recent years and with different types, materials and functions. In those patches, the smart microneedle patch could perform as a sensor and reactor responding to glucose to regulate the blood level. In the smart microneedles field, the phenylboronic acid system and the glucose oxidase system have been successfully applied on the microneedle platform. Insulin transdermal delivery strategy, microneedles technology and smart microneedles’ development would be discussed in this review.

Keywords: Transdermal delivery, insulin, minimal invasion, microneedle, glucose response, stratum corneum.

Next »
[1]
Chan JCN, Lim L-L, Wareham NJ, et al. The lancet commis-sion on diabetes: Using data to transform diabetes care and patient lives. Lancet 2021; 396(10267): 2019-82.
[http://dx.doi.org/10.1016/S0140-6736(20)32374-6] [PMID: 33189186]
[2]
Atkinson MA, Eisenbarth GS. Type 1 diabetes: New per-spectives on disease pathogenesis and treatment. Lancet 2001; 358(9277): 221-9.
[http://dx.doi.org/10.1016/S0140-6736(01)05415-0] [PMID: 11476858]
[3]
Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the Euro-pean Association for the Study of Diabetes (EASD). Diabetologia 2018; 61(12): 2461-98.
[http://dx.doi.org/10.1007/s00125-018-4729-5] [PMID: 30288571]
[4]
American Diabetes.Association. American Diabetes A. 2. Classification and diagnosis of diabetes: Standards of medi-cal care in diabetes-2018. Diabetes Care 2018; 41 (Suppl. 1): S13-27.
[http://dx.doi.org/10.2337/dc18-S002] [PMID: 29222373]
[5]
Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 2004; 3(2): 115-24.
[http://dx.doi.org/10.1038/nrd1304] [PMID: 15040576]
[6]
Dabholkar N, Gorantla S, Waghule T, et al. Biodegradable microneedles fabricated with carbohydrates and proteins: Revolutionary approach for transdermal drug delivery. Int J Biol Macromol 2021; 170: 602-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.177] [PMID: 33387545]
[7]
Lee H, Song C, Baik S, Kim D, Hyeon T, Kim DH. Device-assisted transdermal drug delivery. Adv Drug Deliv Rev 2018; 127: 35-45.
[http://dx.doi.org/10.1016/j.addr.2017.08.009] [PMID: 28867296]
[8]
Gratieri T, Alberti I, Lapteva M, Kalia YN. Next generation intra- and transdermal therapeutic systems: Using non- and minimally-invasive technologies to increase drug delivery in-to and across the skin. Eur J Pharm Sci 2013; 50(5): 609-22.
[http://dx.doi.org/10.1016/j.ejps.2013.03.019] [PMID: 23567467]
[9]
Yu J, Zhang Y, Wang J, et al. Glucose-responsive oral insu-lin delivery for postprandial glycemic regulation. Nano Res 2019; 12(7): 1539-45.
[http://dx.doi.org/10.1007/s12274-018-2264-9]
[10]
Potts RO, Guy RH. Predicting skin permeability. Pharm Res 1992; 9(5): 663-9.
[http://dx.doi.org/10.1023/A:1015810312465] [PMID: 1608900]
[11]
Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv 2016; 23(2): 564-78.
[http://dx.doi.org/10.3109/10717544.2014.935532] [PMID: 25006687]
[12]
Larrañeta E, McCrudden MT, Courtenay AJ, Donnelly RF. Microneedles: A new frontier in nanomedicine delivery. Pharm Res 2016; 33(5): 1055-73.
[http://dx.doi.org/10.1007/s11095-016-1885-5] [PMID: 26908048]
[13]
Brunaugh A D, Smyth H D C, Williams Iii R O. Topical and transdermal drug delivery. Essential pharmaceutics 2019; 131-47.
[http://dx.doi.org/10.1007/978-3-030-31745-4_9]
[14]
VandenBerg MA, Webber MJ. Biologically inspired and chemically derived methods for glucose-responsive insulin therapy. Adv Healthc Mater 2019; 8(12): e1801466.
[http://dx.doi.org/10.1002/adhm.201801466] [PMID: 30605265]
[15]
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008; 26(11): 1261-8.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[16]
Yerramsetty KM, Rachakonda VK, Neely BJ, Madihally SV, Gasem KA. Effect of different enhancers on the transdermal permeation of insulin analog. Int J Pharm 2010; 398(1-2): 83-92.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.029] [PMID: 20667506]
[17]
Green PG. Iontophoretic delivery of peptide drugs. J Control Release 1996; 41(1-2): 33-48.
[http://dx.doi.org/10.1016/0168-3659(96)01354-5]
[18]
Roustit M, Blaise S, Cracowski J-L. Trials and tribulations of skin iontophoresis in therapeutics. Br J Clin Pharmacol 2014; 77(1): 63-71.
[http://dx.doi.org/10.1111/bcp.12128] [PMID: 23590287]
[19]
Gilger BC, Mandal A, Shah S, Mitra AK. Episcleral, intrascle-ral, and suprachoroidal routes of ocular drug delivery - re-cent research advances and patents. Recent Pat Drug Deliv Formul 2014; 8(2): 81-91.
[http://dx.doi.org/10.2174/187221130802140707093509] [PMID: 25001638]
[20]
Hasan M, Khatun A, Fukuta T, Kogure K. Noninvasive transdermal delivery of liposomes by weak electric current. Adv Drug Deliv Rev 2020; 154-155: 227-35.
[http://dx.doi.org/10.1016/j.addr.2020.06.016] [PMID: 32589904]
[21]
Tari K, Khamoushian S, Madrakian T, et al. Controlled transdermal iontophoresis of insulin from water-soluble polypyrrole nanoparticles: An in vitro study. Int J Mol Sci 2021; 22(22): 12479.
[http://dx.doi.org/10.3390/ijms222212479] [PMID: 34830361]
[22]
Kajimoto K, Yamamoto M, Watanabe M, et al. Noninvasive and persistent transfollicular drug delivery system using a combination of liposomes and iontophoresis. Int J Pharm 2011; 403(1-2): 57-65.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.021] [PMID: 20970487]
[23]
Petrilli R, Eloy JO, Saggioro FP, et al. Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous in-jection. J Control Release 2018; 283: 151-62.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.038] [PMID: 29864476]
[24]
Suslick KS, Price GJ. Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 1999; 29(1): 295-326.
[http://dx.doi.org/10.1146/annurev.matsci.29.1.295]
[25]
Park EJ, Werner J, Smith NB. Ultrasound mediated transder-mal insulin delivery in pigs using a lightweight transducer. Pharm Res 2007; 24(7): 1396-401.
[http://dx.doi.org/10.1007/s11095-007-9306-4] [PMID: 17443398]
[26]
Meng L, Liu X, Wang Y, et al. Sonoporation of cells by a parallel stable cavitation microbubble array. Adv Sci (Weinh) 2019; 6(17): 1900557.
[http://dx.doi.org/10.1002/advs.201900557] [PMID: 31508275]
[27]
Omata D, Unga J, Suzuki R, Maruyama K. Lipid-based mi-crobubbles and ultrasound for therapeutic application. Adv Drug Deliv Rev 2020; 154-155: 236-44.
[http://dx.doi.org/10.1016/j.addr.2020.07.005] [PMID: 32659255]
[28]
Sonoki K, Yoshinari M, Iwase M, et al. Regurgitation of blood into insulin cartridges in the pen-like injectors. Diabetes Care 2001; 24(3): 603-4.
[http://dx.doi.org/10.2337/diacare.24.3.603] [PMID: 11289490]
[29]
Weller C, Linder M. Jet injection of insulin vs. the syringe-and-needle method. JAMA 1966; 195(10): 844-7.
[http://dx.doi.org/10.1001/jama.1966.03100100096027] [PMID: 12608170]
[30]
Shahani S, Shahani L. Use of insulin in diabetes: A century of treatment. Hong Kong Med J 2015; 21(6): 553-9.
[http://dx.doi.org/10.12809/hkmj154557] [PMID: 26554270]
[31]
Prausnitz MR, Bose VG, Langer R, Weaver JC. Electro-poration of mammalian skin: A mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci USA 1993; 90(22): 10504-8.
[http://dx.doi.org/10.1073/pnas.90.22.10504] [PMID: 8248137]
[32]
Vanbever R, Préat V. In vivo efficacy and safety of skin electroporation. Adv Drug Deliv Rev 1999; 35(1): 77-88.
[http://dx.doi.org/10.1016/S0169-409X(98)00064-7] [PMID: 10837690]
[33]
Mohammad EA, Elshemey WM, Elsayed AA, Abd-Elghany AA. Electroporation parameters for successful transdermal delivery of insulin. Am J Ther 2016; 23(6): e1560-7.
[http://dx.doi.org/10.1097/MJT.0000000000000198] [PMID: 25782568]
[34]
Pere CPP, Economidou SN, Lall G, et al. 3D printed mi-croneedles for insulin skin delivery. Int J Nanomedicine 2018; 544(2): 425-32.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.031] [PMID: 29555437]
[35]
Kang N-W, Kim S, Lee J-Y, et al. Microneedles for drug delivery: Recent advances in materials and geometry for pre-clinical and clinical studies. Expert Opin Drug Deliv 2021; 18(7): 929-47.
[http://dx.doi.org/10.1080/17425247.2021.1828860] [PMID: 32975144]
[36]
Rzhevskiy AS, Singh TRR, Donnelly RF, Anissimov YG. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release 2018; 270: 184-202.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.048] [PMID: 29203415]
[37]
Friedrich CR, Vasile MJ. Development of the micromilling process for high-aspect-ratio microstructures. J Microelectromech Syst 1996; 5(1): 33-8.
[http://dx.doi.org/10.1109/84.485213]
[38]
Lim D, Kamotani Y, Cho B, Mazumder J, Takayama S. Fab-rication of microfluidic mixers and artificial vasculatures us-ing a high-brightness diode-pumped Nd:YAG laser direct write method. Lab Chip 2003; 3(4): 318-23.
[http://dx.doi.org/10.1039/B308452C] [PMID: 15007466]
[39]
Jung PG, Lee TW, Oh DJ, et al. Nickel microneedles fabricat-ed by sequential copper and nickel electroless plating and copper chemical wet etching. Sens Mater. 2008; 20: pp. 45-53.
[40]
Al-Qallaf B, Das DB, Davidson A. Transdermal drug deliv-ery by coated microneedles: Geometry effects on drug con-centration in blood. Asia-Pac J Chem Eng 2009; 4(6): 845-57.
[http://dx.doi.org/10.1002/apj.353]
[41]
Lee S, Lee J, Choi K, et al. Polylactic acid and polycaprolac-tone blended cosmetic microneedle for transdermal hispidin delivery system. Appl Sci (Basel) 2021; 11(6): 2774-86.
[http://dx.doi.org/10.3390/app11062774]
[42]
Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfab-ricated microneedles: A novel approach to transdermal drug delivery. J Pharm Sci 1998; 87(8): 922-5.
[http://dx.doi.org/10.1021/js980042+] [PMID: 9687334]
[43]
Martanto W, Davis SP, Holiday NR, Wang J, Gill HS, Prausnitz MR. Transdermal delivery of insulin using mi-croneedles in vivo. Pharm Res 2004; 21(6): 947-52.
[http://dx.doi.org/10.1023/B:PHAM.0000029282.44140.2e] [PMID: 15212158]
[44]
Yu W, Jiang G, Zhang Y, Liu D, Xu B, Zhou J. Polymer mi-croneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater Sci Eng C 2017; 80: 187-96.
[http://dx.doi.org/10.1016/j.msec.2017.05.143] [PMID: 28866156]
[45]
Lau S, Fei J, Liu H, Chen W, Liu R. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery. J Control Release 2017; 265: 113-9.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.031] [PMID: 27574991]
[46]
Chen MC, Ling MH, Kusuma SJ. Poly-γ-glutamic acid mi-croneedles with a supporting structure design as a potential tool for transdermal delivery of insulin. Acta Biomater 2015; 24: 106-16.
[http://dx.doi.org/10.1016/j.actbio.2015.06.021] [PMID: 26102333]
[47]
González García LE, MacGregor MN, Visalakshan RM, et al. Self-sterilizing antibacterial silver-loaded microneedles. Chem Commun (Camb) 2018; 55(2): 171-4.
[http://dx.doi.org/10.1039/C8CC06035E] [PMID: 30418438]
[48]
Li W, Terry RN, Tang J, Feng MR, Schwendeman SP, Prausnitz MR. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat Biomed Eng 2019; 3(3): 220-9.
[http://dx.doi.org/10.1038/s41551-018-0337-4] [PMID: 30948808]
[49]
Song G, Jiang G, Liu T, et al. Separable microneedles for synergistic chemo-photothermal therapy against superficial skin tumors. ACS Biomater Sci Eng 2020; 6(7): 4116-25.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00793] [PMID: 33463321]
[50]
Zhang Y, Chai D, Gao M, Xu B, Jiang G. Thermal ablation of separable microneedles for transdermal delivery of metfor-min on diabetic rats. Int J Polym Mater 2019; 68(14): 850-8.
[http://dx.doi.org/10.1080/00914037.2018.1517347]
[51]
Zhang X, Chen G, Liu Y, Sun L, Sun L, Zhao Y. Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano 2020; 14(5): 5901-8.
[http://dx.doi.org/10.1021/acsnano.0c01059] [PMID: 32315159]
[52]
Chen BZ, Zhang LQ, Xia YY, Zhang XP, Guo XD. A basal-bolus insulin regimen integrated microneedle patch for intra-day postprandial glucose control. Sci Adv 2020; 6(28): eaba7260.
[http://dx.doi.org/10.1126/sciadv.aba7260] [PMID: 32832606]
[53]
van der Maaden K, Luttge R, Vos PJ, Bouwstra J, Kersten G, Ploemen I. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv Transl Res 2015; 5(4): 397-406.
[http://dx.doi.org/10.1007/s13346-015-0238-y] [PMID: 26044672]
[54]
Kusama S, Sato K, Matsui Y, et al. Transdermal electroos-motic flow generated by a porous microneedle array patch. Nat Commun 2021; 12(1): 658-8.
[http://dx.doi.org/10.1038/s41467-021-20948-4] [PMID: 33510169]
[55]
Li Y, Yang J, Zheng Y, et al. Iontophoresis-driven porous microneedle array patch for active transdermal drug delivery. Acta Biomater 2021; 121: 349-58.
[http://dx.doi.org/10.1016/j.actbio.2020.12.023] [PMID: 33340733]
[56]
Cárcamo-Martínez Á, Mallon B, Domínguez-Robles J, Vora LK, Anjani QK, Donnelly RF. Hollow microneedles: A per-spective in biomedical applications. Int J Nanomedicine 2021; 599: 120455.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120455] [PMID: 33676993]
[57]
Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise mi-croinjection into skin using hollow microneedles. J Invest Dermatol 2006; 126(5): 1080-7.
[http://dx.doi.org/10.1038/sj.jid.5700150] [PMID: 16484988]
[58]
Trautmann A, Roth GL, Nujiqi B, Walther T, Hellmann R. Towards a versatile point-of-care system combining femto-second laser generated microfluidic channels and direct laser written microneedle arrays. Microsyst Nanoeng 2019; 5(1): 6.
[http://dx.doi.org/10.1038/s41378-019-0046-5] [PMID: 31057933]
[59]
Khanna P, Luongo K, Strom JA, Bhansali S. Axial and shear fracture strength evaluation of silicon microneedles. Microsyst Technol 2010; 16(6): 973-8.
[http://dx.doi.org/10.1007/s00542-010-1070-4]
[60]
Vinayakumar KB, Kulkarni PG, Nayak MM, et al. A hollow stainless steel microneedle array to deliver insulin to a dia-betic rat. J Micromech Microeng 2016; 26(6): 065013.
[http://dx.doi.org/10.1088/0960-1317/26/6/065013]
[61]
Pérennès F, Marmiroli B, Matteucci M, Tormen M, Vaccari L, Fabrizio ED. Sharp beveled tip hollow microneedle arrays fabricated by liga and 3D soft lithography with polyvinyl al-cohol. J Micromech Microeng 2006; 16(3): 473-9.
[http://dx.doi.org/10.1088/0960-1317/16/3/001]
[62]
Bolton CJW, Howells O, Blayney GJ, et al. Hollow silicon microneedle fabrication using advanced plasma etch technol-ogies for applications in transdermal drug delivery. Lab Chip 2020; 20(15): 2788-95.
[http://dx.doi.org/10.1039/D0LC00567C] [PMID: 32632424]
[63]
Economidou SN, Uddin MJ, Marques MJ, et al. A novel 3D printed hollow microneedle microelectromechanical system for controlled, personalized transdermal drug delivery. Addit Manuf 2021; 38: 101815.
[http://dx.doi.org/10.1016/j.addma.2020.101815]
[64]
Faraji Rad Z, Nordon RE, Anthony CJ, et al. High-fidelity replication of thermoplastic microneedles with open micro-fluidic channels. Microsyst Nanoeng 2017; 3(1): 17034.
[http://dx.doi.org/10.1038/micronano.2017.34] [PMID: 31057872]
[65]
Yin Z, Kuang D, Wang S, Zheng Z, Yadavalli VK, Lu S. Swellable silk fibroin microneedles for transdermal drug de-livery. Int J Biol Macromol 2018; 106: 48-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.178] [PMID: 28778522]
[66]
Seong KY, Seo MS, Hwang DY, et al. A self-adherent, bullet-shaped microneedle patch for controlled transdermal deliv-ery of insulin. J Control Release 2017; 265: 48-56.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.041] [PMID: 28344013]
[67]
Yang S, Wu F, Liu J, et al. Phase-transition microneedle patches for efficient and accurate transdermal delivery of in-sulin. Adv Funct Mater 2015; 25(29): 4633-41.
[http://dx.doi.org/10.1002/adfm.201500554]
[68]
Yang SY, O’Cearbhaill ED, Sisk GC, et al. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat Commun 2013; 4(1): 1702.
[http://dx.doi.org/10.1038/ncomms2715] [PMID: 23591869]
[69]
Martin H, Drury DR, Strouse S. Basal insulin requirement in diabetes mellitus. Arch Intern Med 1940; 66(1): 78-92.
[http://dx.doi.org/10.1001/archinte.1940.00190130088006]
[70]
Boyne MS, Silver DM, Kaplan J, Saudek CD. Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor. Diabetes 2003; 52(11): 2790-4.
[http://dx.doi.org/10.2337/diabetes.52.11.2790] [PMID: 14578298]
[71]
Hisamitsu I, Kataoka K, Okano T, Sakurai Y. Glucose-responsive gel from phenylborate polymer and poly(vinyl alcohol): Prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharm Res 1997; 14(3): 289-93.
[http://dx.doi.org/10.1023/A:1012033718302] [PMID: 9098868]
[72]
Stubelius A, Lee S, Almutairi A. The chemistry of boronic acids in nanomaterials for drug delivery. Acc Chem Res 2019; 52(11): 3108-19.
[http://dx.doi.org/10.1021/acs.accounts.9b00292] [PMID: 31599160]
[73]
Ma Q, Zhao X, Shi A, Wu J. Bioresponsive functional phe-nylboronic acid-based delivery system as an emerging plat-form for diabetic therapy. Int J Nanomedicine 2021; 16: 297-314.
[http://dx.doi.org/10.2147/IJN.S284357] [PMID: 33488074]
[74]
Zhang Y, Wu M, Dai W, et al. Gold nanoclusters for con-trolled insulin release and glucose regulation in diabetes. Nanoscale 2019; 11(13): 6471-9.
[http://dx.doi.org/10.1039/C9NR00668K] [PMID: 30892368]
[75]
Yan J, Springsteen G, Deeter S, Wang B. The relationship among pka, ph, and binding constants in the interactions be-tween boronic acids and diols-it is not as simple as it ap-pears. Tetrahedron 2004; 60(49): 11205-9.
[http://dx.doi.org/10.1016/j.tet.2004.08.051]
[76]
Matsumoto A, Yoshida R, Kataoka K. Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules 2004; 5(3): 1038-45.
[http://dx.doi.org/10.1021/bm0345413] [PMID: 15132698]
[77]
Matsumoto A, Ishii T, Nishida J, Matsumoto H, Kataoka K, Miyahara Y. A synthetic approach toward a self-regulated in-sulin delivery system. Angew Chem Int Ed Engl 2012; 51(9): 2124-8.
[http://dx.doi.org/10.1002/anie.201106252] [PMID: 22162189]
[78]
Dowlut M, Hall DG. An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J Am Chem Soc 2006; 128(13): 4226-7.
[http://dx.doi.org/10.1021/ja057798c] [PMID: 16568987]
[79]
Wulff G. Selective binding to polymers via covalent bonds. The construction of chiral cavities as specific receptor sites. Pure Appl Chem 1982; 54(11): 2093-102.
[http://dx.doi.org/10.1351/pac198254112093]
[80]
Kitano S, Hisamitsu I, Koyama Y, Kataoka K, Okano T, Sakurai Y. Effect of the incorporation of amino groups in a glucose-responsive polymer complex having phenylboronic acid moieties. Polym Adv Technol 1991; 2(5): 261-4.
[http://dx.doi.org/10.1002/pat.1991.220020508]
[81]
Tong MQ, Luo LZ, Xue PP, et al. Glucose-responsive hy-drogel enhances the preventive effect of insulin and lirag-lutide on diabetic nephropathy of rats. Acta Biomater 2021; 122: 111-32.
[http://dx.doi.org/10.1016/j.actbio.2021.01.007] [PMID: 33444802]
[82]
Chen X, Yu H, Wang L, et al. Preparation of phenylboronic acid-based hydrogel microneedle patches for glucose-dependent insulin delivery. J Appl Polym Sci 2021; 138(5): e49772.
[http://dx.doi.org/10.1002/app.49772]
[83]
Zhong Y, Song B, He D, et al. Galactose-based polymer-containing phenylboronic acid as carriers for insulin deliv-ery. Nanotechnology 2020; 31(39): 395601-16.
[http://dx.doi.org/10.1088/1361-6528/ab9e26] [PMID: 32554896]
[84]
Wei X, Duan X, Zhang Y, Ma Z, Li C, Zhang X. Internaliza-tion mechanism of phenylboronic-acid-decorated nanoplat-form for enhanced nasal insulin delivery. ACS Appl Bio Mater 2020; 3(4): 2132-9.
[http://dx.doi.org/10.1021/acsabm.0c00002] [PMID: 35025265]
[85]
Luo L, Song R, Chen J, Zhou B, Mao X, Tang S. Fluoro-phenylboronic acid substituted chitosan for insulin loading and release. React Funct Polym 2020; 146: 104435-44.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104435]
[86]
Li H, He J, Zhang M, Liu J, Ni P. Glucose-sensitive poly-phosphoester diblock copolymer for an insulin delivery sys-tem. ACS Biomater Sci Eng 2020; 6(3): 1553-64.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01817] [PMID: 33455388]
[87]
Elshaarani T, Yu H, Wang L, et al. Dextran-crosslinked glu-cose responsive nanogels with a self-regulated insulin release at physiological conditions. Eur Polym J 2020; 125: 109505-16.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109505]
[88]
Elshaarani T, Yu H, Wang L, et al. Chitosan reinforced hy-drogels with swelling-shrinking behaviors in response to glu-cose concentration. Int J Biol Macromol 2020; 161: 109-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.012] [PMID: 32512091]
[89]
Dehghani B, Hosseini MS, Salami-Kalajahi M. Neutral pH monosaccharide receptor based on boronic acid decorated poly (2-hydroxyethyl methacrylate): Spectral methods for determination of glucose-binding and ionization constants. Microchem J 2020; 157: 105112.
[http://dx.doi.org/10.1016/j.microc.2020.105112]
[90]
Chai Z, Dong H, Sun X, Fan Y, Wang Y, Huang F. Develop-ment of glucose oxidase-immobilized alginate nanoparticles for enhanced glucose-triggered insulin delivery in diabetic mice. Int J Biol Macromol 2020; 159: 640-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.097] [PMID: 32428589]
[91]
Zhang Y, Wu M, Dai W, et al. High drug-loading gold nanoclusters for responsive glucose control in type 1 diabe-tes. J Nanobiotechnology 2019; 17(1): 74.
[http://dx.doi.org/10.1186/s12951-019-0505-z] [PMID: 31159842]
[92]
Xiao Y, Hu Y, Du J. Controlling blood sugar levels with a glycopolymersome. Mater Horiz 2019; 6(10): 2047-55.
[http://dx.doi.org/10.1039/C9MH00625G]
[93]
Gaballa H, Theato P. Glucose-responsive polymeric micelles via boronic acid-diol complexation for insulin delivery at neutral pH. Biomacromolecules 2019; 20(2): 871-81.
[http://dx.doi.org/10.1021/acs.biomac.8b01508] [PMID: 30608155]
[94]
Wu G, Li C, Liu X, et al. Glucose-responsive complex mi-celles for self-regulated delivery of insulin with effective protection of insulin and enhanced hypoglycemic activity in vivo. Colloids Surf B Biointerfaces 2019; 180: 376-83.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.003] [PMID: 31082775]
[95]
Shen Y, Xu Z, Li L, Yuan W, Luo M, Xie X. Fabrication of glucose-responsive and biodegradable copolymer membrane for controlled release of insulin at physiological pH. New J Chem 2019; 43(20): 7822-30.
[http://dx.doi.org/10.1039/C9NJ00729F]
[96]
Ohno Y, Kawakami M, Seki T, Miki R, Seki T, Egawa Y. Cell adhesive character of phenylboronic acid-modified insulin and its potential as long-acting insulin. Pharmaceuticals (Basel) 2019; 12(3): 121-30.
[http://dx.doi.org/10.3390/ph12030121] [PMID: 31430994 ]
[97]
Mandal D, Das S. Glucose-triggered dissolution of phenyl-boronic acid-functionalized cholesterol-based niosomal self-assembly for tuneable drug release. New J Chem 2019; 43(20): 7855-65.
[http://dx.doi.org/10.1039/C9NJ00798A]
[98]
Lv J, Wu G, Liu Y, et al. Injectable dual glucose-responsive hydrogel-micelle composite for mimicking physiological ba-sal and prandial insulin delivery. Sci China Chem 2019; 62(5): 637-48.
[http://dx.doi.org/10.1007/s11426-018-9419-3]
[99]
GhavamiNejad A, Lu B, Giacca A, Wu XY. Glucose regula-tion by modified boronic acid-sulfobetaine zwitterionic nanogels - a non-hormonal strategy for the potential treat-ment of hyperglycemia. Nanoscale 2019; 11(21): 10167-71.
[http://dx.doi.org/10.1039/C9NR01687B] [PMID: 31112182]
[100]
GhavamiNejad A, Li J, Lu B, et al. Glucose-responsive com-posite microneedle patch for hypoglycemia-triggered delivery of native glucagon. Adv Mater 2019; 31(30): e1901051.
[http://dx.doi.org/10.1002/adma.201901051] [PMID: 31165524]
[101]
Chen S, Miyazaki T, Itoh M, et al. Temperature-stable boro-nate gel-based microneedle technology for self-regulated in-sulin delivery. ACS Appl Polym Mater 2020; 2(7): 2781-90.
[http://dx.doi.org/10.1021/acsapm.0c00341]
[102]
Wang J, Yu J, Zhang Y, et al. Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Sci Adv 2019; 5(7): eaaw4357.
[http://dx.doi.org/10.1126/sciadv.aaw4357] [PMID: 31309150]
[103]
Shen D, Yu H, Wang L, et al. Recent progress in design and preparation of glucose-responsive insulin delivery systems. J Control Release 2020; 321: 236-58.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.014] [PMID: 32061789]
[104]
Mao W, Cai B, Ye Z, Huang J. A nanostructured p-Nio/n-Bi4Ti3O12 heterojunction for direct GOx electrochemistry and high-sensitivity glucose sensing. Sens Actuators B Chem 2018; 261: 385-91.
[http://dx.doi.org/10.1016/j.snb.2018.01.138]
[105]
Liu J, Zhang H, Xue D, et al. An effective hydroxylation route for a highly sensitive glucose sensor using APT-ES/GOx functionalized AlGaN/GaN high electron mobility transistor. RSC Advances 2020; 10(19): 11393-9.
[http://dx.doi.org/10.1039/C9RA09446F] [PMID: 35495354]
[106]
Qi G, Wang Y, Zhang B, et al. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose. Anal Bioanal Chem 2016; 408(26): 7513-20.
[http://dx.doi.org/10.1007/s00216-016-9849-5] [PMID: 27518716]
[107]
Yu JC, Zhang YQ, Ye YQ, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci USA 2015; 112(27): 8260-5.
[http://dx.doi.org/10.1073/pnas.1505405112] [PMID: 26100900]
[108]
Ishihara K, Matsui K. Glucose-responsive insulin release from polymer capsule. J Polym Sci C 1986; 24(8): 413-7.
[http://dx.doi.org/10.1002/pol.1986.140240809]
[109]
Luo FQ, Chen G, Xu W, et al. Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin de-livery. Nano Res 2021; 14(8): 2689-96.
[http://dx.doi.org/10.1007/s12274-020-3273-z]
[110]
Wang Y, Fan Y, Zhang M, et al. Glycopolypeptide nanocarri-ers based on dynamic covalent bonds for glucose dual-responsiveness and self-regulated release of insulin in dia-betic rats. Biomacromolecules 2020; 21(4): 1507-15.
[http://dx.doi.org/10.1021/acs.biomac.0c00067] [PMID: 32129603]
[111]
Lin Y, Hu W, Bai X, et al. Glucose-and pH-responsive su-pramolecular polymer vesicles based on host-guest interac-tion for transcutaneous delivery of insulin. ACS Appl Bio Mater 2020; 3(9): 6376-83.
[http://dx.doi.org/10.1021/acsabm.0c00813] [PMID: 35021768]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy