Generic placeholder image

Micro and Nanosystems


ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Chitosan-grafted Microspherical Loaded In-situ Gels for Enhanced Transdermal Delivery of Roxithromycin: In-vitro/Ex-vivo Assessment

Author(s): Pankaj Singh, Amit Kumar Dubey and Rahul Kumar Singh*

Volume 15, Issue 2, 2023

Published on: 27 July, 2022

Page: [127 - 141] Pages: 15

DOI: 10.2174/1876402914666220623145801

Price: $65


Background: Atleast once in life everyone experience different kinds of dermal diseases and the conventional dosage forms having a high rate of side effects. The discussed method is a better and alternative approach in case of patients’ compliance and sustained drug release.

Objective: The objectives of this study are to prepare solid dispersion for enhancement of solubility of roxithromycin, encapsulation of solid dispersion into microspheres, decreased dose frequency, sustained release and incorporation of microspheres in in situ gel for easy utilization and adherence over the skin in microbial infection.

Methods: Solid dispersion of roxithromycin and HPMC at a ratio of 1:1 was prepared by the melting method, and solubility was measured by in vitro dissolution rate. On the basis of 3² factorial design, 9 different formulations were evaluated by % drug release, particle size, and % entrapment efficiency. Lastly, in situ gel was prepared by a cold method, which was evaluated through gelling time and temperature; in vitro gelation method.

Results: The solid dispersion was found to have a 1.3 times higher solubility than pure roxithromycin as proven by in vitro drug release. Whereas, microsphere MF-9 was selected as the best formulation via drug release (87.81%), entrapment efficiency (91.223%), % yield (86.681), and particle size (110μm). In-situ gel MIG-5 was selected as the best formulation on the basis of drug content (89.326±0.564), viscosity (9551.666 ± 6.233), and gelling time (25.333±2.054).

Conclusion: Solid dispersion was prepared successfully with higher solubility than the pure drug. Microspheres have shown sustained drug release and in situ gels have a good adhesive property and MIG-5 further enhances the sustained drug release behaviour.

Keywords: Chitosan, roxithromycin, transdermal delivery, solid dispersion, microspheres, in-situ gel system.

Graphical Abstract
Barton, L.L.; Friedman, A.D. Impetigo: A reassessment of etiology and therapy. Pediatr. Dermatol., 1987, 4(3), 185-188.
[] [PMID: 3122189]
Rhody, C. Bacterial infections of the skin. Prim. Care, 2000, 27(2), 459-473.
[] [PMID: 10815055]
Schachner, L.; Gonzalez, A. Diagnosis and treatment of impetigo. J. Am. Acad. Dermatol., 1989, 20(1), 132-132.
[] [PMID: 2913075]
Oumeish, I.; Oumeish, O.Y.; Bataineh, O. Acute bacterial skin infections in children. Clin. Dermatol., 2000, 18(6), 667-678.
[] [PMID: 11173202]
Bangert, S.; Levy, M.; Hebert, A.A. Bacterial resistance and impetigo treatment trends: A review. Pediatr. Dermatol., 2012, 29(3), 243-248.
[] [PMID: 22299710]
Dagan, R. Impetigo in childhood: Changing epidemiology and new treatments. Pediatr. Ann., 1993, 22(4), 235-240.
[] [PMID: 8510990]
Brook, I.; Frazier, E.H.; Yeager, J.K. Microbiology of nonbullous impetigo. Pediatr. Dermatol., 1997, 14(3), 192-195.
[] [PMID: 9192410]
Couppié, P.; Sainte-Marie, D.; Prévost, G.; Gravet, A.; Clyti, E.; Moreau, B. L’ impetigo en GuyaneFrançaise. Etudes clinique, bactériologique, toxicologiqueet de sensibilité aux antibiotiques. Impetigo in the French Guiana. Clinical, bacteriological, toxicological and sensitivity to antibiotics studies. Ann. Dermatol. Venereol., 1998, 125, 688-693.
[PMID: 9835957]
Kakar, N.; Kumar, V.; Mehta, G.; Sharma, R.C.; Koranne, R.V. Clinico-bacteriological study of pyodermas in children. J. Dermatol., 1999, 26(5), 288-293.
[] [PMID: 10380429]
Kircik, L.H. Microsphere technology: Hype or help? J. Clin. Aesthet. Dermatol., 2011, 4(5), 27-31.
[PMID: 21607191]
Patel, K.S.; Patel, M.B. Preparation and evaluation of chitosan microspheres containing nicorandil. Int. J. Pharm. Investig., 2014, 4(1), 32-37.
[] [PMID: 24678460]
Prabaharan, M.; Mano, J.F. Chitosan-based particles as controlled drug delivery systems. Drug Deliv., 2005, 12(1), 41-57.
[] [PMID: 15801720]
Kaur, P.; Garg, T.; Rath, G.; Goyal, A.K. In situ nasal gel drug delivery: A novel approach for brain targeting through the mucosal membrane. Artif. Cells Nanomed. Biotechnol., 2016, 44(4), 1167-1176.
[] [PMID: 25749276]
Browning, T.R.; Heath, R.D. Reconceptualizing the effects of lean on production cost with evidence from the F-22 program. J. Oper. Manage., 2009, 27(1), 23-44.
Dai, T.; Huang, Y.Y.; Sharma, S.K.; Hashmi, J.T.; Kurup, D.B.; Hamblin, M.R. Topical antimicrobials for burn wound infections. Recent Patents Anti-Infect. Drug Disc., 2010, 5(2), 124-151.
[] [PMID: 20429870]
Akhtar, N.; Kumar, S.R.; Pathak, K. Exploring the potential of complex-vesicle based niosomal ocular system loaded with azithromycin: Development of in-situ gel and ex-vivo characterization. PBR. Pharm. Biomed. Res., 2017, 3(1), 22-33.
Nikghalb, L.A.; Singh, G.; Singh, G.; Kahkeshan, K.F. Solid dispersion: Methods and polymers to increase the solubility of poorly soluble drugs. J. Appl. Pharm. Sci., 2012, 2, 170-175.
Thybo, P.; Kristensen, J.; Hovgaard, L. Characterization and physical stability of tolfenamic acid-PVP K30 solid dispersions. Pharm. Dev. Technol., 2007, 12(1), 43-53.
[] [PMID: 17484143]
Afifi, S. Solid dispersion approach improving dissolution rate of stiripentol: A novel antiepileptic drug. Iran. J. Pharm. Res., 2015, 14(4), 1001-1014.
[] [PMID: 26664367]
Katore, G.S.; Bidkar, S.J.; Dama, G.Y. Formulation and evaluation of Ciprofloxacin solid dispersion controlled release floating capsules for solubility improvement. IJPBR, 2017, 5(3), 7-16.
Biswal, S.; Sahoo, J.; Murthy, P.N.; Giradkar, R.P.; Avari, J.G. Enhancement of dissolution rate of gliclazide using solid dispersions with polyethylene glycol 6000. AAPS PharmSciTech, 2008, 9(2), 563-570.
[] [PMID: 18459056]
Kumar, S.G.V.; Mishra, D.N. Preparation, characterization and in-vitro dissolution of meloxicam with PEG 6000. J. Pharm. Soc. Jpn, 2006, 126, 657-664.
[] [PMID: 16880724]
Adrados, B.P.; Galaev, I.Y.; Nilsson, K.; Mattiasson, B. Size exclusion behavior of hydroxypropylcellulose beads with temperature-dependent porosity. J. Chromatogr. A, 2001, 930(1-2), 73-78.
[] [PMID: 11681581]
Brime, B.; Ballesteros, M.P.; Frutos, P. Preparation and in vitro characterization of gelatin microspheres containing Levodopa for nasal administration. J. Microencapsul., 2000, 17(6), 777-784.
[] [PMID: 11063424]
Limbachiya, S. Development and characterization of fast dissolving mucoadhesive microsphere of nebivolol hydrochloride using modified methacrylate polymer. Int. J. Pharma Sci., 2013, 3(1), 136-141.
Aden, M.A.; Biabchi, E.; Ciferrri, A.; Conio, G.; Tealdi, A. Mesophase formation and chain rigidity in cellulose and derivatives 2, (Hydroxyproyl) cellulose in dichloroacetic acid. Macromolecules, 1984, 17(10), 121-129.
Patil, P.; Singh, S.; Sarvanan, J. Preparation and evaluation of microspheres of flurbiprofen. IJPSR, 2018, 9(12), 5388-5393.
Qi, H.; Chen, W.; Huang, C.; Li, L.; Chen, C.; Li, W.; Wu, C. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int. J. Pharm., 2007, 337(1-2), 178-187.
[] [PMID: 17254725]
Fathanah, A.; Setyawan, D.; Sari, R. Improving solubility and dissolution of meloxicam by solid dispersion using hydroxypropyl methyl cellulose 29103 cps and nicotinamide. J. Basic Clin. Physiol. Pharmacol., 2019, 30(6), 1-8.
Kavitha, K.; Srinivasa, R.A.; Nalini, C.N. An investigation on enhancement of solubility of 5 Fluorouracil by applying complexation technique-characterization, dissolution and molecular-modeling studies. J. Appl. Pharm. Sci., 2013, 3(3), 162-166.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy