Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Lipid-based Nanocarriers via Nose-to-Brain Pathway for Alzheimer's and Parkinson's Disease

Author(s): Varunesh Sanjay Tambe and Sarika Wairkar*

Volume 19, Issue 3, 2023

Published on: 06 September, 2022

Page: [322 - 337] Pages: 16

DOI: 10.2174/1573413718666220627140824

Price: $65

Abstract

Neurodegenerative disorders are characterized by the progressive, irreversible deterioration of functions of the central nervous system, especially neurons, that lead to cognitive, motor, and intellectual impairment. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent forms of neurodegenerative disorders and are predicted to be leading causes of mortality. Although conventional formulations are available for symptomatic treatment of AD and PD, many novel formulations and routes of administration are persistently studied for their better management, and nose-to-brain delivery is one of them. This platform has been explored with various nanoformulations for targeted brain delivery. Lipid nanocarriers are known for bypassing the blood-brain barrier (BBB) through nasal delivery, and several drugs have been evaluated in the lipid carrier system. This review focuses on various lipid-based nanocarriers such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsions, nanoemulsions, micelles and cubosomes reported to treat and alleviate the symptoms of AD and PD via nasal route. It gives an overview of key findings of nasal lipid-based nanocarriers and their improved pharmacokinetic parameters and enhanced neuroprotection that may be utilized in the future to explore it commercially.

Keywords: Alzheimer's disease, Parkinson’s disease, intranasal delivery, lipid nanocarriers, brain targeting, NDDs.

Graphical Abstract
[1]
Choudhury, B.; Saytode, P.; Shah, V. Neurodegenrative disorders : Past, present and future. Int. J. Appl. Biol. Pharm. Technol., 2014, 14-28.
[2]
Feigin, V.L.; Nichols, E.; Alam, T. Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol., 2019, 18(5), 459-480.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[3]
Manoharan, S.; Guillemin, G.J.; Abiramasundari, R.S.; Essa, M.M.; Akbar, M.; Akbar, M.D. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease : A mini review. Oxid. Med. Cell. Longev., 2016, 1-15.
[4]
Madav, Y.; Wairkar, S.; Prabhakar, B. Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer’s disease. Brain Res. Bull., 2019, 146(146), 171-184.
[http://dx.doi.org/10.1016/j.brainresbull.2019.01.004] [PMID: 30634016]
[5]
Rosenberg, R.N.; Lambracht-Washington, D.; Yu, G.; Xia, W. Genomics of Alzheimer disease: A review. JAMA Neurol., 2016, 73(7), 867-874.
[http://dx.doi.org/10.1001/jamaneurol.2016.0301] [PMID: 27135718]
[6]
Simon, B. Thompson Alzheimers disease : Comprehensive review of aetiology, diagnosis, assessment recommendations and treatment Web. Med. Cent., 2011, 1-42.
[7]
Raj, R.; Wairkar, S.; Sridhar, V.; Gaud, R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int. J. Biol. Macromol., 2018, 109, 27-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.056] [PMID: 29247729]
[8]
Sridhar, V.; Gaud, R.; Bajaj, A.; Wairkar, S. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomed., 2018, 14(8), 2609-2618.
[http://dx.doi.org/10.1016/j.nano.2018.08.004] [PMID: 30171904]
[9]
Franco-Iborra, S.; Vila, M.; Perier, C. Mitochondrial quality control in neurodegenerative diseases: Focus on Parkinson’s disease and Huntington’s disease. Front. Neurosci., 2018, 12, 342.
[http://dx.doi.org/10.3389/fnins.2018.00342] [PMID: 29875626]
[10]
Er, S.; Laraib, U.; Arshad, R.; Sargazi, S.; Rahdar, A.; Pandey, S.; Thakur, V.K.; Díez-Pascual, A.M. Amino acids, peptides, and proteins: Implications for nanotechnological applications in biosensing and drug/gene delivery. Nanomater., 2021, 11(11), 3002.
[http://dx.doi.org/10.3390/nano11113002] [PMID: 34835766]
[11]
Arshad, R.; Fatima, I.; Sargazi, S.; Rahdar, A.; Karamzadeh-Jahromi, M.; Pandey, S.; Díez-Pascual, A.M.; Bilal, M. Novel perspectives towards RNA-based nano-theranostic approaches for cancer management. Nanomater., 2021, 11(12), 3330.
[http://dx.doi.org/10.3390/nano11123330] [PMID: 34947679]
[12]
Sabir, F.; Zeeshan, M.; Laraib, U.; Barani, M.; Rahdar, A. DNA based and stimuli-responsive smart nanocarrier for diagnosis and treatment of cancer: Applications and challenges 2021, 13(14), 3396.
[http://dx.doi.org/10.3390/cancers13143396]
[13]
Kapalatiya, H.; Madav, Y.; Tambe, V.S.; Wairkar, S. Enzyme-responsive smart nanocarriers for targeted chemotherapy: An overview. Drug Deliv. Transl. Res., 2021, 12(6), 1-13.
[http://dx.doi.org/10.1007/s13346-021-01020-6] [PMID: 34251612]
[14]
Battaglia, L.; Panciani, P.P.; Muntoni, E.; Capucchio, M.T.; Biasibetti, E.; De Bonis, P.; Mioletti, S.; Fontanella, M.; Swaminathan, S. Lipid nanoparticles for intranasal administration: Application to nose-to-brain delivery. Expert Opin. Drug Deliv., 2018, 15(4), 369-378.
[http://dx.doi.org/10.1080/17425247.2018.1429401] [PMID: 29338427]
[15]
Sood, S.; Jain, K.; Gowthamarajan, K. Intranasal therapeutic strategies for management of Alzheimer’s disease. J. Drug Target., 2014, 22(4), 279-294.
[http://dx.doi.org/10.3109/1061186X.2013.876644] [PMID: 24404923]
[16]
Ghazy, E.; Rahdar, A.; Barani, M.; Kyzas, G.Z. Nanomaterials for Parkinson’s disease: Recent progress. J. Mol. Struct., 2021, 1231, 129698.
[http://dx.doi.org/10.1016/j.molstruc.2020.129698]
[17]
Bilal, M.; Barani, M.; Sabir, F.; Rahdar, A.; Kyzas, G.Z. Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: An overview. NanoImpact, 2020, 20(100251), 100251.
[http://dx.doi.org/10.1016/j.impact.2020.100251]
[18]
Akel, H.; Ismail, R.; Csóka, I. Progress and perspectives of brain-targeting lipid-based nanosystems. Eur. J. Pharm. Biopharm., 2020, 148, 38-53.
[http://dx.doi.org/10.1016/j.ejpb.2019.12.014] [PMID: 31926222]
[19]
Misra, A.; Ganesh, S.; Shahiwala, A.; Shah, S.P. Drug delivery to the central nervous system: A review. J. Pharm. Pharm. Sci., 2003, 6(2), 252-273.
[PMID: 12935438]
[20]
Singh, A.V.; Chandrasekar, V.; Janapareddy, P.; Mathews, D.E.; Laux, P.; Luch, A.; Yang, Y.; Garcia-Canibano, B.; Balakrishnan, S.; Abinahed, J.; Al Ansari, A.; Dakua, S.P. Emerging application of nanorobotics and artificial intelligence to cross the BBB: Advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem. Neurosci., 2021, 12(11), 1835-1853.
[http://dx.doi.org/10.1021/acschemneuro.1c00087] [PMID: 34008957]
[21]
Alagusundaram, M.; Chengaiah, B.; Gnanaprakash, K.; Ramkanth, S.; Chetty, C.M. Nasal drug delivery system - an overview. Int. J. Pharma Sci., 2010, 1(4), 454-465.
[22]
Vyas, T.K.; Shahiwala, A.; Marathe, S.; Misra, A. Intranasal drug delivery for brain targeting. Curr. Drug Deliv., 2005, 2(2), 165-175.
[http://dx.doi.org/10.2174/1567201053586047] [PMID: 16305417]
[23]
Abdallah, M.; Müllertz, O.O.; Styles, I.K.; Mörsdorf, A.; Quinn, J.F.; Whittaker, M.R.; Trevaskis, N.L. Lymphatic targeting by albumin-hitchhiking: Applications and optimisation. J. Control. Release, 2020, 327(July), 117-128.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.046] [PMID: 32771478]
[24]
Costa, C.; Moreira, J.N.; Amaral, M.H.; Sousa, Lobo J.M.; Silva, A.C. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J. Control. Release, 2019, 295(295), 187-200.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.049] [PMID: 30610952]
[25]
Katare, Y.K.; Piazza, J.E.; Bhandari, J.; Daya, R.P.; Akilan, K.; Simpson, M.J.; Hoare, T.; Mishra, R.K. Intranasal delivery of antipsychotic drugs. Schizophr. Res., 2017, 184, 2-13.
[http://dx.doi.org/10.1016/j.schres.2016.11.027] [PMID: 27913162]
[26]
Bahadur, S.; Pathak, K. Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin. Drug Deliv., 2012, 9(1), 19-31.
[http://dx.doi.org/10.1517/17425247.2012.636801] [PMID: 22171740]
[27]
Russell, M.H.Y.C.C. Drug Delivery in the Nervous System US Patent 2005/0027110, 2005.
[28]
Quay, S.C.; Constantino, H.R.; Houston, M.E.; Leonard, A.K. Compositions and Methods Using Acetylcholinesterase Inhibitors to Treat Central Nervous System (CNS) Disorders in Mammals US Patent 2006/0003989, 2006.
[29]
Di Mauro, T.; Attawia, M.; Toselli, R.; Lilienfeld, S. Methods of Delivering Therapeutics To The Brain US Patent 2007/0031341, 2007.
[30]
Nair, Madhaban; Saiyed, Z. Magnetic Nanodelivery of Therapeutic Agents Across the Blood Brain Barrier WO Patent 2010/025322, 2010.
[31]
Narasimhaswamy, M. Manjunath; Shankar, P.; Premlata; Kumar, P. Methods For Delivery Across The Blood Brain Barrier US Patent 2010/0233084, 2010.
[32]
Van Rooy, I.; Hennink, W.E.; Mastrobattista, E. Peptide Ligands for Targeting to the Blood-Brain Barrier WO Patent 2011/005098, 2011.
[33]
Castaigne, J.P.; Demeule, M.; Che, C.; Regina, A. Compositions and Methods for the Transport of Therapeutic Agents WO Patent 2011/041897, 2011.
[34]
Solomon, B. Immunizing Composition and Method for Inducing an Immune Response Against the Ss-Secretase Cleavage Site of Amyloid Precursor Protein US Patent 2006/0034.855, 2006.
[35]
Forsayeth, J.; Sanftner, L. Methods for Treating Neurodegenerative Disorders US Patent 2006/0073119, 2006.
[36]
Heller, J.; Frazer, N.; Collins, T. Methods and Compositions for Delivery of Catecholic Butanes for Treatment of Diseases US Patent 2006/0141029, 2006.
[37]
Bentz, H.; Hill, B.; Lucas, C.; Frey, W.H. Intranasal Administration of Active Agents to the Central Nervous System US Patent 2006/0188496, 2006.
[38]
Went, G.; Fultz, T.; Porter, S.; Meyerson, L.; Burkoth, T. Composition and method for treating neurological disease. US Patent 2006/8389578B2, 2006.
[39]
Frenkel, D.; Maron, R.; Burt, D.; Weiner, H. Compositions and methods for treating neurological disorders. EP Patent 2006/10010617A, 2006.
[40]
Went, G.; Fultz, T. Methods and Compositions for the Treatment Pf CNS-Related Conditions US Patent 2006/0252788, 2006.
[41]
Di Mauro, T.; Attawia, M.; Lilienfeld, S.; Holy, C. Intranasal Red Light Probe For Treating Alzheimer’s Disease WO Patent 2006/138659, 2006.
[42]
Cunha, S.; Amaral, M.H.; Lobo, J.M.S.; Silva, A.C. Lipid nanoparticles for nasal/intranasal drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 2017, 34(3), 257-282.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017018693] [PMID: 28845761]
[43]
Kumar, A.; Pandey, A.N.; Jain, S.K. Nasal-nanotechnology : Revolution for efficient therapeutics delivery. Drug Deliv., 2014, 7544, 1-13.
[http://dx.doi.org/10.3109/10717544.2014.951746] [PMID: 24901207]
[44]
Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm., 2018, 133, 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[45]
Anwekar, H.; Patel, S.; Singhai, A. K. Liposome-as drug carriers Int. J. Pharm. Life Sci 2015, 1-8.
[46]
Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 381-391.
[http://dx.doi.org/10.3109/21691401.2014.953633] [PMID: 25222036]
[47]
Mahajan, H.S.; Rasal, A.D. Microemulsions for nasal drug delivery systems : An overview. Int. J. Pharm. Sci. Nanotechnol., 2013, 5(4), 1825-1831.
[http://dx.doi.org/10.37285/ijpsn.2012.5.4.1]
[48]
Chime, S.A.; Akpa, P.A.; Attama, A.A. The utility of lipids as nanocarriers and suitable vehicle in pharmaceutical drug delivery. Curr. Nanomater., 2019, 4(3), 160-175.
[http://dx.doi.org/10.2174/2405461504666191016091827]
[49]
Micheli, M.R.; Bova, R.; Magini, A.; Polidoro, M.; Emiliani, C. Lipid-based nanocarriers for CNS-targeted drug delivery. Recent Pat. Drug Deliv. Formul., 2012, 7(1), 71-86.
[PMID: 22283231]
[50]
Severino, P.; Andreani, T.; Macedo, A.S.; Fangueiro, J.F.; Santana, M.H.A.; Silva, A.M.; Souto, E.B. Current state-of-art and new trends on lipid nanoparticles (SLN and NCL) for oral drug delivery. J. Drug Deliv., 2012, 2012, 750891.
[http://dx.doi.org/10.1155/2012/750891] [PMID: 22175030]
[51]
Singh, A.V.; Hosseinidoust, Z.; Park, B.W.; Yasa, O.; Sitti, M. Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano, 2017, 11(10), 9759-9769.
[http://dx.doi.org/10.1021/acsnano.7b02082] [PMID: 28858477]
[52]
Mainardes, R.M.; Urban, M.C.; Cinto, P.O.; Chaud, M.V.; Evangelista, R.C.; Gremião, M.P.; Palmira, M.; Gremião, D.; Brasil, U. Liposomes and micro/nanoparticles as colloidal carriers for nasal drug delivery. Curr. Drug Deliv., 2006, 3(3), 275-285.
[http://dx.doi.org/10.2174/156720106777731019] [PMID: 16848729]
[53]
Al Asmari, A.K.; Ullah, Z.; Tariq, M.; Fatani, A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des. Devel. Ther., 2016, 10, 205-215.
[http://dx.doi.org/10.2147/DDDT.S93937] [PMID: 26834457]
[54]
Arumugam, K.; Subramanian, G.S.; Mallayasamy, S.R.; Averineni, R.K.; Reddy, M.S.; Udupa, N. A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharm. Sci., 2008, 58(3), 287-297.
[http://dx.doi.org/10.2478/v10007-008-0014-3] [PMID: 19103565]
[55]
Li, W.; Zhou, Y.; Zhao, N.; Hao, B.; Wang, X.; Kong, P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ. Toxicol. Pharmacol., 2012, 34(2), 272-279.
[http://dx.doi.org/10.1016/j.etap.2012.04.012] [PMID: 22613079]
[56]
Migliore, M.M.; Ortiz, R.; Dye, S.; Campbell, R.B.; Amiji, M.M.; Waszczak, B.L. Neurotrophic and neuroprotective efficacy of intranasal GDNF in a rat model of Parkinson’s disease. Neurosci., 2014, 274, 11-23.
[http://dx.doi.org/10.1016/j.neuroscience.2014.05.019] [PMID: 24845869]
[57]
Priprem, A.; Watanatorn, J.; Sutthiparinyanont, S.; Phachonpai, W.; Muchimapura, S. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomed., 2008, 4(1), 70-78.
[http://dx.doi.org/10.1016/j.nano.2007.12.001] [PMID: 18249157]
[58]
Teixeira, M.I.; Lopes, C.M.; Amaral, M.H.; Costa, P.C. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur. J. Pharm. Biopharm., 2020, 149(149), 192-217.
[http://dx.doi.org/10.1016/j.ejpb.2020.01.005] [PMID: 31982574]
[59]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[60]
Shah, B.; Khunt, D.; Bhatt, H.; Misra, M.; Padh, H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur. J. Pharm. Sci., 2015, 78, 54-66.
[http://dx.doi.org/10.1016/j.ejps.2015.07.002] [PMID: 26143262]
[61]
Yasir, M.; Sara, U.; Chauhan, I.; Gaur, P.; Singh, A.; Puri, D.A. Solid lipid nanoparticles for nose to brain delivery of donepezil : Formulation, optimization by box-behnken design, in vitro and in vivo evaluation. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1838-1851.
[http://dx.doi.org/10.1080/21691401.2017.1394872]
[62]
Rassu, G.; Soddu, E.; Posadino, A.M.; Pintus, G.; Sarmento, B.; Giunchedi, P.; Gavini, E. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf. B Biointerfaces, 2017, 152, 296-301.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.031] [PMID: 28126681]
[63]
Pardeshi, C.V.; Rajput, P.V.; Belgamwar, V.S.; Tekade, A.R.; Surana, S.J. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: Application of factorial design approach. Drug Deliv., 2013, 20(1), 47-56.
[http://dx.doi.org/10.3109/10717544.2012.752421] [PMID: 23311653]
[64]
Sun, Y.; Li, L.; Xie, H.; Wang, Y.; Gao, S.; Zhang, L.; Bo, F.; Yang, S.; Feng, A. Primary studies on construction and evaluation of ion-sensitive in situ gel loaded with paeonol-solid lipid nanoparticles for intranasal drug delivery. Int. J. Nanomed., 2020, 15, 3137-3160.
[http://dx.doi.org/10.2147/IJN.S247935] [PMID: 32440115]
[65]
Bonferoni, M.C.; Rossi, S.; Sandri, G.; Ferrari, F.; Gavini, E.; Rassu, G.; Giunchedi, P. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceut., 2019, 11(2), 1-17.
[http://dx.doi.org/10.3390/pharmaceutics11020084] [PMID: 30781585]
[66]
McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter, 2012, 8(6), 1719-1729.
[http://dx.doi.org/10.1039/C2SM06903B]
[67]
Shah, B.M.; Misra, M.; Shishoo, C.J.; Padh, H. Nose to brain microemulsion-based drug delivery system of rivastigmine: Formulation and ex-vivo characterization. Drug Deliv., 2015, 22(7), 918-930.
[http://dx.doi.org/10.3109/10717544.2013.878857] [PMID: 24467601]
[68]
Khunt, D.; Polaka, S.; Shrivas, M.; Misra, M. Biodistribution and amyloid beta induced cell line toxicity study of intranasal rivastigmine microemulsion enriched with fish oil and butter oil. J. Drug Deliv. Sci. Technol., 2020, 57(January), 101661.
[http://dx.doi.org/10.1016/j.jddst.2020.101661]
[69]
Espinoza, L.C.; Vacacela, M.; Clares, B.; Garcia, M.L.; Fabrega, M.J.; Calpena, A.C. Development of a nasal donepezil-loaded microemulsion for the treatment of Alzheimer’s disease: In vitro and ex vivo characterization. CNS Neurol. Disord. Drug Targets, 2018, 17(1), 43-53.
[http://dx.doi.org/10.2174/1871527317666180104122347] [PMID: 29299992]
[70]
Jogani, V.V.; Shah, P.J.; Mishra, P.; Mishra, A.K.; Misra, A.R. Intranasal mucoadhesive microemulsion of tacrine to improve brain targeting. Alzheimer Dis. Assoc. Disord., 2008, 22(2), 116-124.
[http://dx.doi.org/10.1097/WAD.0b013e318157205b] [PMID: 18525282]
[71]
Pardeshi, C.V.; Belgamwar, V.S.N. N N,N-trimethyl chitosan modified flaxseed oil based mucoadhesive neuronanoemulsions for direct nose to brain drug delivery. Int. J. Biol. Macromol., 2018, 120(Pt B), 2560-2571.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.032] [PMID: 30201564]
[72]
Fachel, F.N.S.; Medeiros-Neves, B.; Dal Prá, M.; Schuh, R.S.; Veras, K.S.; Bassani, V.L.; Koester, L.S.; Henriques, A.T.; Braganhol, E.; Teixeira, H.F. Box-Behnken design optimization of mucoadhesive chitosan-coated nanoemulsions for rosmarinic acid nasal delivery-in vitro studies. Carbohydr. Polym., 2018, 199, 572-582.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.054] [PMID: 30143164]
[73]
Wang, F.; Yang, Z.; Liu, M.; Tao, Y.; Li, Z.; Wu, Z.; Gui, S. Facile nose-to-brain delivery of rotigotine-loaded polymer micelles thermosensitive hydrogels: In vitro characterization and in vivo behavior study. Int. J. Pharm., 2020, 577(577), 119046.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119046] [PMID: 31982559]
[74]
Ahmed, T.A.; El-Say, K.M.; Ahmed, O.A.A.; Aljaeid, B.M. Superiority of TPGS-loaded micelles in the brain delivery of vinpocetine via administration of thermosensitive intranasal gel. Int. J. Nanomed., 2019, 14, 5555-5567.
[http://dx.doi.org/10.2147/IJN.S213086] [PMID: 31413562]
[75]
Kanazawa, T.; Akiyama, F.; Kakizaki, S.; Takashima, Y.; Seta, Y. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomater., 2013, 34(36), 9220-9226.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.036] [PMID: 23992922]
[76]
Agrawal, M.; Saraf, S.; Saraf, S.; Dubey, S.K.; Puri, A.; Patel, R.J. Ajazuddin; Ravichandiran, V.; Murty, U.S.; Alexander, A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J. Control. Release, 2020, 321, 372-415.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.020] [PMID: 32061621]
[77]
Wavikar, P.; Pai, R.; Vavia, P. Nose to brain delivery of rivastigmine by in situ gelling cationic nanostructured lipid carriers: Enhanced brain distribution and pharmacodynamics. J. Pharm. Sci., 2017, 106(12), 3613-3622.
[http://dx.doi.org/10.1016/j.xphs.2017.08.024] [PMID: 28923321]
[78]
Cunha, S.; Costa, C.P.; Loureiro, J.A.; Alves, J.; Peixoto, A.F.; Forbes, B.; Sousa, Lobo J.M.; Silva, A.C. Double optimization of rivastigmine-loaded nanostructured lipid carriers (nlc) for nose-to-brain delivery using the quality by design (QbB) approach: Formulation variables and instrumental parameters. Pharmaceut., 2020, 12(7), 1-27.
[http://dx.doi.org/10.3390/pharmaceutics12070599] [PMID: 32605177]
[79]
Pardeshi, C.V.; Belgamwar, V.S. Improved brain pharmacokinetics following intranasal administration of n,n,n-trimethyl chitosan tailored mucoadhesive NLCs. Mater. Technol., 2020, 35(5), 249-266.
[http://dx.doi.org/10.1080/10667857.2019.1674522]
[80]
Gabal, Y.M.; Kamel, A.O.; Sammour, O.A.; Elshafeey, A.H. Effect of surface charge on the brain delivery of nanostructured lipid carriers in situ gels via the nasal route. Int. J. Pharm., 2014, 473(1-2), 442-457.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.025] [PMID: 25062866]
[81]
Gartziandia, O.; Herrán, E.; Ruiz-Ortega, J.A.; Miguelez, C.; Igartua, M.; Lafuente, J.V.; Pedraz, J.L.; Ugedo, L.; Hernández, R.M. Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with gdnf improves behavioral and histological recovery in a partial lesion model of parkinson’s disease. J. Biomed. Nanotechnol., 2016, 12(12), 2220-2230.
[http://dx.doi.org/10.1166/jbn.2016.2313] [PMID: 29372975]
[82]
Rajput, A.P.; Butani, S.B. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: Formulation, optimization and in vivo characterization. J. Drug Deliv. Sci. Technol., 2018, 2019(51), 214-223.
[http://dx.doi.org/10.1016/j.jddst.2019.01.040]
[83]
Jojo, G.M.; Kuppusamy, G.; De, A.; Karri, V.V.S.N.R. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer’s disease using Box-Behnken design. Drug Dev. Ind. Pharm., 2019, 45(7), 1061-1072.
[http://dx.doi.org/10.1080/03639045.2019.1593439] [PMID: 30922126]
[84]
Singh, A.V.; Maharjan, R.S.; Kromer, C.; Laux, P.; Luch, A.; Vats, T.; Chandrasekar, V.; Dakua, S.P.; Park, B.W. Advances in smoking related in vitro inhalation toxicology: A perspective case of challenges and opportunities from progresses in lung-on-chip technologies. Chem. Res. Toxicol., 2021, 34(9), 1984-2002.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00219] [PMID: 34397218]
[85]
Singh, A.V.; Romeo, A.; Scott, K.; Wagener, S.; Leibrock, L.; Laux, P.; Luch, A.; Kerkar, P.; Balakrishnan, S.; Dakua, S.P.; Park, B.W. Emerging technologies for in vitro inhalation toxicology. Adv. Healthc. Mater., 2021, 10(18), e2100633.
[http://dx.doi.org/10.1002/adhm.202100633] [PMID: 34292676]
[86]
Pagar, R.; Vaishnav, S.; Bairagi, V. Cubosome:Innovative nanostructures for drug delivery. Pharma Sceince Monit., 2018, 9(1), 97-107.
[87]
Varghese, R.; Salvi, S.; Sood, P.; Kulkarni, B.; Kumar, D. Cubosomes in cancer drug delivery: A review. Colloid Interface Sci. Commun., 2021, 2022(46), 100561.
[http://dx.doi.org/10.1016/j.colcom.2021.100561]
[88]
Patil, R.P.; Pawara, D.D.; Gudewar, C.S.; Tekade, A.R. Nanostructured cubosomes in an in situ nasal gel system: An alternative approach for the controlled delivery of donepezil HCl to brain. J. Liposome Res., 2019, 29(3), 264-273.
[http://dx.doi.org/10.1080/08982104.2018.1552703] [PMID: 30501444]
[89]
Azhari, H.; Strauss, M.; Hook, S.; Boyd, B.J.; Rizwan, S.B. Stabilising cubosomes with Tween 80 as a step towards targeting lipid nanocarriers to the blood-brain barrier. Eur. J. Pharm. Biopharm., 2016, 104, 148-155.
[http://dx.doi.org/10.1016/j.ejpb.2016.05.001] [PMID: 27163239]
[90]
Ahirrao, M.; Shrotriya, S. in vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting. Drug Dev. Ind. Pharm., 2017, 43(10), 1686-1693.
[http://dx.doi.org/10.1080/03639045.2017.1338721] [PMID: 28574732]
[91]
Wu, H.; Hu, K.; Jiang, X. From nose to brain: Understanding transport capacity and transport rate of drugs. Expert Opin. Drug Deliv., 2008, 5(10), 1159-1168.
[http://dx.doi.org/10.1517/17425247.5.10.1159] [PMID: 18817519]
[92]
Alexander, A.; Agrawal, M.; Uddin, A.; Siddique, S.; Shehata, A.M.; Shaker, M.A.; Ata Ur Rahman, S.; Abdul, M.I.M.; Shaker, M.A. Recent expansions of novel strategies towards the drug targeting into the brain. Int. J. Nanomedicine, 2019, 14, 5895-5909.
[http://dx.doi.org/10.2147/IJN.S210876] [PMID: 31440051]
[93]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[94]
Singh, A.V.; Maharjan, R.S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[95]
Singh, A.V.; Maharjan, R.S.; Jungnickel, H.; Romanowski, H.; Hachenberger, Y.U.; Reichardt, P.; Bierkandt, F.; Siewert, K.; Gadicherla, A.; Laux, P.; Luch, A. Evaluating particle emissions and toxicity of 3d pen printed filaments with metal nanoparticles as additives: In vitro and in silico discriminant function analysis. ACS Sustain. Chem.& Eng., 2021, 9(35), 11724-11737.
[http://dx.doi.org/10.1021/acssuschemeng.1c02589]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy