Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Synthesis and Photocatalytic Activity of Si-doped TiO2 Nanotube/SnS Hybrids for Environmental Decontamination

Author(s): Ning Ma and Hai-Yan He*

Volume 15, Issue 2, 2023

Published on: 06 September, 2022

Page: [108 - 117] Pages: 10

DOI: 10.2174/1876402914666220628145557

Price: $65

Abstract

Background: Heterostructures with nanoscale sizes have great superiorities in photocatalytic environment decontaminant because of their efficient interface charge transfer and great surface area.

Objective: This work reports the facile fabrication of nano-tubular TiO2 and Si-doped TiO2 (NTs) hybridizing SnS nanocrystallites and their high-efficient photocatalytic activity.

Methods: The modified hydrothermal processes were used to synthesize the nanotubes. A chemical bath deposition process was used to hybridize SnS nanocrystalline with the nanotubes.

Results: The fabricated nanostructures show wide light absorption in the UV-visible region. The SBET, light absorption, hydrophilicity, and photo-induced super hydrophilicity were enhanced by Si-doping and SnS modification. Moreover, high-efficient interface charge transfer was produced after the SnS modification and further enhanced by the Si doping because of band structure modulation.

Conclusion: Thus, the Si-doped TiO2 nanotubes/SnS heterostructures showed remarkably enhanced photocatalytic and Fenton-like photocatalytic activity in dye wastewater treatment than the TiO2 NTs. This work suggests potential materials and their facile fabrication process for the photocatalytic application of environmental decontamination.

Keywords: Nanotubes, semiconductor, heterojunction, photocatalytic properties, interface effect, environmental decontamination.

Graphical Abstract
[1]
Lindgren, T.; Mwabora, J.M.; Avendano, E.; Jonsson, J.; Hael, A.; Granqvist, C.; Lindquist, S. Photoelectrochemical and optical properties of nitrogen-doped titanium dioxide film prepared by reactive DC magnetic sputtering. J. Phys. Chem. B, 2003, 107(24), 5709-5716.
[http://dx.doi.org/10.1021/jp027345j]
[2]
Nishijima, K.; Ohtani, B.; Yan, X.L.; Kamai, T.A.; Chiyoya, T.; Tsubota, T.; Murakami, N.; Ohno, T. Incident light dependence for photocatalytic degradation of acetaldehyde and acetic acid on S-doped and N-doped TiO2 photocatalysts. Chem. Phys., 2007, 339(1-3), 64-72.
[http://dx.doi.org/10.1016/j.chemphys.2007.06.014]
[3]
Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Bandgap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett., 2002, 81(3), 454-456.
[http://dx.doi.org/10.1063/1.1493647]
[4]
Ahmad, M.; Ahmed, E.; Zhang, Y.; Khalid, N.R.; Xu, J.; Ullah, M.; Hong, Z. Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Curr. Appl. Phys., 2013, 13(4), 697-704.
[http://dx.doi.org/10.1016/j.cap.2012.11.008]
[5]
Fa, W.; Guo, L.; Wang, J.; Guo, R.; Zheng, Z.; Yang, F. Solid-phase photocatalytic degradation of polystyrene with TiO2/Fe(St)3 as catalyst. J. Appl. Polym. Sci., 2013, 128(5), 2618-2622.
[http://dx.doi.org/10.1002/app.37751]
[6]
Zhang, N.; Zhang, Y.; Pan, X.; Yang, M.Q.; Xu, Y.J. Constructing ternary CdS–graphene–TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation. J. Phys. Chem. C, 2012, 116(34), 18023-18031.
[http://dx.doi.org/10.1021/jp303503c]
[7]
György, E.; del Pino, A.P.; Logofatu, C.; Cazan, C.; Duta, A. Simultaneous laser-induced reduction and nitrogen doping of graphene oxide in titanium oxide/graphene oxide composites. J. Am. Ceram. Soc., 2014, 97(9), 2718-2724.
[http://dx.doi.org/10.1111/jace.13013]
[8]
Wang, Q-Z.; An, N.; Bai, Y.; Hang, H.; Li, J.; Lu, X.; Liu, Y.; Wang, F.; Li, Z.; Lei, Z. High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/TiO2. Int. J. Hydrogen Energy, 2013, 38(25), 10739-10745.
[http://dx.doi.org/10.1016/j.ijhydene.2013.02.131]
[9]
Li, D.L.; Pan, C.X. Fabrication and characterization of electrospun TiO2/CuS micro–nano-scaled composite fibers. Prog. Nat. Sci., 2012, 22(1), 59-63.
[http://dx.doi.org/10.1016/j.pnsc.2011.12.010]
[10]
Wang, Q.Z.; Yun, G.X.; Bai, Y.; An, N.; Chen, Y.T.; Wang, R.F.; Lei, Z.Q.; Shangguan, W.F. CuS, NiS as co-catalyst for enhanced photocatalytic hydrogen evolution over TiO2, inter. Int. J. Hydrogen Energy, 2014, 39(25), 13421-13428.
[http://dx.doi.org/10.1016/j.ijhydene.2014.04.020]
[11]
Park, C.Y.; Ghosh, T.; Meng, Z.D.; Kefayat, U.; Viktam, N.; Oh, W.C. Preparation of CuS-graphene oxide/TiO2 composites designed for high photonic effect and photocatalytic activity under visible light. Chin. J. Catal., 2013, 34(4), 711-717.
[http://dx.doi.org/10.1016/S1872-2067(11)60502-0]
[12]
Eshaghi, A.; Eshaghi, A. Optical and hydrophilic properties of Cr-doped TiO2–SiO2 nanostructure thin film. Appl. Surf. Sci., 2012, 258(7), 2464-2467.
[http://dx.doi.org/10.1016/j.apsusc.2011.10.073]
[13]
Shahrodin, N.S.; Juhana, J.; Rahmat, A.R.; Yusof, N.; Mohammad, H.; Othman, D.; Rahman, A. Superparamagnetic iron oxide as photocatalyst and adsorbent in wastewater treatment – A review. Micro Nanosyst., 2020, 12(1), 4-22.
[http://dx.doi.org/10.2174/1876402911666190716155658]
[14]
Rahman, M.M.; Khan, S.B.; Jamal, A.; Faisal, M.; Asiri, A.M.; Alamry, K.A.; Khan, A.; Parwaz Khan, A.A.; Mohammed, M.; Abdul, R.M.; Azum, N.; Al-Youbi, A.O. Large-scale synthesis of low-dimension Un-doped iron oxide nanoparticles by a wet-chemical method: Efficient photo-catalyst & sensitive chemi-sensor applications. Micro Nanosyst., 2013, 5, 3-13.
[15]
Huang, J.F.; Tao, F.H.; Yu, C.H.; Mao, Y.J.; Xue, Z.Y.; Wang, M.C.; Fan, C.G.; Pei, L.Z. Hydrothermal synthesis and photocatalytic performance of barium carbonate/tin dioxide nanoparticles. Micro Nanosyst., 2022, 14(3), 204-211.
[http://dx.doi.org/10.2174/1876402913666211110144252]
[16]
Duan, H.; Duan, W.; Gu, H. The study on wettability of super-hydrophobic composite coatings preparation by surface gelation technology. Micro Nanosyst., 2010, 2(1), 49-51.
[http://dx.doi.org/10.2174/1876402911002010049]
[17]
Lu, Z.; Jiang, X.; Zhou, B.; Wu, X.; Lu, L. Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si-doped TiO2 thin films deposited by electron beam evaporation. Appl. Surf. Sci., 2011, 257(24), 10715-10720.
[http://dx.doi.org/10.1016/j.apsusc.2011.07.085]
[18]
Eshaghi, A.; Pakshir, M.; Mozaffarinia, R. Preparation and photo-induced superhydrophilicity of composite TiO2–SiO2–In2O3 thin film. Appl. Surf. Sci., 2010, 256(23), 7062-7066.
[http://dx.doi.org/10.1016/j.apsusc.2010.05.026]
[19]
Adachi, M.; Murata, Y.; Harada, M.; Yoshikawa, Y. Formation of titania nanotubes with high photocatalytic activity. Chem. Lett., 2000, 29(8), 942-943.
[http://dx.doi.org/10.1246/cl.2000.942]
[20]
Chu, S.Z.; Inoue, S.; Wada, K.; Li, D.; Haneda, H.; Awatsu, S. Highly porous (TiO2−SiO2−TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process. J. Phys. Chem. B, 2003, 107(27), 6586-6589.
[http://dx.doi.org/10.1021/jp0349684] [PMID: 26312415]
[21]
Michailowski, A.; AlMawlwai, D.; Cheng, G.S.; Moskovits, M. Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem. Phys. Lett., 2001, 349(1-2), 1-5.
[http://dx.doi.org/10.1016/S0009-2614(01)01159-9]
[22]
Jung, J.H.; Kobayashi, H.; van Bommel, K.J.C.; Shinkai, S.; Shimizu, T. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem. Mater., 2002, 14(4), 1445-1447.
[http://dx.doi.org/10.1021/cm011625e]
[23]
Kobayashi, S.; Hamasaki, N.; Suzuki, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. J. Am. Chem. Soc., 2002, 124(23), 6550-6551.
[http://dx.doi.org/10.1021/ja0260622] [PMID: 12047172]
[24]
Tian, Z.R.; Voigt, J.A.; Liu, J.; McKenzie, B.; Xu, H. Large oriented arrays and continuous films of TiO(2)-based nanotubes. J. Am. Chem. Soc., 2003, 125(41), 12384-12385.
[http://dx.doi.org/10.1021/ja0369461] [PMID: 14531662]
[25]
Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir, 1998, 14(12), 3160-3163.
[http://dx.doi.org/10.1021/la9713816]
[26]
Chen, Q.; Zhou, W.Z.; Du, G.H.; Peng, L.H. Trititanate nanotubes made via a single alkali treatment. Adv. Mater., 2002, 14(17), 1208-1211.
[http://dx.doi.org/10.1002/1521-4095(20020903)14:17<1208:AID-ADMA1208>3.0.CO;2-0]
[27]
Yao, B.D.; Chan, Y.F.; Zhang, X.Y.; Zhang, W.F.; Yang, Z.Y.; Wang, N. Formation mechanism of TiO2 nanotubes. Appl. Phys. Lett., 2003, 82(2), 281-283.
[http://dx.doi.org/10.1063/1.1537518]
[28]
Cai, Q.; Paulose, M.; Varghese, O.K.; Grimes, C.A. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res., 2005, 20(1), 230-236.
[http://dx.doi.org/10.1557/JMR.2005.0020]
[29]
Ruan, C.; Paulose, M.; Varghese, O.K.; Mor, G.K.; Grimes, C.A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J. Phys. Chem. B, 2005, 109(33), 15754-15759.
[http://dx.doi.org/10.1021/jp052736u] [PMID: 16852999]
[30]
Quan, X.; Yang, S.; Ruan, X.; Zhao, H. Preparation of titania nanotubes and their environmental applications as electrode. Environ. Sci. Technol., 2005, 39(10), 3770-3775.
[http://dx.doi.org/10.1021/es048684o] [PMID: 15952384]
[31]
Mor, G.K.; Varghese, O.K.; Paulose, M.; Shankar, K.; Grimes, C.A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells, 2006, 90(14), 2011-2075.
[http://dx.doi.org/10.1016/j.solmat.2006.04.007]
[32]
Manga, K.K.; Zhou, Y.; Yan, Y.; Loh, K.P. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv. Funct. Mater., 2009, 19(22), 3638-3643.
[http://dx.doi.org/10.1002/adfm.200900891]
[33]
Lee, J.S.; You, K.H.; Park, C.B. Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater., 2012, 24(8), 1084-1088.
[http://dx.doi.org/10.1002/adma.201104110] [PMID: 22271246]
[34]
Neamţu, M.; Zaharia, C.; Catrinescu, C.; Yediler, A.; Macoveanu, M.; Kettrup, A. Fe-exchanged Y zeolite as catalyst for wet peroxide oxidation of reactive azo dye Procion Marine H-EXL. Appl. Catal. B. Environ., 2004, 48(4), 287-294.
[http://dx.doi.org/10.1016/j.apcatb.2003.11.005]
[35]
Pathan, H.M.; Desai, J.D.; Lokhande, C.D. Modified chemical deposition and physico-chemical properties of copper sulphide (Cu2S) thin films. Appl. Surf. Sci., 2002, 202(1-2), 47-56.
[http://dx.doi.org/10.1016/S0169-4332(02)00843-7]
[36]
Butler, M.A.; Ginley, D.S. Prediction of flatband potentials at semiconductor- electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc., 1978, 125(2), 228-232.
[http://dx.doi.org/10.1149/1.2131419]
[37]
Wang, L.L.; He, H.Y.; Li, Q.; Ren, Z.Q. Photocatalytic activities of SnS-reduced graphene oxide by the photodegradation of malachite green in water. Mater. Res. Innov., 2015, 20(6), 458-464.
[http://dx.doi.org/10.1179/1433075X15Y.0000000056]
[38]
Ollis, D.; Pichat, P.; Serpone, N. TiO2 photocatalysis-25 years. Appl. Catal. B, 2010, 99(3-4), 377.
[http://dx.doi.org/10.1016/j.apcatb.2010.06.030]
[39]
Zhang, Z.; Shao, C.; Li, X.; Sun, Y.; Zhang, M.; Mu, J.; Zhang, P.; Guo, Z.; Liu, Y. Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: Enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale, 2013, 5(2), 606-618.
[http://dx.doi.org/10.1039/C2NR32301J] [PMID: 23202888]
[40]
Christoforidis, K.C.; Sengele, A.; Keller, V.; Keller, N. Single-step synthesis of SnS2 nanosheet-decorated TiO2 anatase nanofibers as efficient photocatalysts for the degradation of gas phase diethylsulfide. ACS Appl. Mater. Interfaces, 2015, 7(34), 19324-19334.
[http://dx.doi.org/10.1021/acsami.5b05370] [PMID: 26262595]
[41]
Chaki, S.H.; Deshpande, M.P.; Tailor, J.P. Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip-coating techniques. Thin Solid Films, 2014, 550, 291-297.
[http://dx.doi.org/10.1016/j.tsf.2013.11.037]
[42]
Elmolla, E.S.; Chaudhuri, M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 2010, 252(1–3), 46-52.
[http://dx.doi.org/10.1016/j.desal.2009.11.003]
[43]
Nezamzadeh-Ejhieh, A.; Karimi-Shamsabadi, M. Decolorization of a binary azo dyes mixture using CuO incorporated nano zeolite-X as a heterogeneous catalyst and solar irradiation. Chem. Eng. J., 2013, 228, 631-641.
[http://dx.doi.org/10.1016/j.cej.2013.05.035]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy