Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Regulation Role of Ferroptosis Mechanism of Anti-Cancer Drugs and Noncoding RNAs

Author(s): Mine Ensoy, Zehra Sena Bumin, Huda Abdirizak Jama and Demet Cansaran-Duman*

Volume 30, Issue 14, 2023

Published on: 26 September, 2022

Page: [1638 - 1656] Pages: 19

DOI: 10.2174/0929867329666220629154418

Price: $65

Abstract

Ferroptosis is a recently discovered type of cell death caused by the accumulation of iron-dependent lipid peroxides and reactive oxygen species that differs significantly from other cell death pathways such as apoptosis, necrosis, and autophagy. Ferroptosis is essential in developing and treating ischemia-reperfusion injury, neurological diseases, cancer, and other diseases. The ferroptosis mechanism, which can be induced by reagents like erastin and glutamate, and suppressed by antioxidants such as vitamin E and deferoxamine (DFO) chelators, can be regulated at the epigenetic, transcriptional, post-transcriptional, and post-translational levels. A recent study has determined many non-coding RNAs (lncRNA, miRNA, circRNA) that modulate ferroptotic cell death in cancer cells. Furthermore, some anti-cancer drugs (Sorafenib, Sulfasalazine, Acetominofen, Lanperisone, etc.) used in pre-clinical and clinical applications have been shown to induce ferroptosis in various cancer types. However, in addition to the studies in the literature, it is necessary to define novel molecules & non-coding RNAs and determine their effects on the ferroptosis mechanism. Thus, it will be possible to develop effective and safe treatment options.

Keywords: Ferroptosis, cell death, anti-cancer drugs, non-coding RNAs (ncRNAs), Sorafenib, miRNA.

[1]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[2]
D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592.
[http://dx.doi.org/10.1002/cbin.11137] [PMID: 30958602]
[3]
Ray, S.D.; Mehendale, H.M. Apoptosis. In: Encyclopedia of Toxicology; Elsevier, 2005; pp. 153-167.
[http://dx.doi.org/10.1016/B0-12-369400-0/00083-1]
[4]
Brown, D.A.; Yang, N.; Ray, S.D. Apoptosis. In: Encyclopedia of Toxicology; Elsevier, 2014; pp. 287-294.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.00242-6]
[5]
Golstein, P.; Kroemer, G. Cell death by necrosis: Towards a molecular definition. Trends Biochem. Sci., 2007, 32(1), 37-43.
[http://dx.doi.org/10.1016/j.tibs.2006.11.001] [PMID: 17141506]
[6]
Gozuacik, D.; Kimchi, A. Autophagy and cell death. Curr. Top. Dev. Biol., 2007, 78, 217-245.
[http://dx.doi.org/10.1016/S0070-2153(06)78006-1] [PMID: 17338918]
[7]
Lei, G.; Zhuang, L.; Gan, B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer, 2022.
[http://dx.doi.org/10.1038/s41568-022-00459-0] [PMID: 35338310]
[8]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[9]
Ray, P.D.; Huang, B-W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[10]
Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res., 2019, 29(5), 347-364.
[http://dx.doi.org/10.1038/s41422-019-0164-5] [PMID: 30948788]
[11]
Mao, H.; Zhao, Y.; Li, H.; Lei, L. Ferroptosis as an emerging target in inflammatory diseases. Prog. Biophys. Mol. Biol., 2020, 155, 20-28.
[http://dx.doi.org/10.1016/j.pbiomolbio.2020.04.001] [PMID: 32311424]
[12]
Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res., 2021, 31(2), 107-125.
[http://dx.doi.org/10.1038/s41422-020-00441-1] [PMID: 33268902]
[13]
Chen, X.; Li, J.; Kang, R.; Klionsky, D.J.; Tang, D. Ferroptosis: Machinery and regulation. Autophagy, 2021, 17(9), 2054-2081.
[http://dx.doi.org/10.1080/15548627.2020.1810918] [PMID: 32804006]
[14]
Xu, G.; Wang, H.; Li, X.; Huang, R.; Luo, L. Recent progress on targeting ferroptosis for cancer therapy. Biochem. Pharmacol., 2021, 190, 114584.
[http://dx.doi.org/10.1016/j.bcp.2021.114584] [PMID: 33915157]
[15]
Qi, R.; Bai, Y.; Wei, Y.; Liu, N.; Shi, B. The role of non-coding RNAs in ferroptosis regulation. J. Trace Elem. Med. Biol., 2022, 70, 126911.
[http://dx.doi.org/10.1016/j.jtemb.2021.126911] [PMID: 34952295]
[16]
Luo, M.; Wu, L.; Zhang, K.; Wang, H.; Zhang, T.; Gutierrez, L.; O’Connell, D.; Zhang, P.; Li, Y.; Gao, T.; Ren, W.; Yang, Y. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ., 2018, 25(8), 1457-1472.
[http://dx.doi.org/10.1038/s41418-017-0053-8] [PMID: 29348676]
[17]
Wang, Z.; Chen, X.; Liu, N.; Shi, Y.; Liu, Y.; Ouyang, L.; Tam, S.; Xiao, D.; Liu, S.; Wen, F.; Tao, Y. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis. Mol. Ther., 2021, 29(1), 263-274.
[http://dx.doi.org/10.1016/j.ymthe.2020.09.024] [PMID: 33002417]
[18]
Zhi, Y.; Gao, L.; Wang, B.; Ren, W.; Liang, K.X.; Zhi, K. Ferroptosis holds novel promise in treatment of cancer mediated by non-coding RNAs. Front. Cell Dev. Biol., 2021, 9, 686906.
[http://dx.doi.org/10.3389/fcell.2021.686906] [PMID: 34235152]
[19]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[20]
Hassannia, B.; Wiernicki, B.; Ingold, I.; Qu, F.; Van Herck, S.; Tyurina, Y.Y.; Bayır, H.; Abhari, B.A.; Angeli, J.P.F.; Choi, S.M.; Meul, E.; Heyninck, K.; Declerck, K.; Chirumamilla, C.S.; Lahtela-Kakkonen, M.; Van Camp, G.; Krysko, D.V.; Ekert, P.G.; Fulda, S.; De Geest, B.G.; Conrad, M.; Kagan, V.E.; Vanden Berghe, W.; Vandenabeele, P.; Vanden Berghe, T. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest., 2018, 128(8), 3341-3355.
[http://dx.doi.org/10.1172/JCI99032] [PMID: 29939160]
[21]
Xie, Y.; Zhou, X.; Li, J.; Yao, X-C.; Liu, W-L.; Kang, F-H.; Zou, Z-X.; Xu, K-P.; Xu, P-S.; Tan, G-S. Identification of a new natural biflavonoids against breast cancer cells induced ferroptosis via the mitochondrial pathway. Bioorg. Chem., 2021, 109, 104744.
[http://dx.doi.org/10.1016/j.bioorg.2021.104744] [PMID: 33639365]
[22]
Li, X.; Li, W.; Yang, P.; Zhou, H.; Zhang, W.; Ma, L. Anticancer effects of cryptotanshinone against lung cancer cells through ferroptosis. Arab. J. Chem., 2021, 14(6), 103177.
[http://dx.doi.org/10.1016/j.arabjc.2021.103177]
[23]
Zhou, B.; Liu, J.; Kang, R.; Klionsky, D.J.; Kroemer, G.; Tang, D. Ferroptosis is a type of autophagy-dependent cell death. Semin. Cancer Biol., 2020, 66, 89-100.
[http://dx.doi.org/10.1016/j.semcancer.2019.03.002] [PMID: 30880243]
[24]
Su, Y.; Zhao, B.; Zhou, L.; Zhang, Z.; Shen, Y.; Lv, H.; AlQudsy, L.H.H.; Shang, P. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett., 2020, 483, 127-136.
[http://dx.doi.org/10.1016/j.canlet.2020.02.015] [PMID: 32067993]
[25]
Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol., 2021, 18(5), 280-296.
[http://dx.doi.org/10.1038/s41571-020-00462-0] [PMID: 33514910]
[26]
Çelenk, A. Yeni bir hücre ölüm şekli olarak ferroptozis. Arşiv Kaynak Tarama Derg., 2021, 30(4), 258-268.
[http://dx.doi.org/10.17827/aktd.980659]
[27]
Dolma, S.; Lessnick, S.L.; Hahn, W.C.; Stockwell, B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003, 3(3), 285-296.
[http://dx.doi.org/10.1016/S1535-6108(03)00050-3] [PMID: 12676586]
[28]
Yang, W.S.; Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol., 2008, 15(3), 234-245.
[http://dx.doi.org/10.1016/j.chembiol.2008.02.010] [PMID: 18355723]
[29]
Louandre, C.; Ezzoukhry, Z.; Godin, C.; Barbare, J-C.; Mazière, J-C.; Chauffert, B.; Galmiche, A. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int. J. Cancer, 2013, 133(7), 1732-1742.
[http://dx.doi.org/10.1002/ijc.28159] [PMID: 23505071]
[30]
Ooko, E.; Saeed, M.E.M.; Kadioglu, O.; Sarvi, S.; Colak, M.; Elmasaoudi, K.; Janah, R.; Greten, H.J.; Efferth, T. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine, 2015, 22(11), 1045-1054.
[http://dx.doi.org/10.1016/j.phymed.2015.08.002] [PMID: 26407947]
[31]
Eling, N.; Reuter, L.; Hazin, J.; Hamacher-Brady, A.; Brady, N.R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience, 2015, 2(5), 517-532.
[http://dx.doi.org/10.18632/oncoscience.160] [PMID: 26097885]
[32]
Abrams, R.P.; Carroll, W.L.; Woerpel, K.A. Five-membered ring peroxide selectively initiates ferroptosis in cancer cells. ACS Chem. Biol., 2016, 11(5), 1305-1312.
[http://dx.doi.org/10.1021/acschembio.5b00900] [PMID: 26797166]
[33]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[34]
Mayr, L.; Grabherr, F.; Schwärzler, J.; Reitmeier, I.; Sommer, F.; Gehmacher, T.; Niederreiter, L.; He, G-W.; Ruder, B.; Kunz, K.T.R.; Tymoszuk, P.; Hilbe, R.; Haschka, D.; Feistritzer, C.; Gerner, R.R.; Enrich, B.; Przysiecki, N.; Seifert, M.; Keller, M.A.; Oberhuber, G.; Sprung, S.; Ran, Q.; Koch, R.; Effenberger, M.; Tancevski, I.; Zoller, H.; Moschen, A.R.; Weiss, G.; Becker, C.; Rosenstiel, P.; Kaser, A.; Tilg, H.; Adolph, T.E. Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat. Commun., 2020, 11(1), 1775.
[http://dx.doi.org/10.1038/s41467-020-15646-6] [PMID: 32286299]
[35]
Mbaveng, A.T.; Bitchagno, G.T.M.; Kuete, V.; Tane, P.; Efferth, T. Cytotoxicity of ungeremine towards multi-factorial drug resistant cancer cells and induction of apoptosis, ferroptosis, necroptosis and autophagy. Phytomedicine, 2019, 60, 152832.
[http://dx.doi.org/10.1016/j.phymed.2019.152832] [PMID: 31031043]
[36]
Friedmann Angeli, J.P.; Schneider, M.; Proneth, B.; Tyurina, Y.Y.; Tyurin, V.A.; Hammond, V.J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E.; Basavarajappa, D.; Rådmark, O.; Kobayashi, S.; Seibt, T.; Beck, H.; Neff, F.; Esposito, I.; Wanke, R.; Förster, H.; Yefremova, O.; Heinrichmeyer, M.; Bornkamm, G.W.; Geissler, E.K.; Thomas, S.B.; Stockwell, B.R.; O’Donnell, V.B.; Kagan, V.E.; Schick, J.A.; Conrad, M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol., 2014, 16(12), 1180-1191.
[http://dx.doi.org/10.1038/ncb3064] [PMID: 25402683]
[37]
Yagoda, N.; von Rechenberg, M.; Zaganjor, E.; Bauer, A.J.; Yang, W.S.; Fridman, D.J.; Wolpaw, A.J.; Smukste, I.; Peltier, J.M.; Boniface, J.J.; Smith, R.; Lessnick, S.L.; Sahasrabudhe, S.; Stockwell, B.R. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 2007, 447(7146), 864-868.
[http://dx.doi.org/10.1038/nature05859] [PMID: 17568748]
[38]
Riegman, M.; Sagie, L.; Galed, C.; Levin, T.; Steinberg, N.; Dixon, S.J.; Wiesner, U.; Bradbury, M.S.; Niethammer, P.; Zaritsky, A.; Overholtzer, M. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat. Cell Biol., 2020, 22(9), 1042-1048.
[http://dx.doi.org/10.1038/s41556-020-0565-1] [PMID: 32868903]
[39]
Katikaneni, A.; Jelcic, M.; Gerlach, G.F.; Ma, Y.; Overholtzer, M.; Niethammer, P. Lipid peroxidation regulates long-range wound detection through 5-lipoxygenase in zebrafish. Nat. Cell Biol., 2020, 22(9), 1049-1055.
[http://dx.doi.org/10.1038/s41556-020-0564-2] [PMID: 32868902]
[40]
Gao, M.; Yi, J.; Zhu, J.; Minikes, A.M.; Monian, P.; Thompson, C.B.; Jiang, X. Role of mitochondria in ferroptosis. Mol. Cell, 2019, 73(2), 354-363.e3.
[http://dx.doi.org/10.1016/j.molcel.2018.10.042] [PMID: 30581146]
[41]
Li, C.; Zhang, Y.; Liu, J.; Kang, R.; Klionsky, D.J.; Tang, D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy, 2021, 17(4), 948-960.
[http://dx.doi.org/10.1080/15548627.2020.1739447] [PMID: 32186434]
[42]
Lee, H.; Zandkarimi, F.; Zhang, Y.; Meena, J.K.; Kim, J.; Zhuang, L.; Tyagi, S.; Ma, L.; Westbrook, T.F.; Steinberg, G.R.; Nakada, D.; Stockwell, B.R.; Gan, B. Energy-stress- mediated AMPK activation inhibits ferroptosis. Nat. Cell Biol., 2020, 22(2), 225-234.
[http://dx.doi.org/10.1038/s41556-020-0461-8] [PMID: 32029897]
[43]
Chen, X.; Yu, C.; Kang, R.; Tang, D. Iron metabolism in ferroptosis. Front. Cell Dev. Biol., 2020, 8, 590226.
[http://dx.doi.org/10.3389/fcell.2020.590226] [PMID: 33117818]
[44]
Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90.
[http://dx.doi.org/10.1038/nchembio.2238] [PMID: 27842066]
[45]
Wenzel, S.E.; Tyurina, Y.Y.; Zhao, J.; St Croix, C.M.; Dar, H.H.; Mao, G.; Tyurin, V.A.; Anthonymuthu, T.S.; Kapralov, A.A.; Amoscato, A.A.; Mikulska-Ruminska, K.; Shrivastava, I.H.; Kenny, E.M.; Yang, Q.; Rosenbaum, J.C.; Sparvero, L.J.; Emlet, D.R.; Wen, X.; Minami, Y.; Qu, F.; Watkins, S.C.; Holman, T.R.; VanDemark, A.P.; Kellum, J.A.; Bahar, I.; Bayır, H.; Kagan, V.E. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell, 2017, 171(3), 628-641.e26.
[http://dx.doi.org/10.1016/j.cell.2017.09.044] [PMID: 29053969]
[46]
Kapralov, A.A.; Yang, Q.; Dar, H.H.; Tyurina, Y.Y.; Anthonymuthu, T.S.; Kim, R.; St Croix, C.M.; Mikulska-Ruminska, K.; Liu, B.; Shrivastava, I.H.; Tyurin, V.A.; Ting, H.C.; Wu, Y.L.; Gao, Y.; Shurin, G.V.; Artyukhova, M.A.; Ponomareva, L.A.; Timashev, P.S.; Domingues, R.M.; Stoyanovsky, D.A.; Greenberger, J.S.; Mallampalli, R.K.; Bahar, I.; Gabrilovich, D.I.; Bayır, H.; Kagan, V.E. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat. Chem. Biol., 2020, 16(3), 278-290.
[http://dx.doi.org/10.1038/s41589-019-0462-8] [PMID: 32080625]
[47]
Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; Brown, L.M.; Girotti, A.W.; Cornish, V.W.; Schreiber, S.L.; Stockwell, B.R. Regulation of ferroptotic cancer cell death by GPX4. Cell, 2014, 156(1-2), 317-331.
[http://dx.doi.org/10.1016/j.cell.2013.12.010] [PMID: 24439385]
[48]
Yuan, H.; Li, X.; Zhang, X.; Kang, R.; Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun., 2016, 478(3), 1338-1343.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.124] [PMID: 27565726]
[49]
Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98.
[http://dx.doi.org/10.1038/nchembio.2239] [PMID: 27842070]
[50]
Chu, B.; Kon, N.; Chen, D.; Li, T.; Liu, T.; Jiang, L.; Song, S.; Tavana, O.; Gu, W. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat. Cell Biol., 2019, 21(5), 579-591.
[http://dx.doi.org/10.1038/s41556-019-0305-6] [PMID: 30962574]
[51]
Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K.; Dixon, S.J.; Olzmann, J.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692.
[http://dx.doi.org/10.1038/s41586-019-1705-2] [PMID: 31634900]
[52]
Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier da Silva, T.N.; Panzilius, E.; Scheel, C.H.; Mourão, A.; Buday, K.; Sato, M.; Wanninger, J.; Vignane, T.; Mohana, V.; Rehberg, M.; Flatley, A.; Schepers, A.; Kurz, A.; White, D.; Sauer, M.; Sattler, M.; Tate, E.W.; Schmitz, W.; Schulze, A.; O’Donnell, V.; Proneth, B.; Popowicz, G.M.; Pratt, D.A.; Angeli, J.P.F.; Conrad, M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575(7784), 693-698.
[http://dx.doi.org/10.1038/s41586-019-1707-0] [PMID: 31634899]
[53]
Dai, E.; Meng, L.; Kang, R.; Wang, X.; Tang, D. ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem. Biophys. Res. Commun., 2020, 522(2), 415-421.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.110] [PMID: 31761326]
[54]
Matsushita, M.; Freigang, S.; Schneider, C.; Conrad, M.; Bornkamm, G.W.; Kopf, M. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med., 2015, 212(4), 555-568.
[http://dx.doi.org/10.1084/jem.20140857] [PMID: 25824823]
[55]
Jang, E.J.; Kim, D.H.; Lee, B.; Lee, E.K.; Chung, K.W.; Moon, K.M.; Kim, M.J.; An, H.J.; Jeong, J.W.; Kim, Y.R.; Yu, B.P.; Chung, H.Y. Activation of proinflammatory signaling by 4-hydroxynonenal-Src adducts in aged kidneys. Oncotarget, 2016, 7(32), 50864-50874.
[http://dx.doi.org/10.18632/oncotarget.10854] [PMID: 27472463]
[56]
Wen, Q.; Liu, J.; Kang, R.; Zhou, B.; Tang, D. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun., 2019, 510(2), 278-283.
[http://dx.doi.org/10.1016/j.bbrc.2019.01.090] [PMID: 30686534]
[57]
Xie, B.; Guo, Y. Molecular mechanism of cell ferroptosis and research progress in regulation of ferroptosis by noncoding RNAs in tumor cells. Cell Death Discov., 2021, 7(1), 101.
[http://dx.doi.org/10.1038/s41420-021-00483-3] [PMID: 33980834]
[58]
Li, J.; Cao, F.; Yin, H.L.; Huang, Z.J.; Lin, Z.T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88.
[http://dx.doi.org/10.1038/s41419-020-2298-2] [PMID: 32015325]
[59]
Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ., 2016, 23(3), 369-379.
[http://dx.doi.org/10.1038/cdd.2015.158] [PMID: 26794443]
[60]
Chen, X.; Yu, C.; Kang, R.; Kroemer, G.; Tang, D. Cellular degradation systems in ferroptosis. Cell Death Differ., 2021, 28(4), 1135-1148.
[http://dx.doi.org/10.1038/s41418-020-00728-1] [PMID: 33462411]
[61]
Gao, M.; Monian, P.; Jiang, X. Metabolism and iron signaling in ferroptotic cell death. Oncotarget, 2015, 6(34), 35145-35146.
[http://dx.doi.org/10.18632/oncotarget.5671] [PMID: 26387139]
[62]
Tesfay, L.; Paul, B.T.; Konstorum, A.; Deng, Z.; Cox, A.O.; Lee, J.; Furdui, C.M.; Hegde, P.; Torti, F.M.; Torti, S.V. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res., 2019, 79(20), 5355-5366.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0369] [PMID: 31270077]
[63]
Jiang, Y.; Mao, C.; Yang, R.; Yan, B.; Shi, Y.; Liu, X.; Lai, W.; Liu, Y.; Wang, X.; Xiao, D.; Zhou, H.; Cheng, Y.; Yu, F.; Cao, Y.; Liu, S.; Yan, Q.; Tao, Y. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics, 2017, 7(13), 3293-3305.
[http://dx.doi.org/10.7150/thno.19988] [PMID: 28900510]
[64]
Zhang, Y.; Shi, J.; Liu, X.; Feng, L.; Gong, Z.; Koppula, P.; Sirohi, K.; Li, X.; Wei, Y.; Lee, H.; Zhuang, L.; Chen, G.; Xiao, Z.D.; Hung, M.C.; Chen, J.; Huang, P.; Li, W.; Gan, B. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol., 2018, 20(10), 1181-1192.
[http://dx.doi.org/10.1038/s41556-018-0178-0] [PMID: 30202049]
[65]
Hao, S.; Yu, J.; He, W.; Huang, Q.; Zhao, Y.; Liang, B.; Zhang, S.; Wen, Z.; Dong, S.; Rao, J.; Liao, W.; Shi, M. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia, 2017, 19(12), 1022-1032.
[http://dx.doi.org/10.1016/j.neo.2017.10.005] [PMID: 29144989]
[66]
Tomita, K.; Fukumoto, M.; Itoh, K.; Kuwahara, Y.; Igarashi, K.; Nagasawa, T.; Suzuki, M.; Kurimasa, A.; Sato, T. MiR-7-5p is a key factor that controls radioresistance via intracellular Fe2+ content in clinically relevant radioresistant cells. Biochem. Biophys. Res. Commun., 2019, 518(4), 712-718.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.117] [PMID: 31472959]
[67]
Akdemir, B.; Nakajima, Y.; Inazawa, J.; Inoue, J. miR-432 induces nrf2 stabilization by directly targeting KEAP1. Mol. Cancer Res., 2017, 15(11), 1570-1578.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0232] [PMID: 28760781]
[68]
Mao, C.; Wang, X.; Liu, Y.; Wang, M.; Yan, B.; Jiang, Y.; Shi, Y.; Shen, Y.; Liu, X.; Liai, W. A G3BP1-interacting LncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of P53. Cancer Res, 2018, 78(13), 3454.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3454]
[69]
Qi, W.; Li, Z.; Xia, L.; Dai, J.; Zhang, Q.; Wu, C.; Xu, S. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci. Rep., 2019, 9(1), 16185.
[http://dx.doi.org/10.1038/s41598-019-52837-8] [PMID: 31700067]
[70]
Wang, M.; Mao, C.; Ouyang, L.; Liu, Y.; Lai, W.; Liu, N.; Shi, Y.; Chen, L.; Xiao, D.; Yu, F.; Wang, X.; Zhou, H.; Cao, Y.; Liu, S.; Yan, Q.; Tao, Y.; Zhang, B. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ., 2019, 26(11), 2329-2343.
[http://dx.doi.org/10.1038/s41418-019-0304-y] [PMID: 30787392]
[71]
Zhang, Z.; Yao, Z.; Wang, L.; Ding, H.; Shao, J.; Chen, A.; Zhang, F.; Zheng, S. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy, 2018, 14(12), 2083-2103.
[http://dx.doi.org/10.1080/15548627.2018.1503146] [PMID: 30081711]
[72]
Wang, J.; Zhang, L.; Jiang, W.; Zhang, R.; Zhang, B.; Silayiding, A.; Duan, X. MicroRNA-135a promotes proliferation, migration, invasion and induces chemoresistance of endometrial cancer cells. Eur. J. Obstet. Gynecol. Reprod. Biol. X, 2019, 5, 100103.
[http://dx.doi.org/10.1016/j.eurox.2019.100103] [PMID: 32021975]
[73]
Ambros, V. MicroRNA pathways in flies and worms: Growth, death, fat, stress, and timing. Cell, 2003, 113(6), 673-676.
[http://dx.doi.org/10.1016/S0092-8674(03)00428-8] [PMID: 12809598]
[74]
Bai, T.; Liang, R.; Zhu, R.; Wang, W.; Zhou, L.; Sun, Y. MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J. Cell. Physiol., 2020, 235(7-8), 5637-5648.
[http://dx.doi.org/10.1002/jcp.29496] [PMID: 31960438]
[75]
Skrzypek, K.; Tertil, M.; Golda, S.; Ciesla, M.; Weglarczyk, K.; Collet, G.; Guichard, A.; Kozakowska, M.; Boczkowski, J.; Was, H.; Gil, T.; Kuzdzal, J.; Muchova, L.; Vitek, L.; Loboda, A.; Jozkowicz, A.; Kieda, C.; Dulak, J. Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis. Antioxid. Redox Signal., 2013, 19(7), 644-660.
[http://dx.doi.org/10.1089/ars.2013.5184] [PMID: 23617628]
[76]
Zhang, K.; Wu, L.; Zhang, P.; Luo, M.; Du, J.; Gao, T.; O’Connell, D.; Wang, G.; Wang, H.; Yang, Y. miR-9 regulates ferroptosis by targeting glutamic-oxaloacetic transaminase GOT1 in melanoma. Mol. Carcinog., 2018, 57(11), 1566-1576.
[http://dx.doi.org/10.1002/mc.22878] [PMID: 30035324]
[77]
Wang, J.; Wang, B.; Ren, H.; Chen, W. miR-9-5p inhibits pancreatic cancer cell proliferation, invasion and glutamine metabolism by targeting GOT1. Biochem. Biophys. Res. Commun., 2019, 509(1), 241-248.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.114] [PMID: 30591220]
[78]
Gu, S.; Lai, Y.; Chen, H.; Liu, Y.; Zhang, Z. miR-155 mediates arsenic trioxide resistance by activating Nrf2 and suppressing apoptosis in lung cancer cells. Sci. Rep., 2017, 7(1), 12155.
[http://dx.doi.org/10.1038/s41598-017-06061-x] [PMID: 28939896]
[79]
Zhang, H.; Deng, T.; Liu, R.; Ning, T.; Yang, H.; Liu, D.; Zhang, Q.; Lin, D.; Ge, S.; Bai, M.; Wang, X.; Zhang, L.; Li, H.; Yang, Y.; Ji, Z.; Wang, H.; Ying, G.; Ba, Y. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol. Cancer, 2020, 19(1), 43.
[http://dx.doi.org/10.1186/s12943-020-01168-8] [PMID: 32106859]
[80]
Niu, Y.; Zhang, J.; Tong, Y.; Li, J.; Liu, B. RETRACTED: Physcion 8-O-β-glucopyranoside induced ferroptosis via regulating miR-103a-3p/GLS2 axis in gastric cancer. Life Sci., 2019, 237, 116893.
[http://dx.doi.org/10.1016/j.lfs.2019.116893] [PMID: 31606381]
[81]
Xiao, F-J.; Zhang, D.; Wu, Y.; Jia, Q-H.; Zhang, L.; Li, Y-X.; Yang, Y-F.; Wang, H.; Wu, C-T.; Wang, L-S. miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis. Biochem. Biophys. Res. Commun., 2019, 515(3), 448-454.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.147] [PMID: 31160087]
[82]
Zhang, Z.; Guo, M.; Li, Y.; Shen, M.; Kong, D.; Shao, J.; Ding, H.; Tan, S.; Chen, A.; Zhang, F.; Zheng, S. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy, 2020, 16(8), 1482-1505.
[http://dx.doi.org/10.1080/15548627.2019.1687985] [PMID: 31679460]
[83]
Xie, Y.; Zhu, S.; Song, X.; Sun, X.; Fan, Y.; Liu, J.; Zhong, M.; Yuan, H.; Zhang, L.; Billiar, T.R.; Lotze, M.T.; Zeh, H.J., III; Kang, R.; Kroemer, G.; Tang, D. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep., 2017, 20(7), 1692-1704.
[http://dx.doi.org/10.1016/j.celrep.2017.07.055] [PMID: 28813679]
[84]
Angius, A.; Uva, P.; Pira, G.; Muroni, M.R.; Sotgiu, G.; Saderi, L.; Uleri, E.; Caocci, M.; Ibba, G.; Cesaraccio, M.R.; Serra, C.; Carru, C.; Manca, A.; Sanges, F.; Porcu, A.; Dolei, A.; Scanu, A.M.; Rocca, P.C.; De Miglio, M.R. Integrated analysis of miRNA and mRNA endorses a twenty mirnas signature for colorectal carcinoma. Int. J. Mol. Sci., 2019, 20(16), 4067.
[http://dx.doi.org/10.3390/ijms20164067] [PMID: 31434359]
[85]
van Jaarsveld, M.T.M.; Helleman, J.; Boersma, A.W.M.; van Kuijk, P.F.; van Ijcken, W.F.; Despierre, E.; Vergote, I.; Mathijssen, R.H.J.; Berns, E.M.J.J.; Verweij, J.; Pothof, J.; Wiemer, E.A. miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells. Oncogene, 2013, 32(36), 4284-4293.
[http://dx.doi.org/10.1038/onc.2012.433] [PMID: 23045278]
[86]
Liu, M.; Hu, C.; Xu, Q.; Chen, L.; Ma, K.; Xu, N.; Zhu, H. Methylseleninic acid activates Keap1/Nrf2 pathway via up-regulating miR-200a in human oesophageal squamous cell carcinoma cells. Biosci. Rep., 2015, 35(5), 256.
[http://dx.doi.org/10.1042/BSR20150092] [PMID: 26341629]
[87]
Zhang, H.; He, Y.; Wang, J.X.; Chen, M.H.; Xu, J.J.; Jiang, M.H.; Feng, Y.L.; Gu, Y.F. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia. Redox Biol., 2020, 29, 101402.
[http://dx.doi.org/10.1016/j.redox.2019.101402] [PMID: 31926626]
[88]
Sengupta, D.; Cassel, T.; Teng, K.Y.; Aljuhani, M.; Chowdhary, V.K.; Hu, P.; Zhang, X.; Fan, T.W.M.; Ghoshal, K. Regulation of hepatic glutamine metabolism by miR-122. Mol. Metab., 2020, 34, 174-186.
[http://dx.doi.org/10.1016/j.molmet.2020.01.003] [PMID: 32180557]
[89]
Zhang, C.; Zuo, Q.; Wang, M.; Chen, H.; He, N.; Jin, J.; Li, T.; Jiang, J.; Yuan, X.; Li, J.; Shi, X.; Zhang, M.; Bai, H.; Zhang, Y.; Xu, Q.; Cui, H.; Chang, G.; Song, J.; Sun, H.; Zhang, Y.; Chen, G.; Li, B. Narrow H3K4me2 is required for chicken PGC formation. J. Cell. Physiol., 2021, 236(2), 1391-1400.
[http://dx.doi.org/10.1002/jcp.29945] [PMID: 32749682]
[90]
Chen, D.; Fan, Z.; Rauh, M.; Buchfelder, M.; Eyupoglu, I.Y.; Savaskan, N. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene, 2017, 36(40), 5593-5608.
[http://dx.doi.org/10.1038/onc.2017.146] [PMID: 28553953]
[91]
De Blasio, A.; Di Fiore, R.; Pratelli, G.; Drago-Ferrante, R.; Saliba, C.; Baldacchino, S.; Grech, G.; Scerri, C.; Vento, R.; Tesoriere, G. A loop involving NRF2, miR-29b-1-5p and AKT, regulates cell fate of MDA-MB-231 triple-negative breast cancer cells. J. Cell. Physiol., 2020, 235(2), 629-637.
[http://dx.doi.org/10.1002/jcp.29062] [PMID: 31313842]
[92]
Chen, Y-F.; Wei, Y-Y.; Yang, C-C.; Liu, C-J.; Yeh, L-Y.; Chou, C-H.; Chang, K-W.; Lin, S-C. miR-125b suppresses oral oncogenicity by targeting the anti-oxidative gene PRXL2A. Redox Biol., 2019, 22, 101140.
[http://dx.doi.org/10.1016/j.redox.2019.101140] [PMID: 30785086]
[93]
Shi, L.; Chen, Z-G.; Wu, L.L.; Zheng, J-J.; Yang, J-R.; Chen, X-F.; Chen, Z-Q.; Liu, C-L.; Chi, S-Y.; Zheng, J-Y.; Huang, H.X.; Lin, X.Y.; Zheng, F. miR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Asian Pac. J. Cancer Prev., 2014, 15(23), 10439-10444.
[http://dx.doi.org/10.7314/APJCP.2014.15.23.10439] [PMID: 25556489]
[94]
Gao, M.; Li, C.; Xu, M.; Liu, Y.; Cong, M.; Liu, S. LncRNA MT1DP aggravates cadmium-induced oxidative stress by repressing the function of Nrf2 and is dependent on interaction with miR-365. Adv. Sci. (Weinh.), 2018, 5(7), 1800087.
[http://dx.doi.org/10.1002/advs.201800087] [PMID: 30027041]
[95]
Zhou, S.; Ye, W.; Zhang, Y.; Yu, D.; Shao, Q.; Liang, J.; Zhang, M. miR-144 reverses chemoresistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Am. J. Transl. Res., 2016, 8(7), 2992-3002.
[PMID: 27508019]
[96]
Cui, M.; Xiao, Z.; Sun, B.; Wang, Y.; Zheng, M.; Ye, L.; Zhang, X. Involvement of cholesterol in hepatitis B virus X protein-induced abnormal lipid metabolism of hepatoma cells via up-regulating miR-205-targeted ACSL4. Biochem. Biophys. Res. Commun., 2014, 445(3), 651-655.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.068] [PMID: 24576478]
[97]
Yang, M.; Yao, Y.; Eades, G.; Zhang, Y.; Zhou, Q. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res. Treat., 2011, 129(3), 983-991.
[http://dx.doi.org/10.1007/s10549-011-1604-1] [PMID: 21638050]
[98]
Qu, J.; Zhang, L.; Li, L.; Su, Y. miR-148b functions as a tumor suppressor by targeting endoplasmic reticulum metallo protease 1 in human endometrial cancer cells. Oncol. Res. Featur. Preclin. Clin. Cancer Ther., 2018, 27(1), 81-88.
[http://dx.doi.org/10.3727/096504018X15202988139874] [PMID: 29523216]
[99]
Drayton, R.M.; Dudziec, E.; Peter, S.; Bertz, S.; Hartmann, A.; Bryant, H.E.; Catto, J.W.F. Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin. Cancer Res., 2014, 20(7), 1990-2000.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2805] [PMID: 24516043]
[100]
Wu, Y.; Sun, X.; Song, B.; Qiu, X.; Zhao, J. MiR-375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion. Cancer Med., 2017, 6(7), 1686-1697.
[http://dx.doi.org/10.1002/cam4.1110] [PMID: 28627030]
[101]
Yamamoto, S.; Inoue, J.; Kawano, T.; Kozaki, K.; Omura, K.; Inazawa, J. The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors. Mol. Cancer Res., 2014, 12(1), 58-68.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0246-T] [PMID: 24307696]
[102]
Chen, S.; Jiao, J.W.; Sun, K.X.; Zong, Z.H.; Zhao, Y. MicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs. Drug Des. Devel. Ther., 2015, 9, 5225-5235.
[http://dx.doi.org/10.2147/DDDT.S87526] [PMID: 26396496]
[103]
Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[104]
Patop, I.L.; Wüst, S.; Kadener, S. Past, present, and future of circRNAs. EMBO J., 2019, 38(16), e100836.
[http://dx.doi.org/10.15252/embj.2018100836] [PMID: 31343080]
[105]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[106]
Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441), 384-388.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[107]
Legnini, I.; Di Timoteo, G.; Rossi, F.; Morlando, M.; Briganti, F.; Sthandier, O.; Fatica, A.; Santini, T.; Andronache, A.; Wade, M.; Laneve, P.; Rajewsky, N.; Bozzoni, I. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell, 2017, 66(1), 22-37.e9.
[http://dx.doi.org/10.1016/j.molcel.2017.02.017] [PMID: 28344082]
[108]
Yang, Y.; Gao, X.; Zhang, M.; Yan, S.; Sun, C.; Xiao, F.; Huang, N.; Yang, X.; Zhao, K.; Zhou, H.; Huang, S.; Xie, B.; Zhang, N. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl. Cancer Inst., 2018, 110(3), 304-315.
[http://dx.doi.org/10.1093/jnci/djx166] [PMID: 28903484]
[109]
Zhang, H-Y.; Zhang, B-W.; Zhang, Z-B.; Deng, Q-J. Circular RNA TTBK2 regulates cell proliferation, invasion and ferroptosis via miR-761/ITGB8 axis in glioma. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(5), 2585-2600.
[PMID: 32196629]
[110]
Li, C.; Tian, Y.; Liang, Y.; Li, Q. Circ_0008035 contributes to cell proliferation and inhibits apoptosis and ferroptosis in gastric cancer via miR-599/EIF4A1 axis. Cancer Cell Int., 2020, 20(1), 84.
[http://dx.doi.org/10.1186/s12935-020-01168-0] [PMID: 32190008]
[111]
Liu, Z.; Wang, Q.; Wang, X.; Xu, Z.; Wei, X.; Li, J. Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discov., 2020, 6(1), 72.
[http://dx.doi.org/10.1038/s41420-020-00306-x] [PMID: 32802409]
[112]
Xu, Q.; Zhou, L.; Yang, G.; Meng, F.; Wan, Y.; Wang, L.; Zhang, L. CircIL4R facilitates the tumorigenesis and inhibits ferroptosis in hepatocellular carcinoma by regulating the miR-541-3p/GPX4 axis. Cell Biol. Int., 2020, 44(11), 2344-2356.
[http://dx.doi.org/10.1002/cbin.11444] [PMID: 32808701]
[113]
Wu, P.; Li, C.; Ye, D.M.; Yu, K.; Li, Y.; Tang, H.; Xu, G.; Yi, S.; Zhang, Z. Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis. Aging (Albany NY), 2021, 13(3), 4663-4673.
[http://dx.doi.org/10.18632/aging.202518] [PMID: 33534779]
[114]
Zhang, H.; Ge, Z.; Wang, Z.; Gao, Y.; Wang, Y.; Qu, X. Circular RNA RHOT1 promotes progression and inhibits ferroptosis via mir-106a-5p/STAT3 axis in breast cancer. Aging (Albany NY), 2021, 13(6), 8115-8126.
[http://dx.doi.org/10.18632/aging.202608] [PMID: 33686957]
[115]
Wang, Y.; Chen, H.; Wei, X. Circ_0007142 downregulates miR-874-3p-mediated GDPD5 on colorectal cancer cells. Eur. J. Clin. Invest., 2021, 51(7), e13541.
[http://dx.doi.org/10.1111/eci.13541] [PMID: 33797091]
[116]
Lu, B.; Chen, X.B.; Ying, M.D.; He, Q.J.; Cao, J.; Yang, B. The role of ferroptosis in cancer development and treatment response. Front. Pharmacol., 2018, 8(JAN), 992.
[http://dx.doi.org/10.3389/fphar.2017.00992] [PMID: 29375387]
[117]
Guo, J.; Xu, B.; Han, Q.; Zhou, H.; Xia, Y.; Gong, C.; Dai, X.; Li, Z.; Wu, G. Ferroptosis: A novel anti-tumor action for cisplatin. Cancer Res. Treat., 2018, 50(2), 445-460.
[http://dx.doi.org/10.4143/crt.2016.572] [PMID: 28494534]
[118]
Yamaguchi, Y.; Kasukabe, T.; Kumakura, S. Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int. J. Oncol., 2018, 52(3), 1011-1022.
[http://dx.doi.org/10.3892/ijo.2018.4259] [PMID: 29393418]
[119]
Trujillo-Alonso, V.; Pratt, E.C.; Zong, H.; Lara-Martinez, A.; Kaittanis, C.; Rabie, M.O.; Longo, V.; Becker, M.W.; Roboz, G.J.; Grimm, J.; Guzman, M.L. FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nat. Nanotechnol., 2019, 14(6), 616-622.
[http://dx.doi.org/10.1038/s41565-019-0406-1] [PMID: 30911166]
[120]
Ma, S.; Henson, E.S.; Chen, Y.; Gibson, S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis., 2016, 7(7), e2307-e2307.
[http://dx.doi.org/10.1038/cddis.2016.208] [PMID: 27441659]
[121]
Lachaier, E.; Louandre, C.; Godin, C.; Saidak, Z.; Baert, M.; Diouf, M.; Chauffert, B.; Galmiche, A. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res., 2014, 34(11), 6417-6422.
[PMID: 25368241]
[122]
Klotz, U.; Maier, K.; Fischer, C.; Heinkel, K. Therapeutic efficacy of sulfasalazine and its metabolites in patients with ulcerative colitis and Crohn’s disease. N. Engl. J. Med., 1980, 303(26), 1499-1502.
[http://dx.doi.org/10.1056/NEJM198012253032602] [PMID: 6107853]
[123]
Wahl, C.; Liptay, S.; Adler, G.; Schmid, R.M. Sulfasalazine: A potent and specific inhibitor of nuclear factor kappa B. J. Clin. Invest., 1998, 101(5), 1163-1174.
[http://dx.doi.org/10.1172/JCI992] [PMID: 9486988]
[124]
Gout, P.W.; Buckley, A.R.; Simms, C.R.; Bruchovsky, N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: A new action for an old drug. Leukemia, 2001, 15(10), 1633-1640.
[http://dx.doi.org/10.1038/sj.leu.2402238] [PMID: 11587223]
[125]
Lay, J-D.; Hong, C-C.; Huang, J-S.; Yang, Y-Y.; Pao, C-Y.; Liu, C-H.; Lai, Y-P.; Lai, G-M.; Cheng, A-L.; Su, I-J.; Chuang, S.E. Sulfasalazine suppresses drug resistance and invasiveness of lung adenocarcinoma cells expressing AXL. Cancer Res., 2007, 67(8), 3878-3887.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3191] [PMID: 17440102]
[126]
Narang, V.S.; Pauletti, G.M.; Gout, P.W.; Buckley, D.J.; Buckley, A.R. Sulfasalazine-induced reduction of glutathione levels in breast cancer cells: Enhancement of growth-inhibitory activity of Doxorubicin. Chemotherapy, 2007, 53(3), 210-217.
[http://dx.doi.org/10.1159/000100812] [PMID: 17356269]
[127]
Guan, J.; Lo, M.; Dockery, P.; Mahon, S.; Karp, C.M.; Buckley, A.R.; Lam, S.; Gout, P.W.; Wang, Y-Z. The xc- cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer: Use of sulfasalazine. Cancer Chemother. Pharmacol., 2009, 64(3), 463-472.
[http://dx.doi.org/10.1007/s00280-008-0894-4] [PMID: 19104813]
[128]
Okazaki, S.; Shintani, S.; Hirata, Y.; Suina, K.; Semba, T.; Yamasaki, J.; Umene, K.; Ishikawa, M.; Saya, H.; Nagano, O. Synthetic lethality of the ALDH3A1 inhibitor dyclonine and xCT inhibitors in glutathione deficiency-resistant cancer cells. Oncotarget, 2018, 9(73), 33832-33843.
[http://dx.doi.org/10.18632/oncotarget.26112] [PMID: 30333913]
[129]
Shaw, A.T.; Winslow, M.M.; Magendantz, M.; Ouyang, C.; Dowdle, J.; Subramanian, A.; Lewis, T.A.; Maglathin, R.L.; Tolliday, N.; Jacks, T. Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proc. Natl. Acad. Sci. USA, 2011, 108(21), 8773-8778.
[http://dx.doi.org/10.1073/pnas.1105941108] [PMID: 21555567]
[130]
Reed, J.C.; Pellecchia, M. Ironing out cell death mechanisms. Cell, 2012, 149(5), 963-965.
[http://dx.doi.org/10.1016/j.cell.2012.05.009] [PMID: 22632964]
[131]
Lőrincz, T.; Jemnitz, K.; Kardon, T.; Mandl, J.; Szarka, A. Ferroptosis is involved in acetaminophen induced cell death. Pathol. Oncol. Res., 2015, 21(4), 1115-1121.
[http://dx.doi.org/10.1007/s12253-015-9946-3] [PMID: 25962350]
[132]
Williams, C.D.; Farhood, A.; Jaeschke, H. Role of caspase-1 and interleukin-1β in acetaminophen-induced hepatic inflammation and liver injury. Toxicol. Appl. Pharmacol., 2010, 247(3), 169-178.
[http://dx.doi.org/10.1016/j.taap.2010.07.004] [PMID: 20637792]
[133]
Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320.
[http://dx.doi.org/10.1038/nrd1691] [PMID: 15789122]
[134]
Amable, L. Cisplatin resistance and opportunities for precision medicine. Pharmacol. Res., 2016, 106, 27-36.
[http://dx.doi.org/10.1016/j.phrs.2016.01.001] [PMID: 26804248]
[135]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J-F.; de Oliveira, A.C.; Santoro, A.; Raoul, J-L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[136]
Dixon, S.J.; Patel, D.N.; Welsch, M.; Skouta, R.; Lee, E.D.; Hayano, M.; Thomas, A.G.; Gleason, C.E.; Tatonetti, N.P.; Slusher, B.S.; Stockwell, B.R. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife, 2014, 3, e02523.
[http://dx.doi.org/10.7554/eLife.02523] [PMID: 24844246]
[137]
Sun, X.; Ou, Z.; Chen, R.; Niu, X.; Chen, D.; Kang, R.; Tang, D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63(1), 173-184.
[http://dx.doi.org/10.1002/hep.28251] [PMID: 26403645]
[138]
Sun, X.; Niu, X.; Chen, R.; He, W.; Chen, D.; Kang, R.; Tang, D. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology, 2016, 64(2), 488-500.
[http://dx.doi.org/10.1002/hep.28574] [PMID: 27015352]
[139]
Boettler, U.; Sommerfeld, K.; Volz, N.; Pahlke, G.; Teller, N.; Somoza, V.; Lang, R.; Hofmann, T.; Marko, D. Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J. Nutr. Biochem., 2011, 22(5), 426-440.
[http://dx.doi.org/10.1016/j.jnutbio.2010.03.011] [PMID: 20655719]
[140]
Shin, D.; Kim, E.H.; Lee, J.; Roh, J-L. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic. Biol. Med., 2018, 129, 454-462.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.10.426] [PMID: 30339884]
[141]
Yang, N-D.; Tan, S-H.; Ng, S.; Shi, Y.; Zhou, J.; Tan, K.S.W.; Wong, W-S.F.; Shen, H-M. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J. Biol. Chem., 2014, 289(48), 33425-33441.
[http://dx.doi.org/10.1074/jbc.M114.564567] [PMID: 25305013]
[142]
Roh, J-L.; Kim, E.H.; Jang, H.; Shin, D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol., 2017, 11, 254-262.
[http://dx.doi.org/10.1016/j.redox.2016.12.010] [PMID: 28012440]
[143]
Kong, Z.; Liu, R.; Cheng, Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed. Pharmacother., 2019, 109, 2043-2053.
[http://dx.doi.org/10.1016/j.biopha.2018.11.030] [PMID: 30551460]
[144]
Ma, S.; Dielschneider, R.F.; Henson, E.S.; Xiao, W.; Choquette, T.R.; Blankstein, A.R.; Chen, Y.; Gibson, S.B. Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells. PLoS One, 2017, 12(8), e0182921.
[http://dx.doi.org/10.1371/journal.pone.0182921] [PMID: 28827805]
[145]
Shao, Y.; Luo, W.; Xu, H.; Zhang, L.; Guo, Q. The efficacy of ferumoxytol for iron deficiency anemia: A meta-analysis of randomized controlled trials. Acta Haematol., 2019, 142(3), 125-131.
[http://dx.doi.org/10.1159/000498937] [PMID: 31434073]
[146]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[147]
Hamaï, A.; Cañeque, T.; Müller, S.; Mai, T.T.; Hienzsch, A.; Ginestier, C.; Charafe-Jauffret, E.; Codogno, P.; Mehrpour, M.; Rodriguez, R. An iron hand over cancer stem cells. Autophagy, 2017, 13(8), 1465-1466.
[http://dx.doi.org/10.1080/15548627.2017.1327104] [PMID: 28613094]
[148]
Mai, T.T.; Hamaï, A.; Hienzsch, A.; Cañeque, T.; Müller, S.; Wicinski, J.; Cabaud, O.; Leroy, C.; David, A.; Acevedo, V.; Ryo, A.; Ginestier, C.; Birnbaum, D.; Charafe-Jauffret, E.; Codogno, P.; Mehrpour, M.; Rodriguez, R. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem., 2017, 9(10), 1025-1033.
[http://dx.doi.org/10.1038/nchem.2778] [PMID: 28937680]
[149]
Zhao, B.; Li, X.; Wang, Y.; Shang, P. Iron-dependent cell death as executioner of cancer stem cells. J. Exp. Clin. Cancer Res., 2018, 37(1), 79.
[http://dx.doi.org/10.1186/s13046-018-0733-3] [PMID: 29636068]
[150]
Dai, C.; Chen, X.; Li, J.; Comish, P.; Kang, R.; Tang, D. Transcription factors in ferroptotic cell death. Cancer Gene Ther., 2020, 27(9), 645-656.
[http://dx.doi.org/10.1038/s41417-020-0170-2] [PMID: 32123318]
[151]
Fu, H.; Fu, L.; Xie, C.; Zuo, W-S.; Liu, Y-S.; Zheng, M-Z.; Yu, J-M. miR-375 inhibits cancer stem cell phenotype and tamoxifen resistance by degrading HOXB3 in human ER-positive breast cancer. Oncol. Rep., 2017, 37(2), 1093-1099.
[http://dx.doi.org/10.3892/or.2017.5360] [PMID: 28075453]
[152]
Ljepoja, B.; García-Roman, J.; Sommer, A-K.; Wagner, E.; Roidl, A. MiRNA-27a sensitizes breast cancer cells to treatment with selective estrogen receptor modulators. Breast, 2019, 43, 31-38.
[http://dx.doi.org/10.1016/j.breast.2018.10.007] [PMID: 30415143]
[153]
Gomaa, A.; Peng, D.; Chen, Z.; Soutto, M.; Abouelezz, K.; Corvalan, A.; El-Rifai, W. Epigenetic regulation of AURKA by miR-4715-3p in upper gastrointestinal cancers. Sci. Rep., 2019, 9(1), 16970.
[http://dx.doi.org/10.1038/s41598-019-53174-6] [PMID: 31740746]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy