Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Ferroptosis and Hydrogen Sulfide in Cardiovascular Disease

Author(s): Ze-Fan Wu, Bin-Jie Yan, Wen Luo, Dan-Dan Gui, Zhong Ren, Yun Ma and Zhi-Sheng Jiang*

Volume 30, Issue 16, 2023

Published on: 26 September, 2022

Page: [1848 - 1859] Pages: 12

DOI: 10.2174/0929867329666220630144648

Price: $65

Abstract

Ferroptosis is an iron-dependent cell death, characterized by the accumulation of lipid-reactive oxygen species; various regulatory mechanisms influence the course of ferroptosis. The rapid increase in cardiovascular diseases (CVDs) is an extremely urgent problem. CVDs are characterized by the progressive deterioration of the heart and blood vessels, eventually leading to circulatory system disorder. Accumulating evidence, however, has highlighted crucial roles of ferroptosis in CVDs. Hydrogen sulfide plays a significant part in anti-oxidative stress, which may participate in the general mechanism of ferroptosis and regulate it by some signaling molecules. This review has primarily summarized the effects of hydrogen sulfide on ferroptosis and cardiovascular disease, especially the antioxidative stress, and would provide a more effective direction for the clinical study of CVDs.

Keywords: Hydrogen sulfide, cardiovascular disease, ferroptosis, oxidative stress, signaling molecular, mechanism.

[1]
Wen, Y.D.; Wang, H.; Zhu, Y.Z. The drug developments of hydrogen sulfide on cardiovascular disease. Oxid. Med. Cell. Longev., 2018, 2018, 4010395.
[http://dx.doi.org/10.1155/2018/4010395] [PMID: 30151069]
[2]
Wang, R. Physiological implications of hydrogen sulfide: A whiff exploration that blossomed. Physiol. Rev., 2012, 92(2), 791-896.
[http://dx.doi.org/10.1152/physrev.00017.2011] [PMID: 22535897]
[3]
Renga, B. Hydrogen sulfide generation in mammals: The molecular biology of cystathionine-β- synthase (CBS) and cystathionine-γ-lyase (CSE). Inflamm. Allergy Drug Targets, 2011, 10(2), 85-91.
[http://dx.doi.org/10.2174/187152811794776286] [PMID: 21275900]
[4]
Meng, G.; Zhao, S.; Xie, L.; Han, Y.; Ji, Y. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br. J. Pharmacol., 2017, 175(8), 1146-1156.
[PMID: 28432761]
[5]
Powell, C.R.; Dillon, K.M.; Matson, J.B. A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications. Biochem. Pharmacol., 2018, 149, 110-123.
[http://dx.doi.org/10.1016/j.bcp.2017.11.014] [PMID: 29175421]
[6]
Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[7]
Kobayashi, M.; Suhara, T.; Baba, Y.; Kawasaki, N.K.; Higa, J.K.; Matsui, T. Pathological roles of iron in cardiovascular disease. Curr. Drug Targets, 2018, 19(9), 1068-1076.
[http://dx.doi.org/10.2174/1389450119666180605112235] [PMID: 29874997]
[8]
WHO. Cardiovascular diseases (CVDs) factsheet. 2013. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
[9]
Conrad, M.; Proneth, B. Broken hearts: Iron overload, ferroptosis and cardiomyopathy. Cell Res., 2019, 29(4), 263-264.
[http://dx.doi.org/10.1038/s41422-019-0150-y] [PMID: 30809018]
[10]
Wang, Y.; Yu, R.; Wu, L.; Yang, G. Hydrogen sulfide guards myoblasts from ferroptosis by inhibiting ALOX12 acetylation. Cell. Signal., 2021, 78, 109870.
[http://dx.doi.org/10.1016/j.cellsig.2020.109870] [PMID: 33290842]
[11]
Li, J.; Li, M.; Li, L.; Ma, J.; Yao, C.; Yao, S. Hydrogen sulfide attenuates ferroptosis and stimulates autophagy by blocking mTOR signaling in sepsis-induced acute lung injury. Mol. Immunol., 2022, 141, 318-327.
[http://dx.doi.org/10.1016/j.molimm.2021.12.003] [PMID: 34952420]
[12]
Wang, J.; Wu, D.; Wang, H. Hydrogen sulfide plays an important protective role by influencing autophagy in diseases. Physiol. Res., 2019, 68(3), 335-345.
[13]
Wang, Y.; Liu, Y.; Liu, J.; Kang, R.; Tang, D. NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem. Biophys. Res. Commun., 2020, 531(4), 581-587.
[http://dx.doi.org/10.1016/j.bbrc.2020.07.032] [PMID: 32811647]
[14]
Sumneang, N.; Siri-Angkul, N.; Kumfu, S.; Chattipakorn, S.C.; Chattipakorn, N. The effects of iron overload on mitochondrial function, mitochondrial dynamics, and ferroptosis in cardiomyocytes. Arch. Biochem. Biophys., 2020, 680, 108241.
[http://dx.doi.org/10.1016/j.abb.2019.108241] [PMID: 31891670]
[15]
Yang, J.; Minkler, P.; Grove, D.; Wang, R.; Willard, B.; Dweik, R.; Hine, C. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6. Commun. Biol., 2019, 2(1), 194.
[http://dx.doi.org/10.1038/s42003-019-0431-5] [PMID: 31123718]
[16]
Brown, C.W.; Amante, J.J.; Chhoy, P.; Elaimy, A.L.; Liu, H.; Zhu, L.J.; Baer, C.E.; Dixon, S.J.; Mercurio, A.M. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev. Cell, 2019, 51(5), 575-586.e4.
[http://dx.doi.org/10.1016/j.devcel.2019.10.007] [PMID: 31735663]
[17]
Zhang, M.W.; Yang, G.; Zhou, Y.F.; Qian, C.; Mu, M.; Ke, Y.; Qian, Z.M. Regulating ferroportin-1 and transferrin receptor-1 expression: A novel function of hydrogen sulfide. J. Cell. Physiol., 2018, 234(4), 3158-3169.
[PMID: 30370692]
[18]
Doll, S.; Conrad, M. Iron and ferroptosis: A still ill-defined liaison. IUBMB Life, 2017, 69(6)(Suppl. 10), 423-434.
[http://dx.doi.org/10.1002/iub.1616] [PMID: 28276141]
[19]
Dada, L.; Gladys, O. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim. Biophys. Acta, 2017, 1861(8), 1893-1900.
[20]
Cassanelli, S.; Moulis, J. Sulfide is an efficient iron releasing agent for mammalian ferritins. Biochim. Biophys. Acta, 2001, 1547(1), 174-182.
[http://dx.doi.org/10.1016/S0167-4838(01)00182-0] [PMID: 11343803]
[21]
Gao, M.; Monian, P.; Quadri, N.; Ramasamy, R.; Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell, 2015, 59(2), 298-308.
[http://dx.doi.org/10.1016/j.molcel.2015.06.011] [PMID: 26166707]
[22]
Vučković, A.M.; Venerando, R.; Tibaldi, E.; Bosello Travain, V.; Roveri, A.; Bordin, L.; Miotto, G.; Cozza, G.; Toppo, S.; Maiorino, M.; Ursini, F. Aerobic pyruvate metabolism sensitizes cells to ferroptosis primed by GSH depletion. Free Radic. Biol. Med., 2021, 167, 45-53.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.02.045] [PMID: 33711415]
[23]
Kimura, Y.; Goto, Y.; Kimura, H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal., 2010, 12(1), 1-13.
[http://dx.doi.org/10.1089/ars.2008.2282] [PMID: 19852698]
[24]
Jain, S.K.; Huning, L.; Micinski, D. Hydrogen sulfide upregulates glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione and inhibits interleukin-1β secretion in monocytes exposed to high glucose levels. Metab. Syndr. Relat. Disord., 2014, 12(5), 299-302.
[http://dx.doi.org/10.1089/met.2014.0022] [PMID: 24665821]
[25]
Tobias, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med., 2018, 133, 144-152.
[26]
Dong, H.; Qiang, Z.; Chai, D.; Peng, J.; Xia, Y.; Hu, R.; Jiang, H. Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging (Albany NY), 2020, 12(13), 12943-12959.
[http://dx.doi.org/10.18632/aging.103378] [PMID: 32601262]
[27]
Regulation of ferroptotic cancer cell death by GPX4. Cell Cambridge Ma, 2014, 156(1-2), 317-329.
[28]
Bai, Y.; Meng, L.; Han, L.; Jia, Y.; Zhao, Y.; Gao, H.; Kang, R.; Wang, X.; Tang, D.; Dai, E. Lipid storage and lipophagy regulates ferroptosis. Biochem. Biophys. Res. Commun., 2019, 508(4), 997-1003.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.039] [PMID: 30545638]
[29]
Ursini, F.; Maiorino, M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med., 2020, 152, 175-185.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.027] [PMID: 32165281]
[30]
Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98.
[http://dx.doi.org/10.1038/nchembio.2239] [PMID: 27842070]
[31]
Olas, B.; Kontek, B. Hydrogen sulfide decreases the plasma lipid peroxidation induced by homocysteine and its thiolactone. Mol. Cell. Biochem., 2015, 404(1-2), 39-43.
[http://dx.doi.org/10.1007/s11010-015-2364-8] [PMID: 25701360]
[32]
Wang, G.G.; Chen, Q.Y.; Li, W.; Lu, X.H.; Zhao, X. Ginkgolide B increases hydrogen sulfide and protects against endothelial dysfunction in diabetic rats. Croat. Med. J., 2015, 56(1), 4-13.
[http://dx.doi.org/10.3325/cmj.2015.56.4] [PMID: 25727037]
[33]
Chen, X.; Zhao, X.; Lan, F.; Zhou, T.; Cai, H.; Sun, H.; Kong, W.; Kong, W. Hydrogen sulphide treatment increases insulin sensitivity and improves oxidant metabolism through the CaMKKbeta-AMPK pathway in PA-induced IR C2C12 cells. Sci. Rep., 2017, 7(1), 13248.
[http://dx.doi.org/10.1038/s41598-017-13251-0] [PMID: 29038536]
[34]
Pan, Z.; Wang, J.; Xu, M.; Chen, S.; Li, X.; Sun, A.; Lou, N.; Ni, Y. Hydrogen sulfide protects against high glucose-induced lipid metabolic disturbances in 3T3-L1 adipocytes via the AMPK signaling pathway. Mol. Med. Rep., 2019, 20(5), 4119-4124.
[http://dx.doi.org/10.3892/mmr.2019.10685] [PMID: 31545435]
[35]
Shimizu, Y.; Polavarapu, P.; Eskla, K.-L.; Nicholson, C.K.; Koczor, C.A.; Wang, R.; Lewis, W.; Shiva, S.; Lefer, D.J.; Calvert, J.W. 6Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J. Mol. Cell. Cardiol., 2018, 116, 29-40.
[36]
Lee, H.; Zandkarimi, F.; Zhang, Y.; Meena, J.K.; Kim, J.; Zhuang, L.; Tyagi, S.; Ma, L.; Westbrook, T.F.; Steinberg, G.R.; Nakada, D.; Stockwell, B.R.; Gan, B. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat. Cell Biol., 2020, 22(2), 225-234.
[http://dx.doi.org/10.1038/s41556-020-0461-8] [PMID: 32029897]
[37]
Gao, P. Recent Cardiovascular Research highlights from China. Cardiovasc. Res., 2019, 115(3), e37-e38.
[38]
Bai, T.; Li, M.; Liu, Y.; Qiao, Z.; Wang, Z. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic. Biol. Med., 2020, 160, 92-102.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.026] [PMID: 32768568]
[39]
Mechanick, J.I.; Farkouh, M.E.; Newman, J.D.; Garvey, W.T. Cardiometabolic-based chronic disease, addressing knowledge and clinical practice gaps: JACC state-of-the-art review. J. Am. Coll. Cardiol., 2020, 75(5), 539-555.
[http://dx.doi.org/10.1016/j.jacc.2019.11.046] [PMID: 32029137]
[40]
Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; Delling, F.N.; Djousse, L.; Elkind, M.S.V.; Ferguson, J.F.; Fornage, M.; Jordan, L.C.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; O’Flaherty, M.; Pandey, A.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Spartano, N.L.; Stokes, A.; Tirschwell, D.L.; Tsao, C.W.; Turakhia, M.P.; VanWagner, L.B.; Wilkins, J.T.; Wong, S.S.; Virani, S.S. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation, 2019, 139(10), e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[41]
Wågsäter, D.; Zhu, C.; Björkegren, J.; Skogsberg, J.; Eriksson, P. MMP-2 and MMP-9 are prominent matrix metalloproteinases during atherosclerosis development in the Ldlr(-/-)Apob(100/100) mouse. Int. J. Mol. Med., 2011, 28(2), 247-253.
[42]
Wunderer, F.; Traeger, L.; Sigurslid, H.H.; Meybohm, P.; Bloch, D.B.; Malhotra, R. The role of hepcidin and iron homeostasis in atherosclerosis. Pharmacol. Res., 2020, 153, 104664.
[http://dx.doi.org/10.1016/j.phrs.2020.104664] [PMID: 31991168]
[43]
Kroner, A.; Greenhalgh, A.D.; Zarruk, J.G.; Passos Dos Santos, R.; Gaestel, M.; David, S. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron, 2014, 83(5), 1098-1116.
[http://dx.doi.org/10.1016/j.neuron.2014.07.027] [PMID: 25132469]
[44]
Cortassa, S.; Juhaszova, M.; Aon, M.A.; Zorov, D.B.; Sollott, S.J. Mitochondrial Ca2+, redox environment and ROS emission in heart failure: Two sides of the same coin? J. Mol. Cell. Cardiol., 2021, 151(10), 113-125.
[http://dx.doi.org/10.1016/j.yjmcc.2020.11.013] [PMID: 33301801]
[45]
Ma, A.; Hong, J.; Shanks, J.; Rudebush, T.; Yu, L.; Hackfort, B.T.; Wang, H.; Zucker, I.H.; Gao, L. Upregulating Nrf2 in the RVLM ameliorates sympatho-excitation in mice with chronic heart failure. Free Radic. Biol. Med., 2019, 141, 84-92.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.06.002] [PMID: 31181253]
[46]
Liu, B.; Zhao, C.; Li, H.; Chen, X.; Ding, Y.; Xu, S. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem. Biophys. Res. Commun., 2018, 497(1), 233-240.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.061] [PMID: 29427658]
[47]
Fang, X.; Wang, H.; Han, D.; Xie, E.; Yang, X.; Wei, J.; Gu, S.; Gao, F.; Zhu, N.; Yin, X.; Cheng, Q.; Zhang, P.; Dai, W.; Chen, J.; Yang, F.; Yang, H.T.; Linkermann, A.; Gu, W.; Min, J.; Wang, F. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl. Acad. Sci. USA, 2019, 116(7), 2672-2680.
[http://dx.doi.org/10.1073/pnas.1821022116] [PMID: 30692261]
[48]
Chen, X.; Xu, S.; Zhao, C.; Liu, B. Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem. Biophys. Res. Commun., 2019, 516(1), 37-43.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.015] [PMID: 31196626]
[49]
Shimizu, Y.; Nicholson, C.K.; Lambert, J.P.; Barr, L.A.; Kuek, N.; Herszenhaut, D.; Tan, L.; Murohara, T.; Hansen, J.M.; Husain, A.; Naqvi, N.; Calvert, J.W. Sodium sulfide attenuates ischemic-induced heart failure by enhancing proteasomal function in an Nrf2-dependent manner. Circ. Heart Fail., 2016, 9(4), e002368.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002368] [PMID: 27056879]
[50]
Zhao, C.; Yang, Y.; An, Y.; Yang, B.; Li, P. Cardioprotective role of phyllanthin against myocardial ischemia-reperfusion injury by alleviating oxidative stress and inflammation with increased adenosine triphosphate levels in the mice model. Environ. Toxicol., 2020.
[PMID: 32798296]
[51]
Tang, L.J.; Luo, X.J.; Tu, H.; Chen, H.; Xiong, X.M.; Li, N.S.; Peng, J. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(2), 401-410.
[http://dx.doi.org/10.1007/s00210-020-01932-z] [PMID: 32621060]
[52]
Howden, R. Nrf2 and cardiovascular defense. Oxid. Med. Cell. Longev., 2013, 2013, 104308.
[http://dx.doi.org/10.1155/2013/104308] [PMID: 23691261]
[53]
Tang, L.J.; Zhou, Y.J.; Xiong, X.M.; Li, N.S.; Zhang, J.J.; Luo, X.J.; Peng, J. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic. Biol. Med., 2021, 162, 339-352.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.10.307] [PMID: 33157209]
[54]
Li, W.; Feng, G.; Gauthier, J.M.; Lokshina, I.; Higashikubo, R.; Evans, S.; Liu, X.; Hassan, A.; Tanaka, S.; Cicka, M.; Hsiao, H.M.; Ruiz-Perez, D.; Bredemeyer, A.; Gross, R.W.; Mann, D.L.; Tyurina, Y.Y.; Gelman, A.E.; Kagan, V.E.; Linkermann, A.; Lavine, K.J.; Kreisel, D. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J. Clin. Invest., 2019, 129(6), 2293-2304.
[http://dx.doi.org/10.1172/JCI126428] [PMID: 30830879]
[55]
Ma, S.; Sun, L.; Wu, W.; Wu, J.; Sun, Z.; Ren, J. USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-p53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death. Front. Physiol., 2020, 11, 551318.
[http://dx.doi.org/10.3389/fphys.2020.551318] [PMID: 33192549]
[56]
Johansen, D.; Ytrehus, K.; Baxter, G.F. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury-Evidence for a role of K ATP channels. Basic Res. Cardiol., 2006, 101(1), 53-60.
[http://dx.doi.org/10.1007/s00395-005-0569-9] [PMID: 16328106]
[57]
Liu, H.; Bai, X.B.; Song, S.; Cao, Y.X. Hydrogen sulfide protects from intestinal ischaemia-reperfusion injury in rats. J. Pharm. Pharmacol., 2009, 61(2), 207-12.
[http://dx.doi.org/10.1211/jpp.61.02.0010]
[58]
Kaludercic, N.; Di Lisa, F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front. Cardiovasc. Med., 2020, 7, 12.
[http://dx.doi.org/10.3389/fcvm.2020.00012] [PMID: 32133373]
[59]
Luo, J.; Yan, D.; Li, S.; Liu, S.; Zeng, F.; Cheung, C.W.; Liu, H.; Irwin, M.G.; Huang, H.; Xia, Z. Allopurinol reduces oxidative stress and activates Nrf2/p62 to attenuate diabetic cardiomyopathy in rats. J. Cell. Mol. Med., 2020, 24(2), 1760-1773.
[http://dx.doi.org/10.1111/jcmm.14870] [PMID: 31856386]
[60]
Li, W.; Li, W.; Leng, Y.; Xiong, Y.; Xia, Z. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol., 2020, 39(2), 210-225.
[http://dx.doi.org/10.1089/dna.2019.5097] [PMID: 31809190]
[61]
Wang, C.; Zhu, L.; Yuan, W.; Sun, L.; Xia, Z.; Zhang, Z.; Yao, W. Diabetes aggravates myocardial ischaemia reperfusion injury via activating Nox2-related programmed cell death in an AMPK-dependent manner. J. Cell. Mol. Med., 2020, 24(12), 6670-6679.
[http://dx.doi.org/10.1111/jcmm.15318] [PMID: 32351005]
[62]
Ma, L.; Li, X.P.; Ji, H.S.; Liu, Y.F.; Li, E.Z. Baicalein protects rats with diabetic cardiomyopathy against oxidative stress and inflammation injury via phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Med. Sci. Monit., 2018, 24, 5368-5375.
[http://dx.doi.org/10.12659/MSM.911455] [PMID: 30070262]
[63]
Xia, C.; Dong, R.; Chen, C.; Wang, H.; Wang, D.W. Cardiomyocyte specific expression of Acyl-coA thioesterase 1 attenuates sepsis induced cardiac dysfunction and mortality. Biochem. Biophys. Res. Commun., 2015, 468(4), 533-540.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.078] [PMID: 26518651]
[64]
Zhang, M.; Mao, Y.E. Hydrogen sulfide attenuates high glucose-induced myocardial injury in rat cardiomyocytes by suppressing wnt/beta-catenin pathway. Contemp. Med. Sci., 2019, 39(6), 9.
[65]
Huang, Z.; Zhuang, X.; Xie, C.; Hu, X.; Dong, X.; Guo, Y.; Li, S.; Liao, X. Exogenous hydrogen sulfide attenuates high glucose-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation by suppressing TLR4/NF-κB pathway in H9c2 cells. Cell. Physiol. Biochem., 2016, 40(6), 1578-1590.
[http://dx.doi.org/10.1159/000453208] [PMID: 27997926]
[66]
Ye, P.; Gu, Y.; Zhu, Y.R.; Chao, Y.L.; Kong, X.Q.; Luo, J.; Ren, X.M.; Zuo, G.F.; Zhang, D.M.; Chen, S.L. Exogenous hydrogen sulfide attenuates the development of diabetic cardiomyopathy via the FoxO1 pathway. J. Cell. Physiol., 2018, 233(12), 9786-9798.
[http://dx.doi.org/10.1002/jcp.26946] [PMID: 30078216]
[67]
Kar, S.; Kambis, T.N.; Mishra, P.K. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol., 2019, 316(6), H1237-H1252.
[http://dx.doi.org/10.1152/ajpheart.00004.2019] [PMID: 30925069]
[68]
Koppula, P.; Zhuang, L.; Gan, B. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell, 2020, 12(8), 599-620.
[PMID: 33000412]
[69]
Xie, L.; Yue, G.; Wen, M.; Shuang, Z.; Wan, W.; Yan, M.; Meng, G.; Yi, H.; Wang, Y.; Liu, G. Hydrogen sulfide induces keap1 s-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes, 2017, 10(10), 3171.
[70]
Liu, N.; Lin, X.; Huang, C. Activation of the reverse transsulfuration pathway through NRF2/CBS confers erastin-induced ferroptosis resistance. Br. J. Cancer, 2020, 122(2), 279-292.
[http://dx.doi.org/10.1038/s41416-019-0660-x] [PMID: 31819185]
[71]
Zhao, X.; Gao, M.; Liang, J.; Chen, Y.; Wang, Y.; Wang, Y.; Xiao, Y.; Zhao, Z.; Wan, X.; Jiang, M.; Luo, X.; Wang, F.; Sun, X. SLC7A11 reduces laser-induced choroidal neovascularization by inhibiting RPE ferroptosis and VEGF production. Front. Cell Dev. Biol., 2021, 9, 639851.
[http://dx.doi.org/10.3389/fcell.2021.639851] [PMID: 33681224]
[72]
Zhou, X.; An, G.; Lu, X. Hydrogen sulfide attenuates the development of diabetic cardiomyopathy. Clin. Sci. (Lond.), 2015, 128(5), 325-335.
[http://dx.doi.org/10.1042/CS20140460] [PMID: 25394291]
[73]
Fan, Z.; Wirth, A.K.; Chen, D.; Wruck, C.J.; Rauh, M.; Buchfelder, M.; Savaskan, N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis, 2017, 6(8), e371.
[http://dx.doi.org/10.1038/oncsis.2017.65] [PMID: 28805788]
[74]
Dodson, M.; Castro-Portuguez, R.; Zhang, D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol., 2019, 23, 101107.
[http://dx.doi.org/10.1016/j.redox.2019.101107]
[75]
Hydrogen sulfide alleviates liver injury via S:ulfhydratedkgeap1/Nrf2/LRP1 pathway. Hepatology, 2021, 73(1), 282-302.
[76]
Ling, K.; Zhou, W.; Guo, Y.; Hu, G.; Wang, W. H2S attenuates oxidative stress via Nrf2/NF-κB signaling to regulate restenosis after percutaneous transluminal angioplasty. Exp. Biol. Med., 2020, 246(2), 1535370220961038.
[77]
He, L.; Liu, Y.Y.; Wang, K.; Li, C.; Zhang, W.; Li, Z.Z.; Huang, X.Z.; Xiong, Y. Tanshinone IIA protects human coronary artery endothelial cells from ferroptosis by activating the NRF2 pathway. Biochem. Biophys. Res. Commun., 2021, 575, 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2021.08.067] [PMID: 34454174]
[78]
Guan, Z.; Chen, J.; Li, X.; Dong, N. Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci. Rep., 2020, 40(8), BSR20201807.
[http://dx.doi.org/10.1042/BSR20201807] [PMID: 32776119]
[79]
Kuganesan, N.; Dlamini, S.; Tillekeratne, L.; Taylor, W.R. Tumor suppressor p53 promotes ferroptosis in oxidative stress conditions independent of modulation of ferroptosis by p21, CDKs, RB, and E2F. J. Biol. Chem., 2021, 297(6), 101365.
[80]
Wang, J.; Deng, B.; Liu, Q.; Huang, Y.; Chen, W.; Li, J.; Zhou, Z.; Zhang, L.; Liang, B.; He, J.; Chen, Z.; Yan, C.; Yang, Z.; Xian, S.; Wang, L. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis., 2020, 11(7), 574.
[http://dx.doi.org/10.1038/s41419-020-02777-3] [PMID: 32710001]
[81]
Jiang, T.; Yang, W.; Zhang, H.; Song, Z.; Liu, T.; Lv, X. Hydrogen sulfide ameliorates lung ischemia-reperfusion injury through SIRT1 signaling pathway in type 2 diabetic rats. Front. Physiol., 2020, 11, 596.
[http://dx.doi.org/10.3389/fphys.2020.00596] [PMID: 32695008]
[82]
Sun, J.; Li, X.; Gu, X.; Du, H.; Zhang, G.; Wu, J.; Wang, F. Neuroprotective effect of hydrogen sulfide against glutamate-induced oxidative stress is mediated via the p53/glutaminase 2 pathway after traumatic brain injury. Aging (Albany NY), 2021, 13(5), 7180-7189.
[http://dx.doi.org/10.18632/aging.202575] [PMID: 33640879]
[83]
Zheng, Y.; Lv, P.; Huang, J.; Ke, J.; Yan, J. GYY4137 exhibits anti-atherosclerosis effect in apolipoprotein E (-/-) mice via PI3K/Akt and TLR4 signalling. Clin. Exp. Pharmacol. Physiol., 2020, 47(7), 1231-1239.
[http://dx.doi.org/10.1111/1440-1681.13298] [PMID: 32144792]
[84]
Brandes, R.P. A radical adventure: The quest for specific functions and inhibitors of vascular NAPDH oxidases. Circ. Res., 2003, 92(6), 583-585.
[http://dx.doi.org/10.1161/01.RES.0000066880.62205.B0] [PMID: 12676809]
[85]
Wang, Z.; Ding, Y.; Wang, X.; Lu, S.; Wang, C.; He, C.; Wang, L.; Piao, M.; Chi, G.; Luo, Y.; Ge, P. Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT. Cancer Lett., 2018, 428, 21-33.
[http://dx.doi.org/10.1016/j.canlet.2018.04.021] [PMID: 29702192]
[86]
Park, M.W.; Cha, H.W.; Kim, J.; Kim, J.H.; Yang, H.; Yoon, S.; Boonpraman, N.; Yi, S.S.; Yoo, I.D.; Moon, J.S. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol., 2021, 41(2), 101947.
[http://dx.doi.org/10.1016/j.redox.2021.101947] [PMID: 33774476]
[87]
Wang, X.L.; Pan, L.L.; Long, F.; Wu, W.J.; Yan, D.; Xu, P.; Liu, S.Y.; Qin, M.; Jia, W.W.; Liu, X.H.; Zu, Y.Z. Endogenous hydrogen sulfide ameliorates NOX4 induced oxidative stress in LPS-stimulated macrophages and mice. Cell. Physiol. Biochem., 2018, 47(2), 458-474.
[http://dx.doi.org/10.1159/000489980] [PMID: 29794432]
[88]
Wang, Y.; Shi, S.; Dong, S.; Wu, J.; Song, M.; Zhong, X.; Liu, Y. Sodium hydrosulfide attenuates hyperhomocysteinemia rat myocardial injury through cardiac mitochondrial protection. Mol. Cell Biochem., 2015, 399(1-2), 189-200.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy