Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Mini-Review Article

Physico-Chemical Characterization of Green Synthesized Nanomaterials by UV-Visible Spectroscopy

Author(s): Amar Kumar, Meenakshi, Nisha Saxena, Kumari Seema, Anshuman Srivastava, Jitendra Rajak, Darshan Singh, Satya Vir Singh and Laxman Singh*

Volume 8, Issue 2, 2023

Published on: 30 August, 2022

Page: [102 - 109] Pages: 8

DOI: 10.2174/2405461507666220721115604

Price: $65

Abstract

Nanomaterials (NMs) particularly synthesized by green routes have attracted researchers and scientists for their multifunctional industrial applications. NMs have not only revolutionized research, but also our daily life because of numerous applications in medical diagnostics, consumer products, and energy-related applications. Their unique properties are directly related to chemical composition, structure, size and shape. There are several characterization techniques used to determine the size, composition, crystalline structure and other physical properties of NMs. Prominent among them are spectroscopic techniques such as UV-Visible, FTIR, EDX; diffraction techniques such as XRD, SAED; microscopic techniques such as SEM, TEM, AFM and others such as Zeta potential measurements. Every technique has its own merit and demerit. This mini review describes the uses of UV-Vis spectroscopy in characterization of NMs.

Keywords: Nanomaterials, UV-Vis spectroscopy, localised surface plasmon resonance, beer-lambert law, characterization techniques, AFM.

Graphical Abstract
[1]
EUR-Lex. Commission Recommendation of 18 October 2011 on the definition of nanomaterial. 2011. Available from: https://eur-lex.europa.eu/eli/reco/2011/696/oj(Accessed on: April-14-2021).
[2]
Goyal RK. Nanomaterials and nanocomposites: Synthesis, properties, characterization techniques, and applications Boca Raton: CRC Press;. 2017.
[http://dx.doi.org/10.1201/9781315153285]
[3]
Kumar V, Guleria P, Dasgupta N, Ranjan S. Functionalized nanomaterials I: Fabrications Boca Raton: CRC Press;. 2020.
[http://dx.doi.org/10.1201/9781351021623]
[4]
Boles MA, Ling D, Hyeon T, Talapin DV. The surface science of nanocrystals. Nat Mater 2016; 15(2): 141-53.
[http://dx.doi.org/10.1038/nmat4526] [PMID: 26796733]
[5]
Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 2003; 3(8): 1049-51.
[http://dx.doi.org/10.1021/nl034332o]
[6]
Ma L, Hendrickson KE, Wei S, Archer LA. Nanomaterials: Science and applications in the lithium–sulfur battery. Nano Today 2015; 10(3): 315-38.
[http://dx.doi.org/10.1016/j.nantod.2015.04.011]
[7]
Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 2008; 42(12): 4447-53.
[http://dx.doi.org/10.1021/es7029637] [PMID: 18605569]
[8]
Prieto G. Zečević J, Friedrich H, de Jong KP, de Jongh PE. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat Mater 2013; 12(1): 34-9.
[http://dx.doi.org/10.1038/nmat3471] [PMID: 23142841]
[9]
Kuang H, Chen W, Yan W, et al. Crown ether assembly of gold nanoparticles: Melamine sensor. Biosens Bioelectron 2011; 26(5): 2032-7.
[http://dx.doi.org/10.1016/j.bios.2010.08.081] [PMID: 20884195]
[10]
Purohit MP, Verma NK, Kar AK, Singh A, Ghosh D, Patnaik S. Inhibition of thioredoxin reductase by targeted selenopolymeric nanocarriers synergizes the therapeutic efficacy of doxorubicin in MCF7 human breast cancer cells. ACS Appl Mater Interfaces 2017; 9(42): 36493-512.
[http://dx.doi.org/10.1021/acsami.7b07056] [PMID: 28945070]
[11]
Dhand C, Dwivedi N, Loh XJ, et al. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Adv 2015; 5(127): 105003-37.
[http://dx.doi.org/10.1039/C5RA19388E]
[12]
Nikolaidis P. Analysis of green methods to synthesize nanomaterials.In: Green synthesis of nanomaterials for bioenergy applications. John Wiley & Sons, Ltd 2020; pp. 125-44.
[http://dx.doi.org/10.1002/9781119576785.ch5]
[13]
Sharma D, Kanchi S, Bisetty K. Biogenic Synthesis of Nanoparticles: A Review. Arab J Chem 2019; 12(8): 3576-600.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.002]
[14]
Borm PJ, Robbins D, Haubold S, et al. The potential risks of nanomaterials: A review carried out for ECETOC. Part Fibre Toxicol 2006; 3(1): 11.
[http://dx.doi.org/10.1186/1743-8977-3-11] [PMID: 16907977]
[15]
Sanjay SS. Chapter 2 - Safe nano is green nano. In: Green synthesis, characterization and applications of nanoparticles. Shukla AK, Iravani S, Eds. Elsevier: 2019; pp. 27-36.
[16]
Dahl JA, Maddux BLS, Hutchison JE. Toward greener nanosynthesis. Chem Rev 2007; 107(6): 2228-69.
[http://dx.doi.org/10.1021/cr050943k] [PMID: 17564480]
[17]
Maksimović M, Omanović-Mikličanin E Towards green nanotechnology: Maximizing benefits and minimizing harm CMBEBIH 2017; IFMBE Proceedings Badnjevic A Eds 2017; Singapore: Springer 2017; pp.164-70.
[18]
Virkutyte J, Varma RS. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2011; 2(5): 837-46.
[http://dx.doi.org/10.1039/C0SC00338G]
[19]
Pal G, Rai P, Pandey A. Chapter 1 - Green synthesis of nanoparticles: A greener approach for a cleaner future. In: Shukla AK, Iravani S, Eds. Green synthesis, characterization and applications of nanoparticles. Elsevier: 2019; pp. 1-26.
[20]
PEN 8 - Green Nanotechnology: It’s Easier Than You Think (Report) | Wilson Center Available from: www.wilsoncenter.org/publication/pen-8-green-nanotechnology-its-easier-you-think-report(Accessed on 2021 -06 -26).
[21]
Patra JK, Baek KH. Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014; 2014e417305
[http://dx.doi.org/10.1155/2014/417305]
[22]
Bagheri AR, Arabi M, Ghaedi M, et al. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta 2019; 195: 390-400.
[http://dx.doi.org/10.1016/j.talanta.2018.11.065] [PMID: 30625559]
[23]
Ashikbayeva Z, Aitkulov A, Atabaev TS, Blanc W, Inglezakis VJ, Tosi D. Green-Synthesized silver nanoparticle-assisted radiofrequency ablation for improved thermal treatment distribution. Nanomater 2022; 12(3): 426.
[http://dx.doi.org/10.3390/nano12030426] [PMID: 35159771]
[24]
Amarasinghe LD, Wickramarachchi PA, Aberathna AA, Sithara WS, De Silva CR. Comparative study on larvicidal activity of green synthesized silver nanoparticles and Annona glabra (Annonaceae) aqueous extract to control Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Heliyon 2020; 6(6)e04322
[http://dx.doi.org/10.1016/j.heliyon.2020.e04322] [PMID: 32637705]
[25]
Nanoparticle Characterization: What to Measure? - Modena - 2019 - Advanced Materials - Wiley Online Library. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201901556(Accessed on 2021 -06 -20).
[26]
George G, Wilson R, Joy J. Chapter 3 - Ultraviolet spectroscopy: A facile approach for the characterization of nanomaterials. In: Thomas S, Thomas R, Zachariah AK, Mishra RK, Eds. Spectroscopic Methods for Nanomaterials Characterization. Elsevier: 2017; pp. 55-72.
[27]
UV-visible spectroscopy measurement tutorials for nanoparticle solutio - nanoComposix. Available from: nanocomposix.com/pages/uv-visible-spectroscopy-measurement-tutorial-for-nanoparticle-solutions(Accessed on 2021 -07 -07).
[28]
Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007; 58(1): 267-97.
[http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607] [PMID: 17067281]
[29]
The Science of Plasmonics – nanoComposix. Available from: https://nanocomposix.com/pages/the-science-of-plasmonics(Accessed on 2021 -07 -07).
[30]
Raja PMV, Barron AR. Using UV-Vis for the detection and characterization of silicon quantum dots. Libre Texts 2021.
[31]
Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 2007; 79(11): 4215-21.
[http://dx.doi.org/10.1021/ac0702084] [PMID: 17458937]
[32]
Akbari H. Size measurement of metal and semiconductor nanoparticles via UV-Vis absorption spectra. Dig J Nanomater Biostruct 2011; 6: 709-16.
[33]
Pesika NS, Stebe KJ, Searson PC. Relationship between absorbance spectra and particle size distributions for quantum-sized nanocrystals. J Phys Chem B 2003; 107(38): 10412-5.
[http://dx.doi.org/10.1021/jp0303218]
[34]
Bartosiak M, Giersz J, Jankowski K. Analytical monitoring of selenium nanoparticles green synthesis using photochemical vapor generation coupled with MIP-OES and UV–Vis spectrophotometry. Microchem J 2019; 145: 1169-75.
[http://dx.doi.org/10.1016/j.microc.2018.12.024]
[35]
Smith AF, Weiner RG, Skrabalak SE. Symmetry-dependent optical properties of stellated nanocrystals. J Phys Chem C 2016; 120(37): 20563-71.
[http://dx.doi.org/10.1021/acs.jpcc.5b12280]
[36]
Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew Chem Int Ed Engl 2009; 48(1): 60-103.
[http://dx.doi.org/10.1002/anie.200802248] [PMID: 19053095]
[37]
Camden JP, Dieringer JA, Zhao J, Van Duyne RP. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res 2008; 41(12): 1653-61.
[http://dx.doi.org/10.1021/ar800041s] [PMID: 18630932]
[38]
Behzadi S, Ghasemi F, Ghalkhani M, et al. Determination of nanoparticles using UV-Vis spectra. Nanoscale 2015; 7(12): 5134-9.
[http://dx.doi.org/10.1039/C4NR00580E] [PMID: 25719813]
[39]
Fernández-López C, Pérez-Balado C, Pérez-Juste J, Pastoriza-Santos I, de Lera ÁR, Liz-Marzán LM. A General LbL strategy for the growth of PNIPAM microgels on Au nanoparticles with arbitrary shapes. Soft Matter 2012; 8(15): 4165-70.
[http://dx.doi.org/10.1039/C1SM06396K]
[40]
Yockell-Lelièvre H, Lussier F, Masson JF. Influence of the particle shape and density of self-assembled gold nanoparticle sensors on LSPR and SERS. J Phys Chem C 2015; 119(51): 28577-85.
[http://dx.doi.org/10.1021/acs.jpcc.5b09570]
[41]
Niemeyer CM. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew Chem Int Ed Engl 2001; 40(22): 4128-58.
[http://dx.doi.org/10.1002/1521-3773(20011119)40:22<4128:AID-ANIE4128>3.0.CO;2-S] [PMID: 29712109]
[42]
Protocols & White Papers nanoComposix. Available from: https://nanocomposix.com/pages/protocols-white-papers(Accessed on 2021 -07 -08).
[43]
Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew Chem Int Ed 2004; 43(45): 6042-108.
[http://dx.doi.org/10.1002/anie.200400651] [PMID: 15538757]
[44]
Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996; 382(6592): 607-9.
[http://dx.doi.org/10.1038/382607a0] [PMID: 8757129]
[45]
Nair AS, Tom RT, Rajeev Kumar VR, Subramaniam C, Pradeep T. Chemical interactions at noble metal nanoparticle surfaces — Catalysis, sensors and devices. Cosmos 2007; 03(01): 103-24.
[http://dx.doi.org/10.1142/S0219607707000244]
[46]
Loweth CJ, Caldwell WB, Peng X, Alivisatos AP, Schultz PG. DNA-based assembly of gold nanocrystals. Angew Chem Int Ed Engl 1999; 38(12): 1808-12.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1808:AID-ANIE1808>3.0.CO;2-C] [PMID: 29711189]
[47]
Farooqi ZH, Akram MW, Begum R, Wu W, Irfan A. Inorganic nanoparticles for reduction of hexavalent chromium: Physicochemical aspects. J Hazard Mater 2021; 402123535
[http://dx.doi.org/10.1016/j.jhazmat.2020.123535] [PMID: 33254738]
[48]
Najeeb J, Ahmad G, Nazir S, Naseem K, Kanwal A. critical analysis of various supporting mediums employed for the incapacitation of silver nanomaterial for aniline and phenolic pollutants: A Review. Korean J Chem Eng 2021; 38(2): 248-63.
[http://dx.doi.org/10.1007/s11814-017-0192-0]
[49]
Qiu F, Wang D, Zhu Q, et al. Real-time monitoring of anticancer drug release with highly fluorescent star-conjugated copolymer as a drug carrier. Biomacromolecules 2014; 15(4): 1355-64.
[http://dx.doi.org/10.1021/bm401891c] [PMID: 24606561]
[50]
Gorelikov I, Field LM, Kumacheva E. Hybrid microgels photoresponsive in the near-infrared spectral range. J Am Chem Soc 2004; 126(49): 15938-9.
[http://dx.doi.org/10.1021/ja0448869] [PMID: 15584708]
[51]
Preem L, Bock F, Hinnu M, et al. Monitoring of antimicrobial drug chloramphenicol release from electrospun nano- and microfiber mats using UV imaging and bacterial bioreporters. Pharmaceutics 2019; 11(9): 487.
[http://dx.doi.org/10.3390/pharmaceutics11090487] [PMID: 31546922]
[52]
Pawley CJ, Perez-Gavilan A, Foley KS, et al. Studying the drug delivery kinetics of a nanoporous matrix using a MIP-based thermal sensing platform. Polymers 2017; 9(11): 560.
[http://dx.doi.org/10.3390/polym9110560] [PMID: 30965864]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy