Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Scutellarin Mediates Cytochrome P450 3A4 and 2C19 Expression via Pregnane X Receptor and Constitutive Androstane Receptor

Author(s): Hangxing Huang, Change Cao, Zhimin Miao, Xiaoli Yang* and Yong Lai*

Volume 16, Issue 6, 2023

Published on: 17 November, 2022

Article ID: e230822207924 Pages: 14

DOI: 10.2174/1874467215666220823123852

Price: $65

Abstract

Background: Breviscapine is a flavonoid extracted from Erigeron breviscapus (Vant.) Hand.-Mazz., and mainly contains scutellarin. Nuclear receptors play important roles in regulating transporter and drug metabolic enzymes.

Objective: To investigate the regulatory effects of scutellarin on CYP3A4 and 2C19 in HepG2 and Caco-2 cells based on nuclear receptors PXR and CAR.

Methods: The proteins and mRNA levels of CYP3A4 and CYP2C19 treated with scutellarin were detected by Western Blot and RT-qPCR. Using assays of the dual-luciferase reporter, promoter sequences containing hPXR and hCAR protein recognition and binding regulatory elements CYP3A4 and CYP2C19 were inserted upstream of the reporter gene, and the expression vector and the reporter vector were cotransfected into HepG2 and Caco-2 cells.

Results: Scutellarin inhibited mRNA of CYP3A4 and PXR, and promoted mRNA expression of CYP2C19 and CAR in RT-qPCR results. Western-blot results showed scutellarin inhibited the expression of CYP3A4 and promoted the expression of CYP2C19. The dual-luciferase reporter genes showed that scutellarin enhanced the expression level of CYP2C19, and when its concentration was 40 and 80μmol/L, CYP3A4 was significantly increased.

Conclusion: Scutellarin down-regulates CYP3A4 through PXR, and its mechanism may work by up-regulating CAR, binding to PXR to inhibit PXR-mediated expression of CYP3A4. Scutellarin up-regulates CYP2C19 through CAR.

Keywords: Scutellarin, breviscapine, CYP3A4, CYP2C19, pregnane X receptor, constitutive androstane receptor.

Graphical Abstract
[1]
Wang, C.; Li, Y.; Gao, S.; Cheng, D.; Zhao, S.; Liu, E. Breviscapine injection improves the therapeutic effect of western medicine on Angina pectoris patients. PLoS One, 2015, 10(6)e0129969
[http://dx.doi.org/10.1371/journal.pone.0129969.] [PMID: 26052709]
[2]
Mei, Y.; Yangyang, Z.; Shuai, L.; Hao, J.; Yirong, Y.; Yong, C.; Peng, X.; Bicheng, C.; Yan, Z. Breviscapine prevents downregulation of renal water and sodium transport proteins in response to unilateral ureteral obstruction. Iran. J. Basic Med. Sci., 2016, 19(5), 573-578.
[PMID: 27403265]
[3]
Huang, Z.J.; He, S.A.; Lei, B. Clinical analysis of acute cerebral infarction by dengzhanhua injection and xiongqin injection combined with xuesaitong treatment. Zhong Yao Cai, 2014, 37(6), 1093-1095.
[PMID: 25470975]
[4]
Huang, J.G.; Xie, M.; Zhang, X.; He, Q.Y.; He, G.Y. Hypoxemia induced the changing structure of the lung tissue in SD rat though changing blood clotting and the effects of breviscapine’s intervention. Sichuan Da Xue Xue Bao Yi Xue Ban, 2014, 45(4), 567-571, 622.
[PMID: 25286677]
[5]
Guo, C.; Zhu, Y.; Weng, Y.; Wang, S.; Guan, Y.; Wei, G.; Yin, Y.; Xi, M.; Wen, A. Therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemia/reperfusion injury in rats. J. Ethnopharmacol., 2014, 151(1), 660-666.
[http://dx.doi.org/10.1016/j.jep.2013.11.026.] [PMID: 24291152]
[6]
Gao, J.; Chen, G.; He, H.; Liu, C.; Xiong, X.; Li, J.; Wang, J. Therapeutic effects of breviscapine in cardiovascular diseases: A review. Front. Pharmacol., 2017, 8, 289.
[http://dx.doi.org/10.3389/fphar.2017.00289.] [PMID: 28588491]
[7]
Nebert, D.W.; Russell, D.W. Clinical importance of the cytochromes P450. Lancet, 2002, 360(9340), 1155-1162.
[http://dx.doi.org/10.1016/S0140-6736(02)11203-7.] [PMID: 12387968]
[8]
Hewitt, N.J.; Lecluyse, E.L.; Ferguson, S.S. Induction of hepatic cytochrome P450 enzymes: Methods, mechanisms, recommendations, and in vitro-in vivo correlations. Xenobiotica, 2007, 37(10-11), 1196-1224.
[http://dx.doi.org/10.1080/00498250701534893.] [PMID: 17968743]
[9]
Danton, A.C.; Montastruc, F.; Sommet, A.; Durrieu, G.; Bagheri, H.; Bondon-Guitton, E.; Lapeyre-Mestre, M.; Montastruc, J.L. Importance of Cytochrome P450 (CYP450) in adverse drug reactions due to drug-drug interactions: A PharmacoVigilance study in France. Eur. J. Clin. Pharmacol., 2013, 69(4), 885-888.
[http://dx.doi.org/10.1007/s00228-012-1394-3.] [PMID: 22996074]
[10]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007.] [PMID: 23333322]
[11]
Lynch, T.; Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician, 2007, 76(3), 391-396.
[PMID: 17708140]
[12]
Guengerich, F.P. Cytochrome P-450 3A4: Regulation and role in drug metabolism. Annu. Rev. Pharmacol. Toxicol., 1999, 39, 1-17.
[http://dx.doi.org/10.1146/annurev.pharmtox.39.1.1.] [PMID: 10331074]
[13]
Zhou, X.; Gao, Y.Y.; Hu, J.Y.; Dong, Y.; Zhang, H.Z.; Lai, Y. Effect of breviscapine on CYP3A metabolic activity in healthy volunteers. Eur. J. Clin. Pharmacol., 2018, 74(1), 37-44.
[http://dx.doi.org/10.1007/s00228-017-2346-8.] [PMID: 28986606]
[14]
Huang, H.X.; Wu, H.; Zhao, Y.; Zhou, T.; Ai, X.; Dong, Y.; Zhang, Y.; Lai, Y. Effect of CYP2C9 genetic polymorphism and breviscapine on losartan pharmacokinetics in healthy subjects. Xenobiotica, 2021, 51(5), 616-623.
[http://dx.doi.org/10.1080/00498254.2021.1880670.] [PMID: 33509019]
[15]
Han, Y.L.; Li, D.; Yang, Q.J.; Zhou, Z.Y.; Liu, L.Y.; Li, B.; Lu, J.; Guo, C. In vitro inhibitory effects of scutellarin on six human/rat cytochrome P450 enzymes and P-glycoprotein. Molecules, 2014, 19(5), 5748-5760.
[http://dx.doi.org/10.3390/molecules19055748.] [PMID: 24802986]
[16]
Buchman, C.D.; Chai, S.C.; Chen, T. A current structural perspective on PXR and CAR in drug metabolism. Expert Opin. Drug Metab. Toxicol., 2018, 14(6), 635-647.
[http://dx.doi.org/10.1080/17425255.2018.1476488.] [PMID: 29757018]
[17]
Willson, T.M.; Kliewer, S.A. PXR, CAR and drug metabolism. Nat. Rev. Drug Discov., 2002, 1(4), 259-266.
[http://dx.doi.org/10.1038/nrd753.] [PMID: 12120277]
[18]
Chen, T. Nuclear receptor drug discovery. Curr. Opin. Chem. Biol., 2008, 12(4), 418-426.
[http://dx.doi.org/10.1016/j.cbpa.2008.07.001.] [PMID: 18662801]
[19]
Tolson, A.H.; Wang, H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv. Drug Deliv. Rev., 2010, 62(13), 1238-1249.
[http://dx.doi.org/10.1016/j.addr.2010.08.006.] [PMID: 20727377]
[20]
Bachmann, F.; Duthaler, U.; Meyer Zu Schwabedissen, H.E.; Puchkov, M.; Huwyler, J.; Haschke, M.; Krähenbühl, S. Metamizole is a moderate cytochrome P450 inducer via the constitutive androstane receptor and a weak inhibitor of CYP1A2. Clin. Pharmacol. Ther., 2021, 109(6), 1505-1516.
[http://dx.doi.org/10.1002/cpt.2141.] [PMID: 33336382]
[21]
Zhao, Y.; Miao, Z.; Jiang, M.; Zhou, X.; Lai, Y. Effects of breviscapine and C3435T MDR1 gene polymorphism on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy volunteers. Xenobiotica, 2021, 51(3), 366-372.
[http://dx.doi.org/10.1080/00498254.2020.1857467.] [PMID: 33256506]
[22]
Burk, O.; Koch, I.; Raucy, J.; Hustert, E.; Eichelbaum, M.; Brockmöller, J.; Zanger, U.M.; Wojnowski, L. The induction of Cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors Pregnane X Receptor (PXR) and Constitutively Activated Receptor (CAR). J. Biol. Chem., 2004, 279(37), 38379-38385.
[http://dx.doi.org/10.1074/jbc.M404949200.] [PMID: 15252010]
[23]
Lichti-Kaiser, K.; Staudinger, J.L. The traditional Chinese herbal remedy tian xian activates pregnane X receptor and induces CYP3A gene expression in hepatocytes. Drug Metab. Dispos., 2008, 36(8), 1538-1545.
[http://dx.doi.org/10.1124/dmd.108.021774.] [PMID: 18474680]
[24]
Dvorak, Z. Drug-drug interactions by azole antifungals: Beyond a dogma of CYP3A4 enzyme activity inhibition. Toxicol. Lett., 2011, 202(2), 129-132.
[http://dx.doi.org/10.1016/j.toxlet.2011.01.027.] [PMID: 21333771]
[25]
Chang, T.K.; Waxman, D.J. Synthetic drugs and natural products as modulators of Constitutive Androstane Receptor (CAR) And Pregnane X Receptor (PXR). Drug Metab. Rev., 2006, 38(1-2), 51-73.
[http://dx.doi.org/10.1080/03602530600569828.] [PMID: 16684648]
[26]
Dong, H.; Lin, W.; Wu, J.; Chen, T. Flavonoids activate pregnane x receptor-mediated CYP3A4 gene expression by inhibiting cyclin-dependent kinases in HepG2 liver carcinoma cells. BMC Biochem., 2010, 11, 23.
[http://dx.doi.org/10.1186/1471-2091-11-23.] [PMID: 20553580]
[27]
Kanno, Y.; Tanuma, N.; Yazawa, S.; Zhao, S.; Inaba, M.; Nakamura, S.; Nemoto, K.; Inouye, Y. Differences in gene regulation by dual ligands of nuclear receptors Constitutive Androstane Receptor (CAR) and Pregnane X Receptor (PXR) in HepG2 cells stably expressing CAR/PXR. Drug Metab. Dispos., 2016, 44(8), 1158-1163.
[http://dx.doi.org/10.1124/dmd.116.070888.] [PMID: 27197997]
[28]
Lolodi, O.; Wang, Y.M.; Wright, W.C.; Chen, T. Differential regulation of CYP3A4 and CYP3A5 and its implication in drug discovery. Curr. Drug Metab., 2017, 18(12), 1095-1105.
[http://dx.doi.org/10.2174/1389200218666170531112038.] [PMID: 28558634]
[29]
Blumberg, B.; Sabbagh, W., Jr; Juguilon, H.; Bolado, J., Jr; van Meter, C.M.; Ong, E.S.; Evans, R.M. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev., 1998, 12(20), 3195-3205.
[http://dx.doi.org/10.1101/gad.12.20.3195.] [PMID: 9784494]
[30]
Yu, C.; Ye, S.; Sun, H.; Liu, Y.; Gao, L.; Shen, C.; Chen, S.; Zeng, S. PXR-mediated transcriptional activation of CYP3A4 by cryptotanshinone and tanshinone IIA. Chem. Biol. Interact., 2009, 177(1), 58-64.
[http://dx.doi.org/10.1016/j.cbi.2008.08.013.] [PMID: 18805405]
[31]
Li, H.; Ferguson, S.S.; Wang, H. Synergistically enhanced CYP2B6 inducibility between a polymorphic mutation in CYP2B6 promoter and pregnane X receptor activation. Mol. Pharmacol., 2010, 78(4), 704-713.
[http://dx.doi.org/10.1124/mol.110.065185.] [PMID: 20624854]
[32]
Chen, Y.; Ferguson, S.S.; Negishi, M.; Goldstein, J.A. Identification of constitutive androstane receptor and glucocorticoid receptor binding sites in the CYP2C19 promoter. Mol. Pharmacol., 2003, 64(2), 316-324.
[http://dx.doi.org/10.1124/mol.64.2.316.] [PMID: 12869636]
[33]
Hart, S.N.; Li, Y.; Nakamoto, K.; Subileau, E.A.; Steen, D.; Zhong, X.B. A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metab. Dispos., 2010, 38(6), 988-994.
[http://dx.doi.org/10.1124/dmd.109.031831.] [PMID: 20228232]
[34]
Liu, X.L.; Wang, Z.J.; Yang, Q.; Ge, H.L.; Gao, F.; Liu, Y.Y.; Shi, D.M.; Zhao, Y.X.; Zhou, Y.J. Impact of CYP2C19 polymorphism and smoking on response to clopidogrel in patients with stable coronary artery disease. Chin. Med. J. (Engl.), 2010, 123(22), 3178-3183.
[PMID: 21163112]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy