Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Plants and their Bioactive Compounds as a Possible Treatment for Traumatic Brain Injury-Induced Multi-Organ Dysfunction Syndrome

Author(s): Manisha Thakur, Neeru Vasudeva*, Sunil Sharma and Ashok Kumar Datusalia

Volume 22, Issue 9, 2023

Published on: 13 October, 2022

Page: [1313 - 1334] Pages: 22

DOI: 10.2174/1871527321666220830164432

Price: $65

Abstract

Traumatic brain injury is an outcome of external forces' physical or mechanical impact on the brain. Thus, the silent epidemic has complex pathophysiology affecting the brain along with extracranial or systemic complications in more than one organ system, including the heart, lungs, liver, kidney, gastrointestinal and endocrine system which is referred to as Multi-Organ Dysfunction Syndrome. It is driven by three interconnected mechanisms, such as systemic hyperinflammation, paroxysmal sympathetic hyperactivity, and immunosuppression-induced sepsis. These multifaceted pathologies accelerate the risk of mortality in clinical settings by interfering with the functions of distant organs through hypertension, cardiac arrhythmias, acute lung injury, neurogenic pulmonary edema, reduced gastrointestinal motility, Cushing ulcers, acute liver failure, acute kidney injury, coagulopathy, endocrine dysfunction, and many other impairments. The pharmaceutical treatment approach for this is highly specific in its mode of action and linked to various side effects, including hallucinations, seizures, anaphylaxis, teeth, bone staining, etc. Therefore, alternative natural medicine treatments are widely accepted due to their broad complementary or synergistic effects on the physiological system with minor side effects. This review is a compilation of the possible mechanisms behind the occurrence of multiorgan dysfunction and reported medicinal plants with organ protective activity that not yet been explored against traumatic brain injury and thereby highlighting the marked possibilities of their effectiveness in the management of multiorgan dysfunction. As a result, we attempted to respond to the hypothesis against using medicinal plants to treat neurodegenerative diseases.

Keywords: Traumatic brain injury, multiorgan dysfunction syndrome, systemic hyperinflammation, sympathetic hyperactivity, immunosuppression, botanical, medicinal plants, organ protective.

Graphical Abstract
[1]
Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol 2018; 16(8): 1224-38.
[http://dx.doi.org/10.2174/1570159X15666170613083606] [PMID: 28606040]
[2]
Sharma P, Halder S. Cognition, quality of life and mood state in mild traumatic brain injury: A case study. Indian J Mental Health 2020; 8(1): 112-6.
[http://dx.doi.org/10.30877/IJMH.8.1.2021.112-116]
[3]
Robba C, Bonatti G, Pelosi P, Citerio G. Extracranial complications after traumatic brain injury. Curr Opin Crit Care 2020; 26(2): 1.
[http://dx.doi.org/10.1097/MCC.0000000000000707] [PMID: 32004191]
[4]
Gundappa P. Extracranial complications of traumatic brain injury: Pathophysiology-A review. J Neuroanaesth Crit Care 2019; 6(3): 200-12.
[http://dx.doi.org/10.1055/s-0039-1692883]
[5]
Baue AE, Faist E, Fry DE. Multiple Organ Failure: Pathophysiology, Prevention, and Therapy. New York: Springer Science & Business Media 2000.
[http://dx.doi.org/10.1007/978-1-4612-1222-5]
[6]
Livingston M. The pathophysiology of multiple organ dysfunction syndrome. MSc dissertation. In: Clin Biochem. Leicester, UK The University of Birmigham 2009.
[7]
Maier RV. Pathogenesis of multiple organ dysfunction syndrome--endotoxin, inflammatory cells, and their mediators: Cytokines and reactive oxygen species. Surg Infect (Larchmt) 2000; 1(3): 197-205.
[http://dx.doi.org/10.1089/109629600750018123] [PMID: 12594890]
[8]
Parke AL, Liu PT, Parke DV. Multiple organ dysfunction syndrome. Inflammopharmacology 2003; 11(1): 87-95.
[http://dx.doi.org/10.1163/156856003321547130] [PMID: 15035736]
[9]
Corrigan JD, Hammond FM. Traumatic brain injury as a chronic health condition. Arch Phys Med Rehabil 2013; 94(6): 1199-201.
[http://dx.doi.org/10.1016/j.apmr.2013.01.023] [PMID: 23402722]
[10]
Robert AN, Goggs DHL. Multiple organ dysfunction syndrome. Elsevier Inc. 2015; pp. 35-46.
[11]
Cantor JB, Gumber S. Use of complementary and alternative medicine in treating individuals with traumatic brain injury. Curr Phys Med Rehabil Rep 2013; 1(3): 159-68.
[http://dx.doi.org/10.1007/s40141-013-0019-9]
[12]
Xiong Y, Mahmood A, Chopp M. Emerging treatments for traumatic brain injury. Expert Opin Emerg Drugs 2009; 14(1): 67-84.
[http://dx.doi.org/10.1517/14728210902769601] [PMID: 19249984]
[13]
Bergold PJ. Treatment of traumatic brain injury with anti-inflammatory drugs. Exp Neurol 2016; 275(Pt 3): 367-80.
[http://dx.doi.org/10.1016/j.expneurol.2015.05.024] [PMID: 26112314]
[14]
Wible EF, Laskowitz DT. Statins in traumatic brain injury. Neurotherapeutics 2010; 7(1): 62-73.
[http://dx.doi.org/10.1016/j.nurt.2009.11.003] [PMID: 20129498]
[15]
Kim S, Mortera M, Hu X, et al. Overview of pharmacological interventions after traumatic brain injuries: Impact on selected outcomes. Brain Inj 2019; 33(4): 442-55.
[http://dx.doi.org/10.1080/02699052.2019.1565896] [PMID: 30694081]
[16]
Villapol S. Consequences of hepatic damage after traumatic brain injury: Current outlook and potential therapeutic targets. Neural Regen Res 2016; 11(2): 226-7.
[http://dx.doi.org/10.4103/1673-5374.177720] [PMID: 27073366]
[17]
Borlongan CV, Bonsack B, Heyck M, et al. Fast-tracking regenerative medicine for traumatic brain injury. Neural Regen Res 2020; 15(7): 1179-90.
[http://dx.doi.org/10.4103/1673-5374.270294] [PMID: 31960797]
[18]
Samuel S, Allison TA, Lee K, Choi HA. Pharmacologic management of paroxysmal sympathetic hyperactivity after brain injury. J Neurosci Nurs 2016; 48(2): 82-9.
[http://dx.doi.org/10.1097/JNN.0000000000000207] [PMID: 26954919]
[19]
Sharma A, Shanker C, Tyagi LK, Singh M, Rao CV. Herbal medicine for market potential in India: An overview. Acad J Plant Sci 2008; 1(2): 26-36.
[20]
Verma S, Singh S. Current and future status of herbal medicines. Vet World 2008; 2(2): 347-50.
[http://dx.doi.org/10.5455/vetworld.2008.347-350]
[21]
Moniruzzaman M, Yaakob Z, Aminul Islam A. Potential uses of Jatropha curcas. In: Medina G, Ed. Jatropha curcas: Biology, Cultivation and Potential Uses. Hauppauge, New York, USA: Nova Science Publisher 2015.
[22]
Yang B, Wang Z, Sheng C, et al. Evidence-based review of oral traditional Chinese medicine compound recipe administration for treating weight drop-induced experimental traumatic brain injury. BMC Complement Altern Med 2016; 16(1): 95.
[http://dx.doi.org/10.1186/s12906-016-1076-2] [PMID: 26956181]
[23]
Lee B, Leem J, Kim H, et al. Herbal medicine for acute management and rehabilitation of traumatic brain injury. Medicine (Baltimore) 2019; 98(3): e14145.
[http://dx.doi.org/10.1097/MD.0000000000014145] [PMID: 30653148]
[24]
Zygun D. Non-neurological organ dysfunction in neurocritical care: Impact on outcome and etiological considerations. Curr Opin Crit Care 2005; 11(2): 139-43.
[http://dx.doi.org/10.1097/01.ccx.0000155356.86241.c0] [PMID: 15758594]
[25]
Gaddam SSK, Buell T, Robertson CS. Systemic manifestations of traumatic brain injury. Handb Clin Neurol 2015; 127: 205-18.
[http://dx.doi.org/10.1016/B978-0-444-52892-6.00014-3] [PMID: 25702219]
[26]
Lu J, Goh SJ, Tng PY, Deng YY, Ling EA, Moochhala S. Systemic inflammatory response following acute traumatic brain injury. Front Biosci 2009; 14(10): 3795-813.
[http://dx.doi.org/10.2741/3489] [PMID: 19273311]
[27]
Yang M, Xiao X, Sun C, Sun D, Li Y, Yang M. Systemic inflammation and multiple organ injury in traumatic hemorrhagic shock. Front Biosci 2015; 20(6): 927-33.
[http://dx.doi.org/10.2741/4347] [PMID: 25961533]
[28]
Sabet N, Soltani Z, Khaksari M. Multipotential and systemic effects of traumatic brain injury. J Neuroimmunol 2021; 357: 577619.
[http://dx.doi.org/10.1016/j.jneuroim.2021.577619] [PMID: 34058510]
[29]
Llompart-Pou JA, Talayero M, Homar J, Royo C. Multiorgan failure in the serious trauma patient. Med Intensiva 2014; 38(7): 455-62.
[http://dx.doi.org/10.1016/j.medin.2014.05.004] [PMID: 25087624]
[30]
Takahashi C, Hinson HE, Baguley IJ. Autonomic dysfunction syndromes after acute brain injury. Handb Clin Neurol 2015; 128: 539-51.
[http://dx.doi.org/10.1016/B978-0-444-63521-1.00034-0] [PMID: 25701906]
[31]
Lump D, Moyer M. Paroxysmal sympathetic hyperactivity after severe brain injury. Curr Neurol Neurosci Rep 2014; 14(11): 494.
[http://dx.doi.org/10.1007/s11910-014-0494-0] [PMID: 25220846]
[32]
Godoy DA, Panhke P, Guerrero Suarez PD, Murillo-Cabezas F. Paroxysmal sympathetic hyperactivity: An entity to keep in mind. Medicina Intensiva (English Edition) 2019; 43(1): 35-43.
[http://dx.doi.org/10.1016/j.medine.2018.10.003] [PMID: 29254622]
[33]
Lemke DM. Sympathetic storming after severe traumatic brain injury. Crit Care Nurse 2007; 27(1): 30-7.
[http://dx.doi.org/10.4037/ccn2007.27.1.30] [PMID: 17244857]
[34]
Meyer K. Understanding paroxysmal sympathetic hyperactivity after traumatic brain injury. Surg Neurol Int 2014; 5(14) (Suppl. 13): 490.
[http://dx.doi.org/10.4103/2152-7806.144632] [PMID: 25506508]
[35]
Esterov D, Greenwald B. Autonomic dysfunction after mild traumatic brain injury. Brain Sci 2017; 7(12): 100.
[http://dx.doi.org/10.3390/brainsci7080100] [PMID: 28800081]
[36]
Khalid F, Yang GL, McGuire JL, et al. Autonomic dysfunction following traumatic brain injury: Translational insights. Neurosurg Focus 2019; 47(5): E8.
[http://dx.doi.org/10.3171/2019.8.FOCUS19517] [PMID: 31675718]
[37]
Wirtz MR, Moekotte J, Balvers K, et al. Autonomic nervous system activity and the risk of nosocomial infection in critically ill patients with brain injury. Intensive Care Med Exp 2020; 8(1): 69.
[http://dx.doi.org/10.1186/s40635-020-00359-3] [PMID: 33237337]
[38]
Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat Immunol 2018; 19(4): 327-41.
[http://dx.doi.org/10.1038/s41590-018-0064-8] [PMID: 29507356]
[39]
Hazeldine J, Lord JM, Belli A. Traumatic brain injury and peripheral immune suppression: Primer and prospectus. Front Neurol 2015; 6: 235.
[http://dx.doi.org/10.3389/fneur.2015.00235] [PMID: 26594196]
[40]
Gregory T, Smith M. Cardiovascular complications of brain injury. Contin Educ Anaesth Crit Care Pain 2012; 12(2): 67-71.
[http://dx.doi.org/10.1093/bjaceaccp/mkr058]
[41]
Tahsili-Fahadan P, Geocadin RG. Heart-brain axis. Circ Res 2017; 120(3): 559-72.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308446] [PMID: 28154104]
[42]
Padilla-Zambrano HS, Garcia-Ballestas E, Rojas AN, et al. “Broken heart syndrome” Cardiovascular manifestations of traumatic brain injury. Heart Mind (Mumbai) 2018; 2(1): 12.
[43]
Lee K, Rincon F. Pulmonary complications in patients with severe brain injury. Crit Care Res Pract 2012; 2012: 1-8.
[http://dx.doi.org/10.1155/2012/207247] [PMID: 23133746]
[44]
Mrozek S, Constantin JM, Geeraerts T. Brain-lung crosstalk: Implications for neurocritical care patients. World J Crit Care Med 2015; 4(3): 163-78.
[http://dx.doi.org/10.5492/wjccm.v4.i3.163] [PMID: 26261769]
[45]
Della Torre V, Badenes R, Corradi F, et al. Acute respiratory distress syndrome in traumatic brain injury: How do we manage it? J Thorac Dis 2017; 9(12): 5368-81.
[http://dx.doi.org/10.21037/jtd.2017.11.03] [PMID: 29312748]
[46]
Kerr N, de Rivero Vaccari JP, Dietrich WD, Keane RW. Neural-respiratory inflammasome axis in traumatic brain injury. Exp Neurol 2020; 323: 113080.
[http://dx.doi.org/10.1016/j.expneurol.2019.113080] [PMID: 31626746]
[47]
Hu PJ, Pittet JF, Kerby JD, Bosarge PL, Wagener BM. Acute brain trauma, lung injury, and pneumonia: More than just altered mental status and decreased airway protection. Am J Physiol Lung Cell Mol Physiol 2017; 313(1): L1-L15.
[http://dx.doi.org/10.1152/ajplung.00485.2016] [PMID: 28408366]
[48]
Singh S. Neurogastroenterology: Gastrointestinal dysfunctions from the window of acute brain injury. Int J Stud Res 2013; 3(1): 1-4.
[http://dx.doi.org/10.4103/2230-7095.113804]
[49]
Kharrazian D. Traumatic brain injury and the effect on the brain-gut axis. Altern Ther Health Med 2015; 21 (Suppl. 3): 28-32.
[50]
Pan P, Song Y, Du X, et al. Intestinal barrier dysfunction following traumatic brain injury. Neurol Sci 2019; 40(6): 1105-10.
[http://dx.doi.org/10.1007/s10072-019-03739-0] [PMID: 30771023]
[51]
Hu B, Arya AK. Brain-gut axis after stroke. Brain Circ 2018; 4(4): 165-73.
[http://dx.doi.org/10.4103/bc.bc_32_18] [PMID: 30693343]
[52]
Anthony DC, Couch Y, Losey P, Evans MC. The systemic response to brain injury and disease. Brain Behav Immun 2012; 26(4): 534-40.
[http://dx.doi.org/10.1016/j.bbi.2011.10.011] [PMID: 22085588]
[53]
Nizamutdinov D, DeMorrow S, McMillin M, et al. Hepatic alterations are accompanied by changes to bile acid transporter-expressing neurons in the hypothalamus after traumatic brain injury. Sci Rep 2017; 7(1): 40112.
[http://dx.doi.org/10.1038/srep40112] [PMID: 28106051]
[54]
Kok B, Karvellas CJ. Management of cerebral edema in acute liver failure. Semin Respir Crit Care Med 2017; 38(6): 821-9.
[55]
Yap SC, Lee HT, Warner DS. Acute kidney injury and extrarenal organ dysfunction: New concepts and experimental evidence. Anesthesiology 2012; 116(5): 1139-48.
[http://dx.doi.org/10.1097/ALN.0b013e31824f951b] [PMID: 22415388]
[56]
Malek M. Brain consequences of acute kidney injury: Focusing on the hippocampus. Kidney Res Clin Pract 2018; 37(4): 315-22.
[http://dx.doi.org/10.23876/j.krcp.18.0056] [PMID: 30619687]
[57]
Kulkarni D. Brain injury and the kidney. J Neuroanaesth Crit Care 2016; 3(4): S16-9.
[http://dx.doi.org/10.4103/2348-0548.174728]
[58]
Don Bosco D, Gangalal GM, Rao S, Chakrapani AT. Acute kidney injury in severe trauma patients; a record-based retrospective study. Adv J Emerg Med 2019; 3(3): e22.
[PMID: 31410399]
[59]
Zhao Q, Luan X, Zheng M, et al. Synergistic mechanisms of constituents in herbal extracts during intestinal absorption: Focus on natural occurring nanoparticles. Pharmaceutics 2020; 12(2): 128.
[http://dx.doi.org/10.3390/pharmaceutics12020128] [PMID: 32028739]
[60]
John AE, White NJ. Platelets and fibrinogen: Emerging complexity in trauma-induced coagulopathy. Semin Thromb Hemost 2020; 46(2): 125-33.
[61]
Dobson GP, Morris JL, Davenport LM, Letson HL. Traumatic-induced coagulopathy as a systems failure: A new window into hemostasis. Semin Thromb Hemost 2020; 46(2): 199-214.
[62]
Maegele M, Aversa J, Marsee MK, et al. Changes in coagulation following brain injury. Semin Thromb Hemost 2020; 46(2): 155-66.
[63]
Zhang J, Zhang F, Dong J. Coagulopathy induced by traumatic brain injury: Systemic manifestation of a localized injury. Blood 2018; 131(18): 2001-6.
[http://dx.doi.org/10.1182/blood-2017-11-784108] [PMID: 29507078]
[64]
Molaie AM, Maguire J. Neuroendocrine abnormalities following traumatic brain injury: An important contributor to neuropsychiatric sequelae. Front Endocrinol (Lausanne) 2018; 9: 176.
[http://dx.doi.org/10.3389/fendo.2018.00176] [PMID: 29922224]
[65]
Tanriverdi F, Schneider HJ, Aimaretti G, Masel BE, Casanueva FF, Kelestimur F. Pituitary dysfunction after traumatic brain injury: A clinical and pathophysiological approach. Endocr Rev 2015; 36(3): 305-42.
[http://dx.doi.org/10.1210/er.2014-1065] [PMID: 25950715]
[66]
Kgosidialwa O, Hakami O, Zia-Ul-Hussnain HM, Agha A. Growth hormone deficiency following traumatic brain injury. Int J Mol Sci 2019; 20(13): 3323.
[http://dx.doi.org/10.3390/ijms20133323] [PMID: 31284550]
[67]
Richmond E, Rogol AD. Traumatic brain injury: Endocrine consequences in children and adults. Endocrine 2014; 45(1): 3-8.
[http://dx.doi.org/10.1007/s12020-013-0049-1] [PMID: 24030696]
[68]
Efferth T, Koch E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr Drug Targets 2011; 12(1): 122-32.
[http://dx.doi.org/10.2174/138945011793591626] [PMID: 20735354]
[69]
Wagner H. Synergy research: Approaching a new generation of phytopharmaceuticals. Fitoterapia 2011; 82(1): 34-7.
[http://dx.doi.org/10.1016/j.fitote.2010.11.016] [PMID: 21075177]
[70]
Junio HA, Sy-Cordero AA, Ettefagh KA, et al. Synergy-directed fractionation of botanical medicines: A case study with goldenseal (Hydrastis canadensis). J Nat Prod 2011; 74(7): 1621-9.
[http://dx.doi.org/10.1021/np200336g] [PMID: 21661731]
[71]
Efferth T, Zacchino S, Georgiev MI, Liu L, Wagner H, Panossian A. Nobel Prize for artemisinin brings phytotherapy into the spotlight. Phytomedicine 2015; 22(13): A1-3.
[http://dx.doi.org/10.1016/j.phymed.2015.10.003] [PMID: 26563851]
[72]
Jia J, Zhu F, Ma X, et al. Mechanisms of drug combinations: Interaction and network perspectives. Nat Rev Drug Discov 2009; 8(2): 111-28.
[http://dx.doi.org/10.1038/nrd2683] [PMID: 19180105]
[73]
Caesar LK, Cech NB. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat Prod Rep 2019; 36(6): 869-88.
[http://dx.doi.org/10.1039/C9NP00011A] [PMID: 31187844]
[74]
Yuan H, Ma Q, Cui H, et al. How can synergism of traditional medicines benefit from network pharmacology? Molecules 2017; 22(7): 1135.
[http://dx.doi.org/10.3390/molecules22071135] [PMID: 28686181]
[75]
Mahady GB. Medicinal plants for the prevention and treatment of coronary heart disease.
[76]
Lutz M, Henríquez C, Escobar M. Chemical composition and antioxidant properties of mature and baby artichokes (Cynara scolymus L.), raw and cooked. J Food Compos Anal 2011; 24(1): 49-54.
[http://dx.doi.org/10.1016/j.jfca.2010.06.001]
[77]
Salem MB, Affes H, Ksouda K, et al. Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum Nutr 2015; 70(4): 441-53.
[http://dx.doi.org/10.1007/s11130-015-0503-8] [PMID: 26310198]
[78]
Sümer E, Senturk GE, Demirel ÖU, Yesilada E. Comparative biochemical and histopathological evaluations proved that receptacle is the most effective part of Cynara scolymus against liver and kidney damages. J Ethnopharmacol 2020; 249: 112458.
[http://dx.doi.org/10.1016/j.jep.2019.112458] [PMID: 31809787]
[79]
de Falco B, Incerti G, Amato M, Lanzotti V. Artichoke: Botanical, agronomical, phytochemical, and pharmacological overview. Phytochem Rev 2015; 14(6): 993-1018.
[http://dx.doi.org/10.1007/s11101-015-9428-y]
[80]
Oskoueian E, Abdullah N, Ahmad S, Saad WZ, Omar AR, Ho YW. Bioactive compounds and biological activities of Jatropha curcas L. kernel meal extract. Int J Mol Sci 2011; 12(9): 5955-70.
[http://dx.doi.org/10.3390/ijms12095955] [PMID: 22016638]
[81]
Kumar A, Tewari SK. Origin, distribution, ethnobotany and pharmacology of Jatropha curcas. Res J Med Plant 2015; 9(2): 48-59.
[http://dx.doi.org/10.3923/rjmp.2015.48.59]
[82]
Srinivasan N, Palanisamy K, Mulpuri S. Jatropha: Phytochemistry, pharmacology, and toxicology. In: Mulpuri S, Carels N, Bahadur B, Eds. Jatropha, Challenges for a New Energy Crop. Singapore: Springer 2019; pp. 415-35.
[http://dx.doi.org/10.1007/978-981-13-3104-6_20]
[83]
Laxane SN, Surendra S, Mruthunjaya K, Zanwar SB, Setty MM. Jatropha curcas: A systemic review on pharmacological, phytochemical, toxicological profiles and commercial applications. Res J Pharm Biol Chem Sci 2013; 4(1): 989-1010.
[84]
Al-Snafi PDAE. Nutritional and therapeutic importance of Daucus carota- A review. IOSR J Pharm 2017; 7(2): 72-88.
[http://dx.doi.org/10.9790/3013-0702017288]
[85]
Ahmad T, Cawood M, Iqbal Q, et al. Phytochemicals in Daucus carota and their health benefits. Foods 2019; 8(9): 424.
[http://dx.doi.org/10.3390/foods8090424] [PMID: 31546950]
[86]
Bahrami R, Ghobadi A, Behnoud N, Akhtari E. Medicinal properties of Daucus carota in traditional Persian medicine and modern phytotherapy. J Biochem Technol 2018; 9(2): 107-14.
[87]
Prajna A, Hedge K. Pharmacological health benefits of Daucus carota: A review. Int J Pharm Chem Res 2018; 4(2): 77-82.
[88]
Prajapati R, Kalariya M, Parmar S, Sheth N. Phytochemical and pharmacological review of Lagenaria sicereria. J Ayurveda Integr Med 2010; 1(4): 266-72.
[http://dx.doi.org/10.4103/0975-9476.74431] [PMID: 21731373]
[89]
Venkataraman S, Kumaran S, Jayapalan S. Phytochemical constituents and pharmacological activities of Lagenaria siceraria: A comprehensive review. J Ayurveda Integr Med 2018; 1(4): 266-72.
[PMID: 29102461]
[90]
Ge L, Zhang W, Zhou G, et al. Nine phenylethanoid glycosides from Magnolia officinalis var. biloba fruits and their protective effects against free radical-induced oxidative damage. Sci Rep 2017; 7(1): 45342.
[http://dx.doi.org/10.1038/srep45342] [PMID: 28349971]
[91]
Shen CC, Ni CL, Shen YC, et al. Phenolic constituents from the stem bark of Magnolia officinalis. J Nat Prod 2009; 72(1): 168-71.
[http://dx.doi.org/10.1021/np800494e] [PMID: 19086868]
[92]
Banerji A, Banerji J, Das M, Mondol D, Hazra J. Some aspects of investigation of the Indian medicinal plant Hemidesmus indicus R. Br.: Chemical constituents and anti-diabetic activity. J Chem Pharm Res 2017; 9(4): 50-64.
[93]
Bhoomika R, Goyal RKG, Mehta AAA. Phyto-pharmacology of Achyranthes aspera: A review. Pharmacogn Rev 2007; 1(1): 143-50.
[94]
Nandy S, Mukherjee A, Pandey DK, Ray P, Dey A. Indian Sarsaparilla (Hemidesmus indicus): Recent progress in research on ethnobotany, phytochemistry and pharmacology. J Ethnopharmacol 2020; 254: 112609.
[http://dx.doi.org/10.1016/j.jep.2020.112609] [PMID: 32007632]
[95]
Lan S, Yi F, Shuang L. ChenJie W, Zheng XW. Chemical constituents from the fibrous root of Ophiopogon japonicus, and their effect on tube formation in human myocardial microvascular endothelial cells. Fitoterapia 2013; 85: 57-63.
[http://dx.doi.org/10.1016/j.fitote.2012.12.025] [PMID: 23274777]
[96]
Chen MH, Chen XJ, Wang M, Lin LG, Wang YT. Ophiopogon japonicus-A phytochemical, ethnomedicinal and pharmacological review. J Ethnopharmacol 2016; 181: 193-213.
[http://dx.doi.org/10.1016/j.jep.2016.01.037] [PMID: 26826325]
[97]
Rodrigues JPB, Fernandes Â, Dias MI, et al. Phenolic compounds and bioactive properties of Ruscus aculeatus L. (Asparagaceae): The pharmacological potential of an underexploited subshrub. Molecules 2021; 26(7): 1882.
[http://dx.doi.org/10.3390/molecules26071882] [PMID: 33810432]
[98]
Hasan N, Osman H, Mohamad S, Chong WK, Awang K, Zahariluddin ASM. The chemical components of Sesbania grandiflora root and their antituberculosis activity. Pharmaceuticals (Basel) 2012; 5(8): 882-9.
[http://dx.doi.org/10.3390/ph5080882] [PMID: 24280680]
[99]
Bahera M, Karki R, Shekar C. Preliminary phytochemical analysis of leaf and bark methanolic extract of Sesbania grandiflora. J Phytopharm 2012; 1(2): 10-20.
[100]
Janani M, Aruna A. A review on neutraceutical value of Sesbania Grandiflora (Agati). World J Pharm Res 2017; 6(7): 804-16.
[101]
Bhoumik D, Mallik A, Berhe AH. Hepatoprotective activity of aqueous extract of Sesbania grandiflora Linn leaves against carbon tetrachloride induced hepatotoxicity in albino rats. Int J Phytomed 2016; 8(2): 294-9.
[102]
Mohiuddin AK. Medicinal and therapeutic values of Sesbania grandiflora. IHRJ 2019; 3(5): 161-6.
[http://dx.doi.org/10.26440/IHRJ/0305.08265]
[103]
Das S, Vasudeva N, Sharma S. Kidney disorders and management through herbs: A review. J Phytopharmacol 2019; 8(1): 21-7.
[http://dx.doi.org/10.31254/phyto.2019.8106]
[104]
Mihaylova D, Georgieva L, Pavlov A. Antioxidant activity and bioactive compounds of Rosa canina L. herbal preparations. Sci Bull Ser F Biotechnol 2015; 19: 160-5.
[105]
Kerasioti E, Apostolou A, Kafantaris I, et al. Polyphenolic composition of Rosa canina, Rosa sempervivens and Pyrocantha coccinea extracts and assessment of their antioxidant activity in human endothelial cells. Antioxidants 2019; 8(4): 92.
[http://dx.doi.org/10.3390/antiox8040092] [PMID: 30959906]
[106]
Asghari B, Salehi P, Farimani MM, Ebrahimi SN. [alpha]-Glucosidase inhibitors from fruits of Rosa canina L. Rec Nat Prod 2015; 9(3): 276-83.
[107]
Ayati Z, Amiri MS, Ramezani M, Delshad E, Sahebkar A, Emami SA. Phytochemistry, traditional uses and pharmacological profile of Rose Hip: A review. Curr Pharm Des 2019; 24(35): 4101-24.
[http://dx.doi.org/10.2174/1381612824666181010151849] [PMID: 30317989]
[108]
Singh R, Upadhyay SK. Sunita. Phytodiversity of wild flora from maharishi markandeshwar (Deemed to be university), Mullana- Ambala, Haryana, India. Bulletin of Pure & Applied Sciences-Botany 2018; 37b(2): 130-6.
[http://dx.doi.org/10.5958/2320-3196.2018.00018.6]
[109]
Swami D, Malpathak N. Exploring in-vivo and in-vitro Oxalis corniculata L. for phytochemicals using non-targeted LC-MS approach and its antioxidant capacity. Int J Pharm Sci Res 2018; 9(10): 4151-7.
[110]
Zeb A, Imran M. Carotenoids, pigments, phenolic composition and antioxidant activity of Oxalis corniculata leaves. Food Biosci 2019; 32: 100472.
[http://dx.doi.org/10.1016/j.fbio.2019.100472]
[111]
Srikanth M, Swetha T, Veeresh B. Phytochemistry and pharmacology of Oxalis corniculata Linn.: A review. Int J Pharma Sci 2012; 3(11): 4077-85.
[112]
Sarkar T, Ghosh P, Poddar S, Choudhury S, Sarkar A, Chatterjee S. Phytochemistry. Oxalis corniculata Linn. (Oxalidaceae): A brief review. J Pharmacogn Phytochem 2020; 9(4): 651-5.
[113]
Xu J, Wang H, Ding K, et al. Luteolin provides neuroprotection in models of traumatic brain injury via the Nrf2–ARE pathway. Free Radic Biol Med 2014; 71: 186-95.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.009] [PMID: 24642087]
[114]
Nabavi SF, Braidy N, Gortzi O, et al. Luteolin as an antiinflammatory and neuroprotective agent: A brief review. Brain Res Bull 2015; 119(Pt A): 1-11.
[http://dx.doi.org/10.1016/j.brainresbull.2015.09.002] [PMID: 26361743]
[115]
Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J Ethnopharmacol 2018; 225: 342-58.
[http://dx.doi.org/10.1016/j.jep.2018.05.019] [PMID: 29801717]
[116]
El-Deberky D, Rizk M, Elsayd F, Amin A, El-Mahmoudy A. Protective potential of Cynara scolymus extract in thioacetamide model of hepatic injury in rats. Bionatura 2021; 6(2): 1792-802.
[http://dx.doi.org/10.21931/RB/2021.06.02.20]
[117]
Azeem E, Alaa B, Zakaria Z. Anti-obesity and anti-fatty liver effects of Cynara scolymus L. Leaf extract in mice under diet-induced obesity. Int J Biochem Res Rev 2016; 11(1): 1-11.
[http://dx.doi.org/10.9734/IJBCRR/2016/23807]
[118]
El-Boshy M, Ashshi A, Gaith M, et al. Studies on the protective effect of the artichoke (Cynara scolymus) leaf extract against cadmium toxicity-induced oxidative stress, hepatorenal damage, and immunosuppressive and hematological disorders in rats. Environ Sci Pollut Res Int 2017; 24(13): 12372-83.
[http://dx.doi.org/10.1007/s11356-017-8876-x] [PMID: 28357802]
[119]
Ansari N, Khodagholi F. Natural products as promising drug candidates for the treatment of Alzheimer’s disease: Molecular mechanism aspect. Curr Neuropharmacol 2013; 11(4): 414-29.
[http://dx.doi.org/10.2174/1570159X11311040005] [PMID: 24381531]
[120]
Ben Salem M, Affes H, Dhouibi R, et al. Preventive effect of Artichoke (Cynara scolymus L.) in kidney dysfunction against high fat-diet induced obesity in rats. Arch Physiol Biochem 2022; 128(3): 586-92.
[http://dx.doi.org/10.1080/13813455.2019.1703755] [PMID: 31855072]
[121]
Fadlalla EAS, Galal SM. Hepatoprotective and reno-protective effects of artichoke leaf extract and rosemary extract against Paracetamol induced toxicity in Albino Rats. J Pharm Res Int 2020; 32: 67-81.
[http://dx.doi.org/10.9734/jpri/2020/v32i3230935]
[122]
Elshamy AI, Abdallah HMI, Farrag ARH, et al. Artichoke phenolics confer protection against acute kidney injury. Rev Bras Farmacogn 2020; 30(1): 34-42.
[http://dx.doi.org/10.1007/s43450-020-00032-6]
[123]
Ramadan S. Gastroprotective effect of artichoke (Cynara scolymus L.) leaves and pulp extracts on peptic ulcer in male rats. Res J Spc Educ 2016; 2016(44): 511-38.
[http://dx.doi.org/10.21608/mbse.2016.139098]
[124]
Nassar MI, Mohamed TK, Elshamy AI, El-Toumy SA, Lateef AMA, Farrag ARH. Chemical constituents and anti-ulcerogenic potential of the scales of Cynara scolymus (artichoke) heads. J Sci Food Agric 2013; 93(10): 2494-501.
[http://dx.doi.org/10.1002/jsfa.6065] [PMID: 23576039]
[125]
Tahoon NA, El Sheikh NA, Sciences F. Effect different levels of powder and aqueous extract of artichoke leaves on gastric ulcer. World J Diary 2016; 11(2): 131-40.
[126]
Sabater C, Molina-Tijeras JA, Vezza T, Corzo N, Montilla A, Utrilla P. Intestinal anti-inflammatory effects of artichoke pectin and modified pectin fractions in the dextran sulfate sodium model of mice colitis. Artificial neural network modelling of inflammatory markers. Food Funct 2019; 10(12): 7793-805.
[http://dx.doi.org/10.1039/C9FO02221J] [PMID: 31781703]
[127]
Speciale A, Muscarà C, Molonia MS, Toscano G, Cimino F, Saija A. In vitro protective effects of a standardized extract from Cynara cardunculus L. leaves against TNF-α-induced intestinal inflammation. Front Pharmacol 2022; 13: 809938.
[http://dx.doi.org/10.3389/fphar.2022.809938] [PMID: 35222027]
[128]
Numan IT, Hamad MN, Fadhil AA, Najim SM. The possible cardio-protective effects of ethanolic artichoke extract against 5-fluorouracil induced cardiac toxicity in rats. Iraqi J Pharm Sci 2016; 25(1): 1-5.
[129]
Ahmed SF, Abd Al Haleem EN, El-Tantawy WH. Evaluation of the anti-atherogenic potential of Egyptian artichoke leaf extract in hypercholesterolemic rats. Arch Physiol Biochem 2022; 128(1): 163-74.
[http://dx.doi.org/10.1080/13813455.2019.1669662] [PMID: 31566004]
[130]
Amini N, Dianat M. Ameliorative effect of Artichoke (Cynara scolymus) on chemically induced arrhythmias in rats. Jundishapur J Physiol 2018; 1(1): 17-21.
[131]
Dawood A, Hareedy H. Differential effect of High Fat Diet (HFD) on the cardiac muscle of adult and aged female mice and the possible protective role of artichoke treatment: Histomorphometric and ultrastructural study. J Med Histol 2019; 3(1): 36-54.
[http://dx.doi.org/10.21608/jmh.2019.11528.1053]
[132]
Ben Salem M, Affes H, Dhouibi R, et al. Effect of Artichoke (Cynara scolymus) on cardiac markers, lipid profile and antioxidants levels in tissue of HFD-induced obesity. Arch Physiol Biochem 2022; 128(1): 184-94.
[http://dx.doi.org/10.1080/13813455.2019.1670213] [PMID: 31564131]
[133]
Muniz Santana Bastos E, Bispo da Silva A, Cerqueira Coelho PL, et al. Anti-inflammatory activity of Jatropha curcas L. in brain glial cells primary cultures. J Ethnopharmacol 2021; 264: 113201.
[http://dx.doi.org/10.1016/j.jep.2020.113201] [PMID: 32814081]
[134]
Alexander ZH, Rommel ZH, Sergio GL, et al. Study on inflammation and the nervous system of ethanol extract of Jatropha curcas seed. Pharmacogn J 2016; 8(4): 335-40.
[http://dx.doi.org/10.5530/pj.2016.4.5]
[135]
Huang SL, Wang WH, Zhong XY, et al. Antioxidant properties of Jatropha curcas L. seed shell and kernel extracts. Appl Sci (Basel) 2020; 10(9): 3279.
[http://dx.doi.org/10.3390/app10093279]
[136]
Wang Y, Zhou D, Meng Q, et al. Anti-neuroinflammatory effects in vitro and in vivo, and chemical profile of Jatropha curcas L. Bioorg Chem 2022; 122: 105720.
[http://dx.doi.org/10.1016/j.bioorg.2022.105720] [PMID: 35305482]
[137]
Imtiyaz S, Patil K, Singh A, Kute S, Mahajan S. Hepatoprotective activity of Jatropha curcas Leaf extract against carbon tetrachloride-induced hepatotoxicity. J Trop Med Plants 2010; 11(1): 53-9.
[138]
Okechukwu PU, Nzubechukwu E, Ogbansh M, Ezeani N, Nworie M, Ezugwu A. The Effect of ethanol leaf extract of Jatropha curcas on chloroform induced hepatotoxicity in Albino rats. Glob J Biotechnol Biochem 2015; 10: 11-5.
[139]
Farouk K. El-Baz, Aly HF, Saad SA. Potential impact of Jatropha curcas in combating liver dysfunction induced by carbon tetrachloride in rats. Int J Pharm Sci Rev Res 2015; 34(2): 216-22.
[140]
Amirabagya F, Hapsari RAF, Wulandari E. The effect of Jatropha curcas L seed extract on ast/alt activity and the central vein thickness in liver. Pharmacogn J 2021; 13(1): 66-72.
[http://dx.doi.org/10.5530/pj.2021.13.10]
[141]
Komali M, Kavya S, Kumar MS, Babu AN. Cardioprotective effect of Jatropha Curcas fruit extracts against carbon tetrachloride induced cardiotoxicity in rats. Int Res J Pharm 2016; 7(8): 65-8.
[http://dx.doi.org/10.7897/2230-8407.07898]
[142]
M K A NB. Nephroprotective effect of Jatropha curcas fruit extracts against carbon tetrachloride induced nephrotoxicity in rats. Int J Pharmacogn Phytochem Res 2018; 9(07): 943-6.
[143]
Segura-Campos MR, Peralta-González F, Castellanos-Ruelas A, Chel-Guerrero LA, Betancur-Ancona DA. Effect of Jatropha curcas peptide fractions on the angiotensin I-converting enzyme inhibitory activity. BioMed Res Int 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/541947] [PMID: 24224169]
[144]
Azamthulla M, Anbu J, Murali A. Antioxidant activity of Jatropha curcas Linn. bark extract on aspirin induced gastric ulcers. J Dent Orofac Res 2019; 15(1): 26-31.
[145]
Maigari FU, Halilu M, Umar MM, Zainab R. Effect of Jatropha curcas Leaf extract on castor oil induced diarrhea in Albino rats. Int J Anim Vet Sci 2016; 10(1): 28-31.
[146]
Vasudevan M, Parle M. Pharmacological evidence for the potential of Daucus carota in the management of cognitive dysfunctions. Biol Pharm Bull 2006; 29(6): 1154-61.
[http://dx.doi.org/10.1248/bpb.29.1154] [PMID: 16755009]
[147]
Mani V, Parle M, Ramasamy K, Majeed ABA. Anti-dementia potential of Daucus carota seed extract in rats. Pharmacologyonline 2010; 2: 3.
[148]
Gilani AH, Shaheen F, Saeed SA, et al. Hypotensive action of coumarin glycosides from Daucus carota. Phytomedicine 2000; 7(5): 423-6.
[http://dx.doi.org/10.1016/S0944-7113(00)80064-1] [PMID: 11081994]
[149]
Muralidharan P, Balamurugan G, Kumar P. Inotropic and cardioprotective effects of Daucus carota Linn. on isoproterenol-induced myocardial infarction. Bangladesh J Pharmacol 2008; 3(2): 74-9.
[http://dx.doi.org/10.3329/bjp.v3i2.849]
[150]
Shah SMA, Akram M, Riaz M, Munir N, Rasool G. Cardioprotective potential of plant-derived molecules: A scientific and medicinal approach. Dose Response 2019; 17(2): 1559325819852243.
[http://dx.doi.org/10.1177/1559325819852243] [PMID: 31205459]
[151]
Tijjani H, Mohammed A, Muktar S, et al. Antioxidant and antihyperlipidemic effects of aqueous seed extract of Daucus carota L. in triton× 100-induced hyperlipidemic mice. J Appl Biol Biotechnol 2020; 8(1): 7-3.
[152]
Abo-Golayel MK, Al-Khayat WA. Hepatoprotective effect of yellow and red carrots (Daucus carota L.) against carbon tetrachloride-induced hepatotoxicity. Egypt. J Pure Appl Sci 2014; 52: 11-20.
[153]
Shebaby WN, Daher CF, El-Sibai M, et al. Antioxidant and hepatoprotective activities of the oil fractions from wild carrot ( Daucus carota ssp. carota ). Pharm Biol 2015; 53(9): 1285-94.
[http://dx.doi.org/10.3109/13880209.2014.976349] [PMID: 25856705]
[154]
Singh K, Singh N, Chandy A, Manigauha A. In vivo antioxidant and hepatoprotective activity of methanolic extracts of Daucus carota seeds in experimental animals. Asian Pac J Trop Biomed 2012; 2(5): 385-8.
[http://dx.doi.org/10.1016/S2221-1691(12)60061-6] [PMID: 23569935]
[155]
Jain PK, Khurana N, Pounikar Y, Patil S, Gajbhiye A. Hepatoprotective effect of carrot (Daucus carota L.) on paracetamol intoxicated rats. Int J Pharmacol Pharm Technol 2012; 1(2): 17-22.
[156]
Omar T, Hammam F, Abdallah I, Abdelhafiz W. Amelioration of cisplatin-induced kidney and liver damage in rabbits by fresh carrot (Daucus carota L) Juice. Egypt Acad J Biol Sci C Physiol Mol Biol 2022; 14(1): 129-42.
[http://dx.doi.org/10.21608/eajbsc.2022.220567]
[157]
Al-Snafi AE, Talab TA. A review of medicinal plants with nephroprotective effects. GSC Biological and Pharmaceutical Sciences 2019; 8(1): 114-22.
[http://dx.doi.org/10.30574/gscbps.2019.8.1.0108]
[158]
Bawari S, Negi Sah A, Tewari D. Antiurolithiatic activity of Daucus carota: An in vitro study. Pharmacogn J 2018; 10(5): 880-4.
[http://dx.doi.org/10.5530/pj.2018.5.148]
[159]
Bawari S, Sah AN, Tewari D. Anticalcifying effect of Daucus carota in experimental urolithiasis in Wistar rats. J Ayurveda Integr Med 2020; 11(3): 308-15.
[http://dx.doi.org/10.1016/j.jaim.2018.12.003] [PMID: 30962051]
[160]
Afzal M, Kazmi I, Kaur R, Ahmad A, Pravez M, Anwar F. Comparison of protective and curative potential of Daucus carota root extract on renal ischemia reperfusion injury in rats. Pharm Biol 2013; 51(7): 856-62.
[http://dx.doi.org/10.3109/13880209.2013.767840] [PMID: 23627465]
[161]
Sodimbaku V, Pujari L, Mullangi R, Marri S. Carrot (Daucus carota L.): Nephroprotective against gentamicin-induced nephrotoxicity in rats. Indian J Pharmacol 2016; 48(2): 122-7.
[http://dx.doi.org/10.4103/0253-7613.178822] [PMID: 27127313]
[162]
Jiin WH, Hidayat EM, Lukman KA. Gastroprotective effect of carrot (Daucus carota L.) juice in rat models. Althea Medical Journal 2014; 1(1): 35-9.
[http://dx.doi.org/10.15850/amj.v1n1.295]
[163]
Agbaje EO, Fageyinbo MS, Alabi OO. Gastro-duodenal protective effect of aqueous leaf extract of Daucuscarota sativus Linn. (Apiaceae) in rats and its possible mechanism of action. J Phytopharmacol 2017; 6(3): 156-63.
[http://dx.doi.org/10.31254/phyto.2017.6301]
[164]
Oyinloye O, Olooto W, Kosoko A, Alabi A, Udeh A. Effects of extracts of Daucus carota and Brassica oleraceae on ethanol-induced gastric Ulcer. Afr J Biomed Res 2019; 22(1): 89-95.
[165]
Asdaq SMB, Swathi E, Dhamanigi SS, et al. Role of Daucus carota in enhancing antiulcer profile of pantoprazole in experimental animals. Molecules 2020; 25(22): 5287.
[http://dx.doi.org/10.3390/molecules25225287] [PMID: 33202703]
[166]
Chandra P, Kishore K, Ghosh AK. Assessment of antisecretory, gastroprotective, and in-vitro antacid potential of Daucus carota in experimental rats. Osong Public Health Res Perspect 2015; 6(6): 329-35.
[http://dx.doi.org/10.1016/j.phrp.2015.10.006] [PMID: 26835241]
[167]
Attar UA, Ghane SG. In vitro antioxidant, antidiabetic, antiacetylcholine esterase, anticancer activities and RP-HPLC analysis of phenolics from the wild bottle gourd (Lagenaria siceraria (Molina) Standl.). S Afr J Bot 2019; 125: 360-70.
[http://dx.doi.org/10.1016/j.sajb.2019.08.004]
[168]
Prashar Y, Gill N, Perween A. Protective effect of Lagenaria siceraria in reversing aluminium chloride induced learning and memory deficits in experimental animal model. Int J Recent Adv Pharm Res 2014; 4: 87-104.
[169]
Adnaik RS, Mohite SK. Neuroprotective evaluation of Lagenaria vulgaris extract hypoxic neurotoxicity induced rats. Asian J Pharm Clin Res 2015; 8: 121-4.
[170]
Prakash M, Rao P, Venkataramanan R, Chitra V, Sumithra M. Neuroprotective effect of hydroalcoholic seed extract of Langenaria siceraria (Mol) Standl. on hypoxia neurotoxicity induced in wistar rats. Biomed Pharmacol J 2016; 9(2): 697-703.
[http://dx.doi.org/10.13005/bpj/992]
[171]
Tirumalasetti J, Patel MM, Shaikh U, Pokala N, Harini K. Protective effect of aqueous extract of Lagenaria siceraria (Molina) against maximal electroshock (MES) -induced convulsions in Albino Rats. Kathmandu Univ Med J 2017; 17(58): 117-20.
[PMID: 34547841]
[172]
Prajapati RP, Kalaria MV, Karkare VP, Parmar SK, Sheth NR. Effect of methanolic extract of Lagenaria siceraria (Molina) Standley fruits on marble-burying behavior in mice: Implications for obsessive-compulsive disorder. Pharmacognosy Res 2011; 3(1): 62-6.
[http://dx.doi.org/10.4103/0974-8490.79118] [PMID: 21731398]
[173]
Jasani N, Kapoor M, Tripathi N, Acharya NS, Acharya S, Kumar V. Anti-asthmatic and anti-allergic activity of Lagenaria siceraria Mol. standley. J Nat Rem 2012; 12(1): 72-6.
[174]
Yetişir F, Salman E, Önal Ö, et al. The effect of Lagenaria siceraria (Molina) on acute lung injury induced by oleic acid in rats. World J Surg Res 2013; 2(8): 39-49.
[175]
Owais F. Mehjabeen. Hepatoprotective effect of Lagenaria siceraria (Linn) in carbamazepine induced hepatotoxicity in rabbits. ISRA Med J 2018; 10(6): 345-8.
[176]
Ahmed D, Naseer Y, Hina S, Bukhari A. Hepatoprotective, anti-hemolytic, and anti-radical properties of cold-pressed, no-solvent, extract of bottle gourd fruit. Int J Veg Sci 2019; 25(4): 330-9.
[http://dx.doi.org/10.1080/19315260.2018.1513963]
[177]
Panchal C, Sawale JA, Poul B, Khandelwal K. Hepatoprotective activity of Lagenaria siceraria (Molina) Standley fruits against paracetamol induced hapatotoxicity in mice. Int J Pharm Sci Res 2013; 4(1): 371-7.
[178]
Funde S, Jaju J, Dharmadhikari S, Pawar G. Effect of Lagenaria siceraria fruit extract (Bottle gourd) on hepatotoxicity induced by antitubercular drugs in albino rats. Int J Basic Clin Pharmacol 2013; 2(6): 728-34.
[http://dx.doi.org/10.5455/2319-2003.ijbcp20131211]
[179]
Aref ABM, Momenah MA, Jad MM, et al. Tramadol biological effects: 4: Effective therapeutic efficacy of Lagenaria siceraria preparation (gamal & aref1) and melatonin on cell biological, histochemical, and histopathological changes in the kidney of tramadol-induced male mice. Microsc Microanal 2021; 27(3): 613-25.
[http://dx.doi.org/10.1017/S1431927621000271] [PMID: 33829981]
[180]
Mahurkar N, Mumtaz M, Ifthekar S. Protective effect of aqueous and methanolic extracts of Lagenaria siceraria seeds in gentamicin induced nephrotoxicity. Int J Res Ayurveda Pharm 2012; 3(3): 443-6.
[181]
Bodhankar SL, Takawale RV, Mali VR, Kapase CU. Effect of Lagenaria siceraria fruit powder on sodium oxalate induced urolithiasis in Wistar rats. J Ayurveda Integr Med 2012; 3(2): 75-9.
[http://dx.doi.org/10.4103/0975-9476.96522] [PMID: 22707863]
[182]
Vijayakumar M, Selvi V, Krishnakumari S. Cardioprotective effect of Lagenaria siceraria (Mol) ameliorates isoproterenol-induced cardiac toxicity in rats by stabilizing cardiac mitochondrial and lysosomal enzymes. Toxicol Environ Chem 2011; 93(1): 171-6.
[http://dx.doi.org/10.1080/02772248.2010.504356]
[183]
Upaganlawar A, Balaraman R. Cardioprotective effects of Lagenaria siceraria fruit juice on isoproterenol-induced myocardial infarction in wistar rats: A biochemical and histoarchitecture study. J Young Pharm 2011; 3(4): 297-303.
[http://dx.doi.org/10.4103/0975-1483.90241] [PMID: 22224036]
[184]
Mali VR, Bodhankar SL. Effect of Lagenaria siceraria (LS) powder on dexamethasone induced hypertension in rats. International Journal of Advances in Pharmaceutical Sciences 2010; 1(1): 50-3.
[http://dx.doi.org/10.5138/ijaps.2010.0976.1055.01005]
[185]
Tirumalasetti J, Harini K, Kumar VK, Kondreddy R, Shankar J. Evaluation of cardiotonic action of ethanol extract of Lagenaria siceraria pulp on frog’s heart. Int Res J Pharm 2014; 5(6): 481-4.
[http://dx.doi.org/10.7897/2230-8407.050699]
[186]
Manchala P. Evaluation of Anti-ulcer activity of Lagenaria siceraria chloroform extracts in pylorus ligated rats. Electron J Bio 2019; 15: 27-37.
[187]
Vega-García A, Santana-Gómez CE, Rocha L, et al. Magnolia officinalis reduces the long-term effects of the status epilepticus induced by kainic acid in immature rats. Brain Res Bull 2019; 149: 156-67.
[http://dx.doi.org/10.1016/j.brainresbull.2019.04.003] [PMID: 30978383]
[188]
Vega-García A, Rocha L, Guevara-Guzmán R, et al. Magnolia officinalis reduces inflammation and damage induced by recurrent status epilepticus in immature rats. Curr Pharm Des 2020; 26(12): 1388-401.
[http://dx.doi.org/10.2174/1381612826666200320121813] [PMID: 32196444]
[189]
Borgonetti V, Governa P, Biagi M, Galeotti N. Novel therapeutic approach for the management of mood disorders: In vivo and in vitro effect of a combination of l-theanine, Melissa officinalis L. and Magnolia officinalis rehder & EH Wilson. Nutrients 2020; 12(6): 1803.
[http://dx.doi.org/10.3390/nu12061803] [PMID: 32560413]
[190]
Hou Y, Peng S, Li X, Yao J, Xu J, Fang J. Honokiol alleviates oxidative stress-induced neurotoxicity via activation of Nrf2. ACS Chem Neurosci 2018; 9(12): 3108-16.
[http://dx.doi.org/10.1021/acschemneuro.8b00290] [PMID: 29989791]
[191]
Xian YF, Ip SP, Mao QQ, Lin ZX. Neuroprotective effects of honokiol against beta-amyloid-induced neurotoxicity via GSK-3β and β-catenin signaling pathway in PC12 cells. Neurochem Int 2016; 97: 8-14.
[http://dx.doi.org/10.1016/j.neuint.2016.04.014] [PMID: 27131736]
[192]
Xian Y-F, Qu C, Liu Y, et al. Magnolol ameliorates behavioral impairments and neuropathology in a transgenic mouse model of Alzheimer’s disease. Oxid Med Cell Longev 2020; 2020: article ID: 5920476.
[http://dx.doi.org/10.1155/2020/5920476]
[193]
Huang SY, Tai SH, Chang CC, Tu YF, Chang CH, Lee EJ. Magnolol protects against ischemic-reperfusion brain damage following oxygen-glucose deprivation and transient focal cerebral ischemia. Int J Mol Med 2018; 41(4): 2252-62.
[http://dx.doi.org/10.3892/ijmm.2018.3387] [PMID: 29336466]
[194]
Bibi T, Khan A, Khan AU, et al. Magnolol prevented brain injury through the modulation of Nrf2-dependent oxidative stress and apoptosis in PLP-induced mouse model of multiple sclerosis. Naunyn Schmiedebergs Arch Pharmacol 2022; 395(6): 717-33.
[http://dx.doi.org/10.1007/s00210-022-02230-6] [PMID: 35348816]
[195]
Chen T, Shou L, Guo X, Wei M, Zheng H, Tao T. Magnolol attenuates the locomotor impairment, cognitive deficit, and neuroinflammation in Alzheimer’s disease mice with brain insulin resistance via up-regulating miR-200c. Bioengineered 2022; 13(1): 531-43.
[http://dx.doi.org/10.1080/21655979.2021.2009975] [PMID: 34968163]
[196]
Shin TY, Kim DK, Chae BS, Lee EJ. Antiallergic action of Magnolia officinalis on immediate hypersensitivity reaction. Arch Pharm Res 2001; 24(3): 249-55.
[http://dx.doi.org/10.1007/BF02978266] [PMID: 11440086]
[197]
Wu X, Yu C, Cai W, Hua J, Li S, Wang W. Protective effect of a polyphenolic rich extract from Magnolia officinalis bark on influenza virus-induced pneumonia in mice. J Ethnopharmacol 2011; 134(1): 191-4.
[http://dx.doi.org/10.1016/j.jep.2010.11.074] [PMID: 21146600]
[198]
Li HB, Wang L, Gu ZT, He X, Su L. Protective effect of honokiol against LPS-induced lung injury via attenuation of matrix metalloproteinase-9 and oxidative stress. Arch Biol Sci 2016; 68(4): 877-81.
[http://dx.doi.org/10.2298/ABS151020077L]
[199]
Shen J, Ma H, Zhang T, et al. Magnolol inhibits the growth of non-small cell lung cancer via inhibiting microtubule polymerization. Cell Physiol Biochem 2017; 42(5): 1789-801.
[http://dx.doi.org/10.1159/000479458] [PMID: 28746938]
[200]
Tan Z, Liu H, Song X, et al. Honokiol post-treatment ameliorates myocardial ischemia/reperfusion injury by enhancing autophagic flux and reducing intracellular ROS production. Chem Biol Interact 2019; 307: 82-90.
[http://dx.doi.org/10.1016/j.cbi.2019.04.032] [PMID: 31047918]
[201]
Huang L, Zhang K, Guo Y, et al. Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts. Sci Rep 2017; 7(1): 11989.
[http://dx.doi.org/10.1038/s41598-017-12095-y] [PMID: 28931882]
[202]
Chou PY, Chang WC, Liu FC, Lan SJ, Sheu MJ, Chen JS. Honokiol, an active compound of Magnolia officinalis, is involved in restoring normal baroreflex sensitivity in hypercholesterolemic rabbits. Food Sci Nutr 2020; 8(2): 1093-103.
[http://dx.doi.org/10.1002/fsn3.1395] [PMID: 32148818]
[203]
Sun W, Zhang Z, Chen Q, et al. Magnolia extract (BL153) protection of heart from lipid accumulation caused cardiac oxidative damage, inflammation, and cell death in high-fat diet fed mice. Oxid Med Cell Longev 2014; 2014: 1-13.
[http://dx.doi.org/10.1155/2014/205849] [PMID: 24693333]
[204]
Ho J, Hong CY. Cardiovascular protection of magnolol: Cell-type specificity and dose-related effects. J Biomed Sci 2012; 19(1): 70.
[http://dx.doi.org/10.1186/1423-0127-19-70] [PMID: 22849814]
[205]
Rajgopal A, Missler SR, Scholten JD. Magnolia officinalis (Hou Po) bark extract stimulates the Nrf2-pathway in hepatocytes and protects against oxidative stress. J Ethnopharmacol 2016; 193: 657-62.
[http://dx.doi.org/10.1016/j.jep.2016.10.016] [PMID: 27721050]
[206]
Yu FL, Wu JW, Zhu H. Honokiol alleviates acetaminophen-induced hepatotoxicity via decreasing generation of acetaminophen-protein adducts in liver. Life Sci 2019; 230: 97-103.
[http://dx.doi.org/10.1016/j.lfs.2019.05.062] [PMID: 31129139]
[207]
Lee JH, Jung JY, Jang EJ, et al. Combination of honokiol and magnolol inhibits hepatic steatosis through AMPK-SREBP-1 c pathway. Exp Biol Med (Maywood) 2015; 240(4): 508-18.
[http://dx.doi.org/10.1177/1535370214547123] [PMID: 25125496]
[208]
Jeong YH, Hur H, Jeon EJ, et al. Honokiol improves Liver steatosis in ovariectomized mice. Molecules 2018; 23(1): 194.
[http://dx.doi.org/10.3390/molecules23010194] [PMID: 29342107]
[209]
Zhang T, Xiang L. Honokiol alleviates sepsis-induced acute kidney injury in mice by targeting the miR-218-5p/heme oxygenase-1 signaling pathway. Cell Mol Biol Lett 2019; 24(1): 15.
[http://dx.doi.org/10.1186/s11658-019-0142-4] [PMID: 30833971]
[210]
Park EJ, Dusabimana T, Je J, et al. Honokiol protects the kidney from renal ischemia and reperfusion injury by upregulating the glutathione biosynthetic enzymes. Biomedicines 2020; 8(9): 352.
[http://dx.doi.org/10.3390/biomedicines8090352] [PMID: 32942603]
[211]
Chang L, Wang Q, Ju J, et al. Magnoflorine ameliorates inflammation and fibrosis in rats with diabetic nephropathy by mediating the stability of Lysine-specific demethylase 3A. Front Physiol 2020; 11: 580406.
[http://dx.doi.org/10.3389/fphys.2020.580406] [PMID: 33414721]
[212]
Locatelli M, Zoja C, Zanchi C, et al. Manipulating Sirtuin 3 pathway ameliorates renal damage in experimental diabetes. Sci Rep 2020; 10(1): 8418.
[http://dx.doi.org/10.1038/s41598-020-65423-0] [PMID: 32439965]
[213]
Tang CY, Lai CC, Huang PH, et al. Magnolol reduces myocardial injury induced by renal ischemia and reperfusion. J Chin Med Assoc 2022; 85(5): 584-96.
[http://dx.doi.org/10.1097/JCMA.0000000000000727] [PMID: 35385419]
[214]
Lee H, Hong S, Yoo J, Kim O. Anti-Helicobacter pylori activity and inhibition of gastritis by Magnolia officinalis extract. Wetchasan Sattawaphaet 2018; 48(2): 203-10.
[215]
Luo H, Wu H, Yu X, et al. A review of the phytochemistry and pharmacological activities of Magnoliae officinalis cortex. J Ethnopharmacol 2019; 236: 412-42.
[http://dx.doi.org/10.1016/j.jep.2019.02.041] [PMID: 30818008]
[216]
Kim HJ, Han T, Kim YT, So I, Kim BJ. Magnolia officinalis bark extract induces depolarization of pacemaker potentials through M2 and M3 muscarinic receptors in cultured murine small intestine interstitial cells of cajal. Cell Physiol Biochem 2017; 43(5): 1790-802.
[http://dx.doi.org/10.1159/000484065] [PMID: 29049988]
[217]
Dundaiah B, Ramachandregowda S, Anand S, Kariyappa A, Gopinath M, Tekupalli R. Swimming exercise and dietary supplementation of Hemidesmus indicus modulates cognitive decline by enhancing brain-derived neurotrophic factor expression in rats. Natl J Physiol Pharm Pharmacol 2019; 9(0): 1.
[http://dx.doi.org/10.5455/njppp.2019.9.0724105072019]
[218]
Kundu A, Mitra A. Flavoring extracts of Hemidesmus indicus roots and Vanilla planifolia pods exhibit in vitro acetylcholinesterase inhibitory activities. Plant Foods Hum Nutr 2013; 68(3): 247-53.
[http://dx.doi.org/10.1007/s11130-013-0363-z] [PMID: 23715789]
[219]
Madhu A, Gupta G, Arali B, Chellappan DK, Dua K. Anti-psychotic activity of aqueous root extract of Hemidesmus indicus: A time bound study in rats. Recent Pat Drug Deliv Formul 2017; 11(1): 36-41.
[PMID: 27993107]
[220]
Som S, Antony J, Dhanabal SP, Ponnusankar S. Phytochemical profiling of Hemidesmus indicus (L.) r. Br. Ex schult and its antioxidant, anti-inflammatory and neuroprotection linked enzyme inhibitory properties. Pharmacogn J 2021; 13(1): 196-205.
[http://dx.doi.org/10.5530/pj.2021.13.28]
[221]
Pathan JK, Gautam G, Gupta AK. Hemidesmus indicus L.: Evaluation of sedative & hypnotic effect in the elevated plus-maze apparatus. Eur J Pharm Med Res 2018; 5(12): 231-4.
[222]
Pathan JK, Gautam G, Gupta AK. Evaluation of anticonvulsant activity of ethanolic & aqueous extract of Hemidesmus indicus L. stem & leaves and Lantana camara L. stem & flowers on experimental animals. Biol Forum 2019; 11(1): 65-71.
[223]
Murali A, Ashok P, Madhavan V. Hepatoprotective effect of Hemidesmus indicus var. pubescens leaf extract on paracetamol induced hepatic damage. Med Chem Drug Discov 2012; 3(2): 103-15.
[224]
Ashaa S, Tajub G, Jayanthic M. Study of hepatoprotective effect of Hemidesmus indicus on paracetamol induced liver damage in rats. J Pharm Res 2011; 4(3): 624-6.
[225]
Saravanan N, Nalini N. Inhibitory effect of Hemidesmus indicus and its active principle 2-hydroxy 4-methoxy benzoic acid on ethanol-induced liver injury. Fundam Clin Pharmacol 2007; 21(5): 507-14.
[http://dx.doi.org/10.1111/j.1472-8206.2007.00500.x] [PMID: 17868203]
[226]
Das S, Naik P, Panda P. Effect of Hemidesmus indicus R. Br. root extract on urinary tract infection causing bacteria. Int J Herb Med 2017; 5(5): 160-8.
[227]
Kaur A, Singh S, Shirwaikar A, Setty M. Effect of ethanolic extract of Hemidesmus indicus roots on cisplatin induced nephrotoxicity in rats. J Pharm Res 2011; 4(8): 2523-5.
[228]
Zarei M, Javarappa KK, Zarei M, Baker S. Cardioprotective effect of the root extract of Hemidesmus indicus against doxorubicin-induced oxidative stress in mice. Pharm Lett 2013; 5(1): 334-9.
[229]
Khandelwal VKM, Balaraman R. Ondrejčáková M, Pancza D, Ravingerová T. Effect of Hemidesmus indicus on ischemia-reperfusion injury in the isolated rat heart. Pharm Biol 2010; 48(6): 611-4.
[http://dx.doi.org/10.3109/13880200903218943] [PMID: 20645732]
[230]
Dhanalakshmi R, Afrin A, Akila M, Alnoora F, Dharani R, Parveen S. Preliminary phytochemical screening and in vitro antacid activity of Hemidesmus indicus leaves extract by modified artificial stomach model. J Pharmacogn Phytochem 2018; 7(4): 2546-50.
[231]
Bharadwaj S, Nayak S. Experimental evaluation of prophylactic and curative effect of a herbal drug Hemidesmus indicus R.Br. in drug induced ulcers in Wistar albino rats. Int J Res Med Sci 2013; 1(3): 243-7.
[http://dx.doi.org/10.5455/2320-6012.ijrms20130816]
[232]
Vishali K, Kavitha KNV, Rajesh V, Perumal P. Anti-ulcer activity of Hemidesmus indicus root extract on Indomethacin induced gastric ulcer in albino wistar rats. J Pharm Res 2011; 4(2): 391-2.
[233]
Bhujbal S, Kumar D, Deoda R, Deore T, Patil M. Antiasthmatic activity of roots of Hemidesmus indicus R. Br Pharmacologyonline 2009; 1: 209-16.
[234]
Guan T, Liu Q, Qian Y, et al. Ruscogenin reduces cerebral ischemic injury via NF-κB-mediated inflammatory pathway in the mouse model of experimental stroke. Eur J Pharmacol 2013; 714(1-3): 303-11.
[http://dx.doi.org/10.1016/j.ejphar.2013.07.036] [PMID: 23911884]
[235]
Lin M, Sun W, Gong W, Zhou Z, Ding Y, Hou Q. Methylophiopogonanone a protects against cerebral ischemia/reperfusion injury and attenuates blood-brain barrier disruption in-vitro. PLoS One 2015; 10(4): e0124558.
[http://dx.doi.org/10.1371/journal.pone.0124558] [PMID: 25897666]
[236]
Cao G, Jiang N, Hu Y, et al. Ruscogenin attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Int J Mol Sci 2016; 17(9): 1418.
[http://dx.doi.org/10.3390/ijms17091418] [PMID: 27589720]
[237]
Sun Q, Chen L, Gao M, et al. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: Involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB. Int Immunopharmacol 2012; 12(1): 88-93.
[http://dx.doi.org/10.1016/j.intimp.2011.10.018] [PMID: 22079591]
[238]
Wang Y, Xue L, Wu Y, et al. Ruscogenin attenuates sepsis-induced acute lung injury and pulmonary endothelial barrier dysfunction via TLR4/Src/p120-catenin/VE-cadherin signalling pathway. J Pharm Pharmacol 2021; 73(7): 893-900.
[http://dx.doi.org/10.1093/jpp/rgaa039] [PMID: 33769524]
[239]
Wang Y, Wu Y, Zhang J, et al. Ruscogenin attenuates particulate matter-induced acute lung injury in mice via protecting pulmonary endothelial barrier and inhibiting TLR4 signaling pathway. Acta Pharmacol Sin 2021; 42(5): 726-34.
[http://dx.doi.org/10.1038/s41401-020-00502-6] [PMID: 32855531]
[240]
Zhan S, Wang W, Kong L. Protective effects and mechanism of action of ruscogenin in a mouse model of ovalbumin-induced asthma. J Asthma 2022; 59(6): 1079-86.
[http://dx.doi.org/10.1080/02770903.2021.1901914] [PMID: 33780307]
[241]
Yao QW, Wang XY, Li JC, Zhang J. Ophiopogon japonicus inhibits radiation-induced pulmonary inflammation in mice. Ann Transl Med 2019; 7(22): 622.
[http://dx.doi.org/10.21037/atm.2019.11.01] [PMID: 31930023]
[242]
Yücel D, Yücel E. Plants used in complementary medicine in the treatment of cardiovascular diseases in Turkey. J Appl Biol Sci 2020; 14(1): 73-85.
[243]
Wu Z, Zhao X, Miyamoto A, et al. Effects of steroidal saponins extract from Ophiopogon japonicus root ameliorates doxorubicin-induced chronic heart failure by inhibiting oxidative stress and inflammatory response. Pharm Biol 2019; 57(1): 176-83.
[http://dx.doi.org/10.1080/13880209.2019.1577467] [PMID: 30860934]
[244]
Zhang J, Fan S, Mao Y, et al. Cardiovascular protective effect of polysaccharide from Ophiopogon japonicus in diabetic rats. Int J Biol Macromol 2016; 82: 505-13.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.069] [PMID: 26434529]
[245]
Fan S, Zhang J, Xiao Q, et al. Cardioprotective effect of the polysaccharide from Ophiopogon japonicus on isoproterenol-induced myocardial ischemia in rats. Int J Biol Macromol 2020; 147: 233-40.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.068] [PMID: 31923517]
[246]
Wang Y, Shi LL, Wang LY, Xu JW, Feng Y. Protective effects of MDG-1, a polysaccharide from Ophiopogon japonicus on diabetic nephropathy in diabetic KKAy mice. Int J Mol Sci 2015; 16(9): 22473-84.
[http://dx.doi.org/10.3390/ijms160922473] [PMID: 26393572]
[247]
Sheng X, Yang Y, Liu J, et al. Ophiopogonin A alleviates hemorrhagic shock-induced renal injury via induction of Nrf2 expression. Front Physiol 2021; 11: 619740.
[http://dx.doi.org/10.3389/fphys.2020.619740] [PMID: 33597892]
[248]
Qiao Y, Jiao H, Wang F, Niu H. Ophiopogonin D of Ophiopogon japonicus ameliorates renal function by suppressing oxidative stress and inflammatory response in streptozotocin-induced diabetic nephropathy rats. Braz J Med Biol Res 2020; 53(7): e9628.
[http://dx.doi.org/10.1590/1414-431x20209628] [PMID: 32520209]
[249]
Ercan G, Ilbar Tartar R, Solmaz A, et al. Potent therapeutic effects of ruscogenin on gastric ulcer established by acetic acid. Asian J Surg 2020; 43(2): 405-16.
[http://dx.doi.org/10.1016/j.asjsur.2019.07.001] [PMID: 31345657]
[250]
Liu Y, Dai Y, Xu H, et al. Ruscogenin alleviates intestinal bleeding and blood flow induced by dasatinib through ROCK/MLC pathway. PrePrint 2020.
[http://dx.doi.org/10.21203/rs.3.rs-96134/v1]
[251]
Shi L, Li Y, Wang Y, Feng Y. MDG-1, an Ophiopogon polysaccharide, regulate gut microbiota in high-fat diet-induced obese C57BL/6 mice. Int J Biol Macromol 2015; 81: 576-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.057] [PMID: 26321425]
[252]
Chen S, Li X, Liu L, Liu C, Han X. Ophiopogonin D alleviates high‐fat diet‐induced metabolic syndrome and changes the structure of gut microbiota in mice. FASEB J 2018; 32(3): 1139-53.
[http://dx.doi.org/10.1096/fj.201700741RR] [PMID: 29084766]
[253]
Zhang L, Wang Y, Wu F, Wang X, Feng Y, Wang Y. MDG, an Ophiopogon japonicus polysaccharide, inhibits non-alcoholic fatty liver disease by regulating the abundance of Akkermansia muciniphila. Int J Biol Macromol 2022; 196: 23-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.036] [PMID: 34920070]
[254]
Ramesh T, Sureka C, Bhuvana S, Begum VH. Oxidative stress in the brain of cigarette smoke-induced noxiousness: Neuroprotective role of Sesbania grandiflora. Metab Brain Dis 2015; 30(2): 573-82.
[http://dx.doi.org/10.1007/s11011-014-9614-4] [PMID: 25217401]
[255]
Mahadik VJ, Chavare MN, Patil S, Wadkar KA. Cognition enhancing potential of Sesbania grandiflora fruit extract in scopolamine induced amnesia in mice. Res J Pharm Technol 2020; 13(11): 5057-62.
[256]
Semwal BC, Verma M, Murti Y, Yadav HN. Neuroprotective activity of Sesbania grandifolara seeds extract against celecoxib induced amnesia in mice. Pharmacogn J 2018; 10(4): 747-52.
[http://dx.doi.org/10.5530/pj.2018.4.125]
[257]
Bhatt S, Rajangam J, Rajitha K. Neuropharmacological evaluation of Sesbania grandiflora (L.) Pers. leaves in preclinical models of depression and co-morbid anxiety. Pharmacovigilance for Healthcare professionals. Scope Opportunities 2020; 3: 65.
[258]
Ramesh T, Mahesh R, Sureka C, Begum VH. Cardioprotective effects of Sesbania grandiflora in cigarette smoke-exposed rats. J Cardiovasc Pharmacol 2008; 52(4): 338-43.
[http://dx.doi.org/10.1097/FJC.0b013e3181888383] [PMID: 18791462]
[259]
Jigneshkumar PR. Evaluation of the antihyperglycemic, cardio protective and antihyperlipidemic activity of flowers of Sesbania grandiflora (Linn). PhD. Dissertation. In: Pharmacology Bengaluru Rajiv Gandhi University of Health Sciences Karnataka 2011.
[260]
Ramesh T, Mahesh R, Begum VH. Effect of Sesban grandiflora on membrane-bound ATPases in cigarette smoke exposed rats. J Pharmacol Toxicol 2007; 2(6): 559-66.
[http://dx.doi.org/10.3923/jpt.2007.559.566]
[261]
Padmalochana K, Rajan MD. Hepatoprotective and antioxidant activity of Sesbania grandiflora against CCl4-induced hepatic injury in rats. Int J Pharm 2015; 2(2): 71-6.
[262]
Kale I, Khan MA, Irfan Y, Veerana GA. Hepatoprotective potential of ethanolic and aqueous extract of flowers of Sesbania grandiflora (Linn) induced by CCl4. Asian Pac J Trop Biomed 2012; 2(2): S670-9.
[http://dx.doi.org/10.1016/S2221-1691(12)60294-9]
[263]
Kumaravel M, Karthiga K, Raviteja V, Rukkumani R. Protective effects of Sesbania grandiflora on kidney during alcohol and polyunsaturated fatty acid-induced oxidative stress. Toxicol Mech Methods 2011; 21(5): 418-25.
[http://dx.doi.org/10.3109/15376516.2010.550015] [PMID: 21417636]
[264]
Panigrahi G, Panda C, Patra A. Extract of Sesbania grandiflora ameliorates hyperglycemia in high fat diet-streptozotocin induced experimental diabetes mellitus. Scientifica (Cairo) 2016; 2016: 1-10.
[http://dx.doi.org/10.1155/2016/4083568] [PMID: 27313954]
[265]
Sureka C, Ramesh T, Begum VH. Attenuation of erythrocyte membrane oxidative stress by Sesbania grandiflora in streptozotocin-induced diabetic rats. Biochem Cell Biol 2015; 93(4): 385-95.
[http://dx.doi.org/10.1139/bcb-2015-0039] [PMID: 26176361]
[266]
Gupta RA, Motiwala MN, Mahajan UN, Sabre SG. Protective effect of Sesbania grandiflora on acetic acid induced ulcerative colitis in mice by inhibition of TNF-α and IL-6. J Ethnopharmacol 2018; 219: 222-32.
[http://dx.doi.org/10.1016/j.jep.2018.02.043] [PMID: 29530609]
[267]
Bhoumik D, Berhe AH, Mallik A. Evaluation of gastric anti-ulcer potency of ethanolic extract of Sesbania grandiflora Linn leaves in experimental animals. Am J Phytomed Clin Ther 2016; 4(6): 174-82.
[268]
Alahakoon C, Ganegoda G. Sesbania grandiflora the anti-ulcer effect: A review. J Pharmacogn Phytochem 2019; 8(4): 879-82.
[269]
Naik HV, Chavan N, Deshmukh HA, Chaskar PK, More NS. Study of antiulcer activity of leaves of Sesbania grandiflora Linn. (Fabaceae). Res J Pharmacogn Phytochem 2012; 4(6): 322.
[270]
Erfani M, Ghazi Tabatabaei Z, Sadigh-Eteghad S, et al. Rosa canina L. methanolic extract prevents heat stress-induced memory dysfunction in rats. Exp Physiol 2019; 104(10): 1544-54.
[http://dx.doi.org/10.1113/EP087535] [PMID: 31297904]
[271]
Daneshmand P, Saliminejad K, Dehghan Shasaltaneh M, et al. Neuroprotective effects of herbal extract (Rosa canina, Tanacetum vulgare and Urtica dioica) on rat model of sporadic Alzheimer’s disease. Avicenna J Med Biotechnol 2016; 8(3): 120-5.
[PMID: 27563424]
[272]
Farajpour R, Sadigh-Eteghad S, Ahmadian N, Farzipour M, Mahmoudi J, Majdi A. Chronic administration of Rosa canina hydro-alcoholic extract attenuates depressive-like behavior and recognition memory impairment in diabetic mice: A possible role of oxidative stress. Med Princ Pract 2017; 26(3): 245-50.
[http://dx.doi.org/10.1159/000464364] [PMID: 28226322]
[273]
Salari M, Kalantaripour TP, Esmaeilpour K, Masoumi-Ardakani Y, Oloumi H, Asadi-Shekaari M. Investigating the effects of Rosa canina L. fruit extract in animal model of Alzheimer’s disease. J Res Med Dent Sci 2018; 6(6): 141-6.
[274]
Nemati Z, Komaki A, Shahidi S, Sarihi A. Effect of a hydroalcoholic extract of Rosa canina flowers on anxiety in rats. Neurophysiology 2015; 47(2): 133-7.
[http://dx.doi.org/10.1007/s11062-015-9509-y]
[275]
Hamidi S, Vaez H, Asgharian P. Rosa canina as an adjunctive treatment of asthma: A hypothesis. Adv Biosci Clin Med 2015; 3(1): 48-52.
[276]
Ferrara L. Phytotherapy as a preventive and adjuvant for the rhinitis. IOSR J Pharm 2016; 6: 2250-3013.
[277]
Amirshahrokhi K. The effect of Rosa canina extract against paraquat-induced lung injury. J Ardabil Univ Med Sci 2020; 19(4): 400-9.
[http://dx.doi.org/10.29252/jarums.19.4.400]
[278]
Nasrolahi A, Hosseini L, Farokhi-Sisakht F, et al. Cardioprotective effect of Rosa canina L. methanolic extract on heat shock induced cardiomyocyte injury: An experimental study. J Cardiovasc Thorac Res 2020; 12(4): 286-93.
[PMID: 33510877]
[279]
Ghorbani F, Keshavarz M, Faghihi M, Nazem E, Imani A. The protective effect of Rosa canina distilled water on ischemia-reperfusion injuries in the isolated rat heart. Int J Biosci 2015; 6(5): 25-33.
[http://dx.doi.org/10.12692/ijb/6.5.25-33]
[280]
Cavalera M, Axling U, Rippe C, Swärd K, Holm C. Dietary rose hip exerts antiatherosclerotic effects and increases nitric oxide-mediated dilation in ApoE-null mice. J Nutr Biochem 2017; 44: 52-9.
[http://dx.doi.org/10.1016/j.jnutbio.2017.02.017] [PMID: 28399420]
[281]
Mármol I, Sánchez-de-Diego C, Jiménez-Moreno N, Ancín-Azpilicueta C, Rodríguez-Yoldi M. Therapeutic applications of rose hips from different Rosa species. Int J Mol Sci 2017; 18(6): 1137.
[http://dx.doi.org/10.3390/ijms18061137] [PMID: 28587101]
[282]
Taghizadeh M, Rashidi AA, Taherian AA, Vakili Z, Mehran M. The protective effect of hydroalcoholic extract of Rosa canina (dog rose) fruit on liver function and structure in streptozotocin-induced diabetes in rats. J Diet Suppl 2018; 15(5): 624-35.
[http://dx.doi.org/10.1080/19390211.2017.1369205] [PMID: 29095652]
[283]
Karimimoja F, Hosseini RH, Ziamajidi N, Abbasalipo R, Nourian A. Effect of Rosa canina distilled water on tamoxifen-treated male wistar rats. Pak J Biol Sci 2020; 23(2): 173-80.
[http://dx.doi.org/10.3923/pjbs.2020.173.180] [PMID: 31944077]
[284]
Sadeghi H, Hosseinzadeh S, Akbartabar Touri M, et al. Hepatoprotective effect of Rosa canina fruit extract against carbon tetrachloride induced hepatotoxicity in rat. Avicenna J Phytomed 2016; 6(2): 181-8.
[PMID: 27222831]
[285]
Khosravi A. Effects of concurrent eight-week aerobic trainings and Rosa canina L. fruit hydroalcoholic extract on liver enzymes and malondialdehyde of liver in male rats following an acute aerobic exercise until exhaustion. Majallah-i Pizishki (Tabriz) 2021; 42(6): 701-12.
[http://dx.doi.org/10.34172/mj.2021.011]
[286]
Changizi-Ashtiyani S, Berenji S, Zarei A, Ramezani M, Hosseini N. The effects of the extract of Rosa canina L. On lipid profile, liver and thyroid functions in hypercholesterolemic rats. J Kerman Univ Med Sci 2018; 25(4): 318-27.
[287]
Tayefi-Nasrabadi H, Sadigh-Eteghad S, Aghdam Z. The effects of the hydroalcohol extract of Rosa canina L. fruit on experimentally nephrolithiasic Wistar rats. Phytother Res 2012; 26(1): 78-85.
[http://dx.doi.org/10.1002/ptr.3519] [PMID: 21544885]
[288]
Kikuchi H, Kogure S, Arai R, et al. Rosehip inhibits xanthine oxidase activity and reduces serum urate levels in a mouse model of hyperuricemia. Biomed Rep 2017; 6(5): 539-44.
[http://dx.doi.org/10.3892/br.2017.888] [PMID: 28529735]
[289]
Changizi Ashtiyani S, Najafi H, Jalalvandi S, Hosseinei F. Protective effects of Rosa canina L. fruit extracts on renal disturbances induced by reperfusion injury in rats. Iran J Kidney Dis 2013; 7(4): 290-8.
[PMID: 23880806]
[290]
Gholampour F, Javadifar TS, Karimi S, Eslam-Zadeh T, Owji SM. The effects of the hydroalcohol extract of Rosa canina L. fruit on ischemic acute renal failure in Wistar rats. Comp Clin Pathol 2012; 21(6): 1433-8.
[http://dx.doi.org/10.1007/s00580-012-1533-3]
[291]
Ousaaid D, Laaroussi H, Bakour M, et al. Effect of a combination of Rosa Canina fruits and apple cider vinegar against hydrogen peroxide-induced toxicity in experimental animal models. J Food Qual 2022; 2022: 1-9.
[http://dx.doi.org/10.1155/2022/7381378]
[292]
Sebai H, Jabria MA, Wannes D, Tounsi HLM. Antioxydant properties and gastroprotective effect of Rosa canina aqueous extract against alcohol-induced ulceration and oxidative stress in rat model. Int J Nutr Food Eng 2018; 12(12): 1.
[293]
Wanes D, Jabri MA, Tounsi H, et al. Chemical characterization of bioactive components of Rosa canina extract and its protective effect on dextran sulfate sodium-induced intestinal bowel disease in a mouse model. J Med Food 2020; 23(10): 1109-19.
[http://dx.doi.org/10.1089/jmf.2019.0191] [PMID: 32379993]
[294]
Valcheva-Kuzmanova S, Denev P, Eftimov M, et al. Protective effects of Aronia melanocarpa juices either alone or combined with extracts from Rosa canina or Alchemilla vulgaris in a rat model of indomethacin-induced gastric ulcers. Food Chem Toxicol 2019; 132: 110739.
[http://dx.doi.org/10.1016/j.fct.2019.110739] [PMID: 31374297]
[295]
Mandade R, Choudhury A, Harsulkar A, Wakade R. Role of the Rosa canina L. leaf extract as an antidiarrheal drug in rodents. Indian J Pharmacol 2011; 43(3): 316-9.
[http://dx.doi.org/10.4103/0253-7613.81510] [PMID: 21713098]
[296]
Khazaei M, Khazaei M, Pazhouhi M. An overview of therapeutic potentials of Rosa canina: A traditionally valuable herb. World Cancer Res J 2020; 7: 1580-0.
[297]
Das M, Gohain K. Evaluation of memory enhancing activity of methanolic Extract of Oxalis corniculata Linn on dementia in experimental animals. Int J Sci Eng Res 2018; 9(3): 922-8.
[298]
Das M, Gohain K. Study of neuroprotective activity of methanolic extract of Oxalis corniculata Linn on animal models of depression. Int J Eng Sci Res Technol 7(6): 396-405.
[299]
Aruna K, Rajeswari PDR, Sankar SR. The effect of Oxalis corniculata extract against the behavioral changes induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in mice. J Appl Pharm Sci 2017; 7(3): 148-53.
[300]
Gupta G, Kazmi I, Afzal M, Rahman M, Anwar F. Anxiolytic effect of Oxalis corniculata (Oxalidaceae) in mice. Asian Pac J Trop Dis 2012; 2: S837-40.
[http://dx.doi.org/10.1016/S2222-1808(12)60275-8]
[301]
Senthil K, Rajkapoor B. Study on phytochemical profile and anti-epileptic activity of Oxalis corniculata Linn. Indian J Pharm Biol Res 2010; 1(1): 33-6.
[302]
Ahmad B, Khan MR, Shah NA. Amelioration of carbon tetrachloride-induced pulmonary toxicity with Oxalis corniculata. Toxicol Ind Health 2015; 31(12): 1243-51.
[http://dx.doi.org/10.1177/0748233713487245] [PMID: 23796759]
[303]
Moyeenudin HM, Vijayalakshmi S. The antihypertensive effect from aqueous extract of Oxalis corniculata by in vitro antihypertensive activity assay. Res J Pharm Technol 2019; 12(6): 2981-6.
[http://dx.doi.org/10.5958/0974-360X.2019.00504.3]
[304]
Abhilash PA, Nisha P, Prathapan A, et al. Cardioprotective effects of aqueous extract of Oxalis corniculata in experimental myocardial infarction. Exp Toxicol Pathol 2011; 63(6): 535-40.
[http://dx.doi.org/10.1016/j.etp.2010.04.004] [PMID: 20462747]
[305]
Sreejith G, Jayasree M, Latha PG, et al. Hepatoprotective activity of Oxalis corniculata L. ethanolic extract against paracetamol induced hepatotoxicity in Wistar rats and its in vitro antioxidant effects. Indian J Exp Biol 2014; 52(2): 147-52.
[PMID: 24597147]
[306]
Sohail I, Hussain K, Irfan Bukhari N, et al. Analytical, antioxidant and hepatoprotective studies on extracts of Oxalis corniculata Linn. J Chem Soc Pak 2014; 36(4): 630-8.
[307]
Nadeem Ashraf NJAA. Hydroalcoholic extract of Hummaz (Oxalis corniculata Linn) protects rats against chemically induced hepatotoxicity. Unani Medicus 2016; 3(1): 1-9.
[308]
Ding Q, Huang X, Yang X, et al. Study of the mechanism of Oxalis corniculata (L.) in the treatment of hepatitis based on network pharmacology. IOP Conf Ser Earth Environ Sci 2021; 714: 032021.
[309]
Khan MR, Zehra H. Amelioration of CCl4-induced nephrotoxicity by Oxalis corniculata in rat. Exp Toxicol Pathol 2013; 65(3): 327-34.
[http://dx.doi.org/10.1016/j.etp.2011.11.007] [PMID: 22205120]
[310]
Saracila M, Panaite TD, Tabuc C, et al. Maintaining intestinal microflora balance in heat-stressed broilers using dietary creeping wood sorrel (Oxalis corniculata) powder and chromium (chromium picolinate). Span J Agric Res 2020; 18(3): e0612-2.
[http://dx.doi.org/10.5424/sjar/2020183-16146]
[311]
Juvekar A, Sakat SS, Tupe P. Gastroprotective effect of Oxalis corniculata (whole plant) on experimentally induced gastric ulceration in Wistar rats. Indian J Pharm Sci 2012; 74(1): 48-53.
[http://dx.doi.org/10.4103/0250-474X.102543] [PMID: 23204622]
[312]
Abubakar A, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci 2020; 12(1): 1-10.
[http://dx.doi.org/10.4103/jpbs.JPBS_175_19] [PMID: 32801594]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy