Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps

Author(s): André Ramos*, Natalli Granzotto, Rafael Kremer, Ariela Maína Boeder, Julia Fernandez Puñal de Araújo, Aline Guimarães Pereira and Geison Souza Izídio

Volume 21, Issue 9, 2023

Published on: 27 October, 2022

Page: [1840 - 1863] Pages: 24

DOI: 10.2174/1570159X20666220901154034

Price: $65

Abstract

Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.

Keywords: Behavior genetics, anxiety, hyperactivity, linkage analysis, quantitative trait loci, quantitative trait genes, rats.

Graphical Abstract
[1]
Mendel, G. Versuche über pflanzen-hybriden. Der Züchter., 1941, 10-11, 221-268.
[2]
Gillham, N.W. Sir Francis Galton and the birth of eugenics. Annu. Rev. Genet., 2001, 35(1), 83-101.
[http://dx.doi.org/10.1146/annurev.genet.35.102401.090055] [PMID: 11700278]
[3]
Falconer, D.S. Early selection experiments. Annu. Rev. Genet., 1992, 26(1), 1-16.
[http://dx.doi.org/10.1146/annurev.ge.26.120192.000245] [PMID: 1482107]
[4]
Flint, J.; Mott, R. Applying mouse complex-trait resources to behavioural genetics. Nature, 2008, 456(7223), 724-727.
[http://dx.doi.org/10.1038/nature07630] [PMID: 19079048]
[5]
Alfred Henry, S. A History of Genetics, 1st ed.; Cold Spring Harbor Laboratory Press: New York, 1965.
[6]
Plomin, R.; Deary, I.J. Genetics and intelligence differences: five special findings. Mol. Psychiatry, 2015, 20(1), 98-108.
[http://dx.doi.org/10.1038/mp.2014.105] [PMID: 25224258]
[7]
Sturtevant, A.H. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool., 1913, 14(1), 43-59.
[http://dx.doi.org/10.1002/jez.1400140104]
[8]
Serikawa, T.; Kuramoto, T.; Hilbert, P.; Mori, M.; Yamada, J.; Dubay, C.J.; Lindpainter, K.; Ganten, D.; Guénet, J.L.; Lathrop, G.M. Rat gene mapping using PCR-analyzed microsatellites. Genetics, 1992, 131(3), 701-721.
[http://dx.doi.org/10.1093/genetics/131.3.701] [PMID: 1628813]
[9]
Jacob, H.J.; Brown, D.M.; Bunker, R.K.; Daly, M.J.; Dzau, V.J.; Goodman, A.; Koike, G.; Kren, V.; Kurtz, T.; Lernmark, Å.; Levan, G.; Mao, Y.; Pettersson, A.; Pravenec, M.; Simon, J.S.; Szpirer, C.; Szpirer, J.; Trolliet, M.R.; Winer, E.S.; Lander, E.S. A genetic linkage map of the laboratory rat, Rattus norvegicus. Nat. Genet., 1995, 9(1), 63-69.
[http://dx.doi.org/10.1038/ng0195-63] [PMID: 7704027]
[10]
Ramos, A.; Moisan, M-P.; Chaouloff, F.; Mormède, C.; Mormède, P. Identification of female-specific QTLs affecting an emotionality-related behavior in rats. Mol. Psychiatry, 1999, 4(5), 453-462.
[http://dx.doi.org/10.1038/sj.mp.4000546] [PMID: 10523818]
[11]
Ramos, A.; Moisan, M.P.; Walentinsson, A.; Sjoling, A.; Klinga-Levan, K.; Atkinson, O.S. Discrepancies in chromosomal assignment of commercially available ratmicrosatellite markers. Rat Genome., 1998, 4(2), 103-110.
[12]
Smith, J.R.; Hayman, G.T.; Wang, S.J.; Laulederkind, S.J.F.; Hoffman, M.J.; Kaldunski, M.L.; Tutaj, M.; Thota, J.; Nalabolu, H.S.; Ellanki, S.L.R.; Tutaj, M.A.; De Pons, J.L.; Kwitek, A.E.; Dwinell, M.R.; Shimoyama, M.E. The Year of the Rat: The Rat Genome Database at 20: a multi-species knowledgebase and analysis platform. Nucleic Acids Res., 2020, 48(D1), D731-D742.
[http://dx.doi.org/10.1093/nar/gkz1041] [PMID: 31713623]
[13]
Jacob, H.J. Functional genomics and rat models. Genome Res., 1999, 9(11), 1013-1016.
[http://dx.doi.org/10.1101/gr.9.11.1013] [PMID: 10568741]
[14]
Bryda, E.C. The Mighty Mouse: the impact of rodents on advances in biomedical research. Mo. Med., 2013, 110(3), 207-211.
[PMID: 23829104]
[15]
Ellenbroek, B.; Youn, J. Rodent models in neuroscience research: is it a rat race? Dis. Model. Mech., 2016, 9(10), 1079-1087.
[http://dx.doi.org/10.1242/dmm.026120] [PMID: 27736744]
[16]
Richter, C.P. The effects of domestication and selection on the behavior of the Norway rat. J. Natl. Cancer Inst., 1954, 15(3), 727-738.
[PMID: 13233922]
[17]
Aitman, T.J.; Critser, J.K.; Cuppen, E.; Dominiczak, A.; Fernandez-Suarez, X.M.; Flint, J.; Gauguier, D.; Geurts, A.M.; Gould, M.; Harris, P.C.; Holmdahl, R.; Hubner, N.; Izsvák, Z.; Jacob, H.J.; Kuramoto, T.; Kwitek, A.E.; Marrone, A.; Mashimo, T.; Moreno, C.; Mullins, J.; Mullins, L.; Olsson, T.; Pravenec, M.; Riley, L.; Saar, K.; Serikawa, T.; Shull, J.D.; Szpirer, C.; Twigger, S.N.; Voigt, B.; Worley, K. Progress and prospects in rat genetics: a community view. Nat. Genet., 2008, 40(5), 516-522.
[http://dx.doi.org/10.1038/ng.147] [PMID: 18443588]
[18]
Rew, D. The sequencing of the rat genome. Eur. J. Surg. Oncol., 2004, 30(8), 905-906.
[http://dx.doi.org/10.1016/S0748-7983(04)00129-5] [PMID: 15497215]
[19]
Ferreira, L.M.; Hochman, B.; Barbosa, M.V. [Experimental models in research]. Acta Cir. Bras., 2005, 20(Suppl. 2), 28-34.
[http://dx.doi.org/10.1590/S0102-86502005000800008] [PMID: 16283025]
[20]
Cowley, A.W., Jr; Liang, M.; Roman, R.J.; Greene, A.S.; Jacob, H.J. Consomic rat model systems for physiological genomics. Acta Physiol. Scand., 2004, 181(4), 585-592.
[http://dx.doi.org/10.1111/j.1365-201X.2004.01334.x] [PMID: 15283774]
[21]
Gauguier, D. Rats: Genetic and functional genomic analyses of complex phenotypes. In: Brenner’s encyclopedia of genetics, 2nd ed.; Maloy, S.; Hughes, K., Eds.; Elsevier Academic Press, 2013; pp. 38-40.
[http://dx.doi.org/10.1016/B978-0-12-374984-0.01258-4]
[22]
Ramos, A.; Berton, O.; Mormède, P.; Chaouloff, F. A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behav. Brain Res., 1997, 85(1), 57-69.
[http://dx.doi.org/10.1016/S0166-4328(96)00164-7] [PMID: 9095342]
[23]
Werkhoven, Z.; Bravin, A.; Skutt-Kakaria, K.; Reimers, P.; Pallares, L.F.; Ayroles, J.; de Bivort, B.L. The structure of behavioral variation within a genotype. eLife, 2021, 10, e64988.
[http://dx.doi.org/10.7554/eLife.64988] [PMID: 34664550]
[24]
Lander, E.; Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet., 1995, 11(3), 241-247.
[http://dx.doi.org/10.1038/ng1195-241] [PMID: 7581446]
[25]
Abiola, O.; Angel, J.M.; Avner, P.; Bachmanov, A.A.; Belknap, J.K.; Bennett, B.; Blankenhorn, E.P.; Blizard, D.A.; Bolivar, V.; Brockmann, G.A.; Buck, K.J.; Bureau, J.F.; Casley, W.L.; Chesler, E.J.; Cheverud, J.M.; Churchill, G.A.; Cook, M.; Crabbe, J.C.; Crusio, W.E.; Darvasi, A.; de Haan, G.; Dermant, P.; Doerge, R.W.; Elliot, R.W.; Farber, C.R.; Flaherty, L.; Flint, J.; Gershenfeld, H.; Gibson, J.P.; Gu, J.; Gu, W.; Himmelbauer, H.; Hitzemann, R.; Hsu, H.C.; Hunter, K.; Iraqi, F.F.; Jansen, R.C.; Johnson, T.E.; Jones, B.C.; Kempermann, G.; Lammert, F.; Lu, L.; Manly, K.F.; Matthews, D.B.; Medrano, J.F.; Mehrabian, M.; Mittlemann, G.; Mock, B.A.; Mogil, J.S.; Montagutelli, X.; Morahan, G.; Mountz, J.D.; Nagase, H.; Nowakowski, R.S.; O’Hara, B.F.; Osadchuk, A.V.; Paigen, B.; Palmer, A.A.; Peirce, J.L.; Pomp, D.; Rosemann, M.; Rosen, G.D.; Schalkwyk, L.C.; Seltzer, Z.; Settle, S.; Shimomura, K.; Shou, S.; Sikela, J.M.; Siracusa, L.D.; Spearow, J.L.; Teuscher, C.; Threadgill, D.W.; Toth, L.A.; Toye, A.A.; Vadasz, C.; Van Zant, G.; Wakeland, E.; Williams, R.W.; Zhang, H.G.; Zou, F. The nature and identification of quantitative trait loci: a community’s view. Nat. Rev. Genet., 2003, 4(11), 911-916.
[http://dx.doi.org/10.1038/nrg1206] [PMID: 14634638]
[26]
Flint, J.; Valdar, W.; Shifman, S.; Mott, R. Strategies for mapping and cloning quantitative trait genes in rodents. Nat. Rev. Genet., 2005, 6(4), 271-286.
[http://dx.doi.org/10.1038/nrg1576] [PMID: 15803197]
[27]
Wehner, J.M.; Radcliffe, R.A.; Bowers, B.J. Quantitative genetics and mouse behavior. Annu. Rev. Neurosci., 2001, 24(1), 845-867.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.845] [PMID: 11520920]
[28]
Shalom, A.; Darvasi, A. Experimental designs for QTL fine mapping in rodents. Methods Mol. Biol., 2002, 195, 199-223.
[http://dx.doi.org/10.1385/1-59259-176-0:199] [PMID: 12070882]
[29]
Ramos, A. Animal models of anxiety: do I need multiple tests? Trends Pharmacol. Sci., 2008, 29(10), 493-498.
[http://dx.doi.org/10.1016/j.tips.2008.07.005] [PMID: 18755516]
[30]
Flint, J.; Corley, R.; DeFries, J.C.; Fulker, D.W.; Gray, J.A.; Miller, S.; Collins, A.C. A simple genetic basis for a complex psychological trait in laboratory mice. Science, 1995, 269(5229), 1432-1435.
[http://dx.doi.org/10.1126/science.7660127] [PMID: 7660127]
[31]
Moisan, M.P.; Courvoisier, H.; Bihoreau, M.T.; Gauguier, D.; Hendley, E.D.; Lathrop, M.; James, M.R.; Mormède, P. A major quantitative trait locus influences hyperactivity in the WKHA rat. Nat. Genet., 1996, 14(4), 471-473.
[http://dx.doi.org/10.1038/ng1296-471] [PMID: 8944030]
[32]
Caldarone, B.; Saavedra, C.; Tartaglia, K.; Wehner, J.M.; Dudek, B.C.; Flaherty, L. Quantitative trait loci analysis affecting contextual conditioning in mice. Nat. Genet., 1997, 17(3), 335-337.
[http://dx.doi.org/10.1038/ng1197-335] [PMID: 9354801]
[33]
Bice, P.; Foroud, T.; Bo, R.; Castelluccio, P.; Lumeng, L.; Li, T.K.; Carr, L.G. Genomic screen for QTLs underlying alcohol consumption in the P and NP rat lines. Mamm. Genome, 1998, 9(12), 949-955.
[http://dx.doi.org/10.1007/s003359900905] [PMID: 9880658]
[34]
Carr, L.G.; Foroud, T.; Bice, P.; Gobbett, T.; Ivashina, J.; Edenberg, H.; Lumeng, L.; Li, T.K. A quantitative trait locus for alcohol consumption in selectively bred rat lines. Alcohol. Clin. Exp. Res., 1998, 22(4), 884-887.
[http://dx.doi.org/10.1111/j.1530-0277.1998.tb03883.x] [PMID: 9660316]
[35]
Fernández-Teruel, A.; Escorihuela, R.M.; Gray, J.A.; Aguilar, R.; Gil, L.; Giménez-Llort, L.; Tobeña, A.; Bhomra, A.; Nicod, A.; Mott, R.; Driscoll, P.; Dawson, G.R.; Flint, J. A quantitative trait locus influencing anxiety in the laboratory rat. Genome Res., 2002, 12(4), 618-626.
[http://dx.doi.org/10.1101/gr.203402] [PMID: 11932246]
[36]
Flint, J. Analysis of quantitative trait loci that influence animal behavior. J. Neurobiol., 2003, 54(1), 46-77.
[http://dx.doi.org/10.1002/neu.10161] [PMID: 12486698]
[37]
Terenina-Rigaldie, E.; Jones, B.C.; Mormède, P. Pleiotropic effect of a locus on chromosome 4 influencing alcohol drinking and emotional reactivity in rats. Genes Brain Behav., 2003, 2(3), 125-131.
[http://dx.doi.org/10.1034/j.1601-183X.2003.00018.x] [PMID: 12931785]
[38]
Yalcin, B.; Willis-Owen, S.A.G.; Fullerton, J.; Meesaq, A.; Deacon, R.M.; Rawlins, J.N.P.; Copley, R.R.; Morris, A.P.; Flint, J.; Mott, R. Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nat. Genet., 2004, 36(11), 1197-1202.
[http://dx.doi.org/10.1038/ng1450] [PMID: 15489855]
[39]
Llamas, B.; Contesse, V.; Guyonnet-Duperat, V.; Vaudry, H.; Mormède, P.; Moisan, M.P. QTL mapping for traits associated with stress neuroendocrine reactivity in rats. Mamm. Genome, 2005, 16(7), 505-515.
[http://dx.doi.org/10.1007/s00335-005-0022-2] [PMID: 16151695]
[40]
Bice, P.J.; Foroud, T.; Carr, L.G.; Zhang, L.; Liu, L.; Grahame, N.J.; Lumeng, L.; Li, T.K.; Belknap, J.K. Identification of QTLs influencing alcohol preference in the High Alcohol Preferring (HAP) and Low Alcohol Preferring (LAP) mouse lines. Behav. Genet., 2006, 36(2), 248-260.
[http://dx.doi.org/10.1007/s10519-005-9019-6] [PMID: 16482403]
[41]
Silva, G.J.J.; Pereira, A.C.; Krieger, E.M.; Krieger, J.E. Genetic mapping of a new heart rate QTL on chromosome 8 of spontaneously hypertensive rats. BMC Med. Genet., 2007, 8(1), 17.
[http://dx.doi.org/10.1186/1471-2350-8-17] [PMID: 17419875]
[42]
Izídio, G.S.; Oliveira, L.C.; Oliveira, L.F.G.; Pereira, E.; Wehrmeister, T.D.; Ramos, A. The influence of sex and estrous cycle on QTL for emotionality and ethanol consumption. Mamm. Genome, 2011, 22(5-6), 329-340.
[http://dx.doi.org/10.1007/s00335-011-9327-5] [PMID: 21516450]
[43]
Verdugo, R.A.; Farber, C.R.; Warden, C.H.; Medrano, J.F. Serious limitations of the QTL/Microarray approach for QTL gene discovery. BMC Biol., 2010, 8(1), 96.
[http://dx.doi.org/10.1186/1741-7007-8-96] [PMID: 20624276]
[44]
Moisan, M.P.; Ramos, A. Rat genomics applied to psychiatric research. Methods Mol. Biol., 2010, 597, 357-388.
[http://dx.doi.org/10.1007/978-1-60327-389-3_25] [PMID: 20013246]
[45]
Taylor, B.A.; Wnek, C.; Kotlus, B.S.; Roemer, N.; MacTaggart, T.; Phillips, S.J. Genotyping new BXD recombinant inbred mouse strains and comparison of BXD and consensus maps. Mamm. Genome, 1999, 10(4), 335-348.
[http://dx.doi.org/10.1007/s003359900998] [PMID: 10087289]
[46]
Sankaran, M.; Keeley, P.W.; He, L.; Iuvone, P.M.; Reese, B.E. Dopaminergic amacrine cell number, plexus density, and dopamine content in the mouse retina: Strain differences and effects of Bax gene disruption. Exp. Eye Res., 2018, 177, 208-212.
[http://dx.doi.org/10.1016/j.exer.2018.09.008] [PMID: 30240584]
[47]
Geisert, E.E.; Williams, R.W. Using BXD mouse strains in vision research: A systems genetics approach. Mol. Vis., 2020, 26, 173-187.
[PMID: 32180682]
[48]
Tabakoff, B.; Smith, H.; Vanderlinden, L.A.; Hoffman, P.L.; Saba, L.M. Networking in biology: the hybrid rat diversity panel. Methods Mol. Biol., 2019, 2018, 213-231.
[http://dx.doi.org/10.1007/978-1-4939-9581-3_10] [PMID: 31228159]
[49]
Medeiros, G.F.; Corrêa, F.J.; Corvino, M.E.; Izídio, G.S.; Ramos, A. The long way from complex phenotypes to genes: The story of rat chromosome 4 and its behavioral effects. World J. Neurosci., 2014, 4(3), 203-215.
[http://dx.doi.org/10.4236/wjns.2014.43024]
[50]
Dumas, P.; Sun, Y.; Corbeil, G.; Tremblay, S.; Pausova, Z.; Kren, V.; Krenova, D.; Pravenec, M.; Hamet, P.; Tremblay, J. Mapping of quantitative trait loci (QTL) of differential stress gene expression in rat recombinant inbred strains. J. Hypertens., 2000, 18(5), 545-551.
[http://dx.doi.org/10.1097/00004872-200018050-00006] [PMID: 10826556]
[51]
Klimeš, I.; Weston, K.; Gašperíková, D.; Kovács, P.; Kvetňanský, R.; Ježová, D.; Dixon, R.; Thompson, J.R.; Šeböková, E.; Samani, N.J. Mapping of genetic determinants of the sympathoneural response to stress. Physiol. Genomics, 2005, 20(2), 183-187.
[http://dx.doi.org/10.1152/physiolgenomics.00054.2004] [PMID: 15547139]
[52]
Cui, Z.H.; Ikeda, K.; Kawakami, K.; Gonda, T.; Nabika, T.; Masuda, J. Exaggerated response to restraint stress in rats congenic for the chromosome 1 blood pressure quantitative trait locus. Clin. Exp. Pharmacol. Physiol., 2003, 30(7), 464-469.
[http://dx.doi.org/10.1046/j.1440-1681.2003.03860.x] [PMID: 12823260]
[53]
Solberg, L.C.; Baum, A.E.; Ahmadiyeh, N.; Shimomura, K.; Li, R.; Turek, F.W.; Takahashi, J.S.; Churchill, G.A.; Redei, E.E. Genetic analysis of the stress-responsive adrenocortical axis. Physiol. Genomics, 2006, 27(3), 362-369.
[http://dx.doi.org/10.1152/physiolgenomics.00052.2006] [PMID: 16895972]
[54]
Ahmadiyeh, N.; Churchill, G.A.; Shimomura, K.; Solberg, L.C.; Takahashi, J.S.; Redei, E.E. X-linked and lineage-dependent inheritance of coping responses to stress. Mamm. Genome, 2003, 14(11), 748-757.
[http://dx.doi.org/10.1007/s00335-003-2292-x] [PMID: 14722724]
[55]
Ahmadiyeh, N.; Churchill, G.A.; Solberg, L.C.; Baum, A.E.; Shimonura, K.; Takahashi, J.S.; Redei, E.E. Lineage is an epigenetic modifier of QTL influencing behavioral coping with stress. Behav. Genet., 2005, 35(2), 189-198.
[http://dx.doi.org/10.1007/s10519-004-1018-5] [PMID: 15685431]
[56]
Meckes, J.K.; Lim, P.H.; Wert, S.L.; Luo, W.; Gacek, S.A.; Platt, D.; Jankord, R.; Saar, K.; Redei, E.E. Brain region-specific expression of genes mapped within quantitative trait loci for behavioral responsiveness to acute stress in Fisher 344 and Wistar Kyoto male rats. PLoS One, 2018, 13(3), e0194293.
[http://dx.doi.org/10.1371/journal.pone.0194293] [PMID: 29529077]
[57]
Redina, O.E.; Smolenskaya, S.E.; Polityko, Y.K.; Ershov, N.I.; Gilinsky, M.A.; Markel, A.L. Hypothalamic Norepinephrine Concentration and Heart Mass in Hypertensive ISIAH Rats Are Associated with a Genetic Locus on Chromosome 18. J. Pers. Med., 2021, 11(2), 67.
[http://dx.doi.org/10.3390/jpm11020067] [PMID: 33498741]
[58]
Marissal-Arvy, N.; Lombès, M.; Petterson, J.; Moisan, M.P.; Mormède, P. Gain of function mutation in the mineralocorticoid receptor of the Brown Norway rat. J. Biol. Chem., 2004, 279(38), 39232-39239.
[http://dx.doi.org/10.1074/jbc.M407436200] [PMID: 15252022]
[59]
Moisan, M-P.; Llamas, B.; Cook, M.N.; Mormède, P. Further dissection of a genomic locus associated with behavioral activity in the Wistar-Kyoto hyperactive rat, an animal model of hyperkinesis. Mol. Psychiatry, 2003, 8(3), 348-352.
[http://dx.doi.org/10.1038/sj.mp.4001234] [PMID: 12660808]
[60]
Mormède, P.; Courvoisier, H.; Ramos, A.; Marissal-Arvy, N.; Ousova, O.; Désautés, C.; Duclos, M.; Chaouloff, F.; Moisan, M.P. Molecular genetic approaches to investigate individual variations in behavioral and neuroendocrine stress responses. Psychoneuroendocrinology, 2002, 27(5), 563-583.
[http://dx.doi.org/10.1016/S0306-4530(01)00093-2] [PMID: 11965355]
[61]
Conti, L.H.; Jirout, M.; Breen, L.; Vanella, J.J.; Schork, N.J.; Printz, M.P. Identification of quantitative trait Loci for anxiety and locomotion phenotypes in rat recombinant inbred strains. Behav. Genet., 2004, 34(1), 93-103.
[http://dx.doi.org/10.1023/B:BEGE.0000009479.02183.1f] [PMID: 14739700]
[62]
Vendruscolo, L.F.; Terenina-Rigaldie, E.; Raba, F.; Ramos, A.; Takahashi, R.N.; Mormède, P. Evidence for a female-specific effect of a chromosome 4 locus on anxiety-related behaviors and ethanol drinking in rats. Genes Brain Behav., 2006, 5(6), 441-450.
[http://dx.doi.org/10.1111/j.1601-183X.2005.00177.x] [PMID: 16923148]
[63]
Baum, A.E.; Solberg, L.C.; Churchill, G.A.; Ahmadiyeh, N.; Takahashi, J.S.; Redei, E.E. Test- and behavior-specific genetic factors affect WKY hypoactivity in tests of emotionality. Behav. Brain Res., 2006, 169(2), 220-230.
[http://dx.doi.org/10.1016/j.bbr.2006.01.007] [PMID: 16490266]
[64]
de Medeiros, G.F.; Pereira, E.; Granzotto, N.; Ramos, A. Lowanxiety rat phenotypes can be further reduced through genetic intervention. PLoS One, 2013, 8(12), e83666.
[http://dx.doi.org/10.1371/journal.pone.0083666] [PMID: 24386249]
[65]
Anselmi, M.; Correa, F.J.; Santos, J.R.; Silva, A.F.; Cunha, J.A.; Leão, A.H.F.; Campêlo, C.L.C.; Ribeiro, A.M.; Silva, R.H.; Izídio, G.S. Genetic evidence for chromosome 4 loci influencing learning and memory. Neurobiol. Learn. Mem., 2016, 131, 182-191.
[http://dx.doi.org/10.1016/j.nlm.2016.03.024] [PMID: 27044679]
[66]
Vendruscolo, L.; Izídio, G.; Takahashi, R. Drug reinforcement in a rat model of attention deficit/hyperactivity disorder--the Spontaneously Hypertensive Rat (SHR). Curr. Drug Abuse Rev., 2009, 2(2), 177-183.
[http://dx.doi.org/10.2174/1874473710902020177] [PMID: 19630747]
[67]
Pértile, R.A.N.; Corvino, M.E.; Marchette, R.C.N.; Pavesi, E.; Cavalli, J.; Ramos, A.; Izídio, G.S. The quinpirole hypolocomotive effects are strain and route of administration dependent in SHR and SLA16 isogenic rats. Behav. Genet., 2017, 47(5), 552-563.
[http://dx.doi.org/10.1007/s10519-017-9865-z] [PMID: 28822047]
[68]
Acuña, L.R.; Marchette, R.C.N.; Granzotto, N.; Dias, P.G.; Corvino, M.E.; Mazur, F.G.; Corrêa, F.J.; Izídio, G.S. Effects of Repeated Treatment with Midazolam in SHR and SLA16 Rat Strains in the Triple Test. Behav. Genet., 2018, 48(6), 440-450.
[http://dx.doi.org/10.1007/s10519-018-9922-2] [PMID: 30232575]
[69]
Velázquez, A.M.; Roversi, K.; Dillenburg-Pilla, P.; Rodrigues, R.F.; Zárate-Bladés, C.R.; Prediger, R.D.S.; Izídio, G.S. The influence of chromosome 4 on metabolism and spatial memory in SHR and SLA16 rat strains. Behav. Brain Res., 2019, 370, 111966.
[http://dx.doi.org/10.1016/j.bbr.2019.111966] [PMID: 31125622]
[70]
Beavis, W.D. The power and deceit of QTL experiments: Lessons from comparative QTLstudies; American Seed Trade Association: Washington, DC, 1994, pp. 250-266.
[71]
Darvasi, A.; Soller, M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav. Genet., 1997, 27(2), 125-132.
[http://dx.doi.org/10.1023/A:1025685324830] [PMID: 9145551]
[72]
Laulederkind, S.J.F.; Hayman, G.T.; Wang, S.J.; Smith, J.R.; Petri, V.; Hoffman, M.J.; De Pons, J.; Tutaj, M.A.; Ghiasvand, O.; Tutaj, M.; Thota, J.; Dwinell, M.R.; Shimoyama, M. A Primer for the Rat Genome Database (RGD). Methods Mol. Biol., 2018, 1757, 163-209.
[http://dx.doi.org/10.1007/978-1-4939-7737-6_8] [PMID: 29761460]
[73]
Gunduz-Cinar, O.; Brockway, E.; Lederle, L.; Wilcox, T.; Halladay, L.R.; Ding, Y.; Oh, H.; Busch, E.F.; Kaugars, K.; Flynn, S.; Limoges, A.; Bukalo, O.; MacPherson, K.P.; Masneuf, S.; Pinard, C.; Sibille, E.; Chesler, E.J.; Holmes, A. Identification of a novel gene regulating amygdala-mediated fear extinction. Mol. Psychiatry, 2019, 24(4), 601-612.
[http://dx.doi.org/10.1038/s41380-017-0003-3] [PMID: 29311651]
[74]
Ishikawa, A. A strategy for identifying quantitative trait genes using gene expression analysis and causal analysis. Genes (Basel), 2017, 8(12), 347.
[http://dx.doi.org/10.3390/genes8120347] [PMID: 29186889]
[75]
Thomas, A.L.; Evans, L.M.; Nelsen, M.D.; Chesler, E.J.; Powers, M.S.; Booher, W.C.; Lowry, C.A.; DeFries, J.C.; Ehringer, M.A. Whole-genome sequencing of inbred mouse strains selected for high and low open-field activity. Behav. Genet., 2021, 51(1), 68-81.
[http://dx.doi.org/10.1007/s10519-020-10014-y] [PMID: 32939625]
[76]
Yazdani, N.; Parker, C.C.; Shen, Y.; Reed, E.R.; Guido, M.A.; Kole, L.A.; Kirkpatrick, S.L.; Lim, J.E.; Sokoloff, G.; Cheng, R.; Johnson, W.E.; Palmer, A.A.; Bryant, C.D. Hnrnph1 is A quantitative trait gene for methamphetamine sensitivity. PLoS Genet., 2015, 11(12), e1005713.
[http://dx.doi.org/10.1371/journal.pgen.1005713] [PMID: 26658939]
[77]
Cowley, A.W., Jr; Dwinell, M.R. Chromosomal substitution strategies to localize genomic regions related to complex traits. Compr. Physiol., 2020, 10(2), 365-388.
[http://dx.doi.org/10.1002/cphy.c180029] [PMID: 32163204]
[78]
Nadeau, J.H.; Singer, J.B.; Matin, A.; Lander, E.S. Analysing complex genetic traits with chromosome substitution strains. Nat. Genet., 2000, 24(3), 221-225.
[http://dx.doi.org/10.1038/73427] [PMID: 10700173]
[79]
Prediger, R.D.; França, A.P.; Izídio, G.S.; Takahashi, R.N. The use of object recognition task in animal models of attention-deficit hyperactivity disorder. In: Handbook of object novelty recognition; Ennaceur, A.; Silva, M.A de S., Eds.; Elsevier, 2018; pp. 341-357.
[http://dx.doi.org/10.1016/B978-0-12-812012-5.00023-9]
[80]
Spence, J.P.; Reiter, J.L.; Qiu, B.; Gu, H.; Garcia, D.K.; Zhang, L.; Graves, T.; Williams, K.E.; Bice, P.J.; Zou, Y.; Lai, Z.; Yong, W.; Liang, T. Estrogen-dependent upregulation of Adcyap1r1 expression in nucleus accumbens is associated with genetic predisposition of sex-specific QTL for alcohol consumption on rat chromosome 4. Front. Genet., 2018, 9, 513.
[http://dx.doi.org/10.3389/fgene.2018.00513] [PMID: 30564267]
[81]
Almasy, L.; Blangero, J. Human QTL linkage mapping. Genetica, 2009, 136(2), 333-340.
[http://dx.doi.org/10.1007/s10709-008-9305-3] [PMID: 18668207]
[82]
Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank [Internet]. National Center for Biotechnology Information (NCBI), 2015. [cited 2022 Feb 28]. Available from: https://www.ncbi.nlm.nih.gov/genbank/
[83]
Sajdyk, T.J.; Shekhar, A.; Gehlert, D.R. Interactions between NPY and CRF in the amygdala to regulate emotionality. Neuropeptides, 2004, 38(4), 225-234.
[http://dx.doi.org/10.1016/j.npep.2004.05.006] [PMID: 15337374]
[84]
Reichmann, F.; Holzer, P.; Neuropeptide, Y. Neuropeptide Y: A stressful review. Neuropeptides, 2016, 55, 99-109.
[http://dx.doi.org/10.1016/j.npep.2015.09.008] [PMID: 26441327]
[85]
Robinson, S.L.; Thiele, T.E. The role of neuropeptide Y (NPY) in alcohol and drug abuse disorders. Int. Rev. Neurobiol., 2017, 136, 177-197.
[http://dx.doi.org/10.1016/bs.irn.2017.06.005] [PMID: 29056151]
[86]
Spencer, B.; Potkar, R.; Metcalf, J.; Thrin, I.; Adame, A.; Rockenstein, E.; Masliah, E. Systemic Central Nervous System (CNS)-targeted Delivery of Neuropeptide Y (NPY) reduces neurodegeneration and increases neural precursor cell proliferation in a Mouse model of Alzheimer disease. J. Biol. Chem., 2016, 291(4), 1905-1920.
[http://dx.doi.org/10.1074/jbc.M115.678185] [PMID: 26620558]
[87]
Zhang, L.; Hernandez-Sanchez, D.; Herzog, H. Regulation of feeding-related behaviors by arcuate neuropeptide Y neurons. Endocrinology, 2019, 160(6), 1411-1420.
[PMID: 31089694]
[88]
Ferreira-Marques, M.; Aveleira, C.A.; Carmo-Silva, S.; Botelho, M.; Pereira de Almeida, L.; Cavadas, C. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation. Aging (Albany NY), 2016, 8(7), 1470-1484.
[http://dx.doi.org/10.18632/aging.100996] [PMID: 27441412]
[89]
Singh, C.; Rihel, J.; Prober, D.A. Neuropeptide Y regulates sleep by modulating noradrenergic signaling. Curr. Biol., 2017, 27(24), 3796-3811.e5.
[http://dx.doi.org/10.1016/j.cub.2017.11.018] [PMID: 29225025]
[90]
Tan, C.M.J.; Green, P.; Tapoulal, N.; Lewandowski, A.J.; Leeson, P.; Herring, N. The role of neuropeptide Y in cardiovascular health and disease. Front. Physiol., 2018, 9, 1281.
[http://dx.doi.org/10.3389/fphys.2018.01281] [PMID: 30283345]
[91]
Diaz-delCastillo, M.; Woldbye, D.P.D.; Heegaard, A.M. Neuropeptide Y and its involvement in chronic pain. Neuroscience, 2018, 387, 162-169.
[http://dx.doi.org/10.1016/j.neuroscience.2017.08.050] [PMID: 28890052]
[92]
Gøtzsche, C.R.; Woldbye, D.P.D. The role of NPY in learning and memory. Neuropeptides, 2016, 55, 79-89.
[http://dx.doi.org/10.1016/j.npep.2015.09.010] [PMID: 26454711]
[93]
Enman, N.M.; Sabban, E.L.; McGonigle, P.; Van Bockstaele, E.J. Targeting the neuropeptide Y system in stress-related psychiatric disorders. Neurobiol. Stress, 2015, 1, 33-43.
[http://dx.doi.org/10.1016/j.ynstr.2014.09.007] [PMID: 25506604]
[94]
Yamada, S.; Islam, M.S.; van Kooten, N.; Bovee, S.; Oh, Y.M.; Tsujimura, A.; Watanabe, Y.; Tanaka, M. Neuropeptide Y neurons in the nucleus accumbens modulate anxiety-like behavior. Exp. Neurol., 2020, 327, 113216.
[http://dx.doi.org/10.1016/j.expneurol.2020.113216] [PMID: 32014439]
[95]
Heilig, M.; Söderpalm, B.; Engel, J.A.; Widerlöv, E. Centrally administered neuropeptide Y (NPY) produces anxiolytic-like effects in animal anxiety models. Psychopharmacology (Berl.), 1989, 98(4), 524-529.
[http://dx.doi.org/10.1007/BF00441953] [PMID: 2570434]
[96]
Heilig, M.; McLeod, S.; Koob, G.K.; Britton, K.T. Anxiolytic-like effect of neuropeptide Y (NPY), but not other peptides in an operant conflict test. Regul. Pept., 1992, 41(1), 61-69.
[http://dx.doi.org/10.1016/0167-0115(92)90514-U] [PMID: 1360689]
[97]
Pich, E.M.; Agnati, L.F.; Zini, I.; Marrama, P.; Carani, C. Neuropeptide Y produces anxiolytic effects in spontaneously hypertensive rats. Peptides, 1993, 14(5), 909-912.
[http://dx.doi.org/10.1016/0196-9781(93)90065-O] [PMID: 7904341]
[98]
Broqua, P.; Wettstein, J.G.; Rocher, M.N.; Gauthier-Martin, B.; Junien, J.L. Behavioral effects of neuropeptide Y receptor agonists in the elevated plus-maze and fear-potentiated startle procedures. Behav. Pharmacol., 1995, 6(3), 215-222.
[http://dx.doi.org/10.1097/00008877-199504000-00001] [PMID: 11224329]
[99]
Molosh, A.I.; Sajdyk, T.J.; Truitt, W.A.; Zhu, W.; Oxford, G.S.; Shekhar, A. NPY Y1 receptors differentially modulate GABAA and NMDA receptors via divergent signal-transduction pathways to reduce excitability of amygdala neurons. Neuropsychopharmacology, 2013, 38(7), 1352-1364.
[http://dx.doi.org/10.1038/npp.2013.33] [PMID: 23358240]
[100]
Schroeder, J.P.; Olive, F.; Koenig, H.; Hodge, C.W. Intra-amygdala infusion of the NPY Y1 receptor antagonist BIBP 3226 attenuates operant ethanol selfadministration. Alcohol. Clin. Exp. Res., 2003, 27(12), 1884-1891.
[http://dx.doi.org/10.1097/01.ALC.0000098875.95923.69] [PMID: 14691375]
[101]
Rimondini, R.; Thorsell, A.; Heilig, M. Suppression of ethanol self-administration by the neuropeptide Y (NPY) Y2 receptor antagonist BIIE0246: evidence for sensitization in rats with a history of dependence. Neurosci. Lett., 2005, 375(2), 129-133.
[http://dx.doi.org/10.1016/j.neulet.2004.10.084] [PMID: 15670655]
[102]
Akel Bilgiç, H.; Gürel, S.C.; Ayhan, Y.; Karahan, S.; Karakaya, I.; Babaoğlu, M.; Dilbaz, N.; Uluğ, B.; Demir, B.; Karaaslan, C. Relationship between alcohol dependence and Neuropeptide Y (NPY) gene promoter polymorphisms in a turkish sample. Turk Psikiyatr. Derg., 2020, 31(4), 232-238.
[http://dx.doi.org/10.5080/u25044] [PMID: 33454934]
[103]
Yalçın, F.; Bolu, A.; Akar, H.; Aydın, M.; Doruk, A. NPY receptor gene polymorphisms in anxiety disorders. Psychiatry and Behavioral Sciences, 2019, 9(1), 1.
[http://dx.doi.org/10.5455/PBS.20180715050817]
[104]
Watkins, L.E.; Han, S.; Krystal, J.H.; Southwick, S.M.; Gelernter, J.; Pietrzak, R.H. Association between functional polymorphism in Neuropeptide Y gene promoter rs16147 and resilience to traumatic stress in US military veterans. J. Clin. Psychiatry, 2017, 78(8), e1058-e1059.
[http://dx.doi.org/10.4088/JCP.17l11646] [PMID: 29099554]
[105]
Ikeda, K.; Akiyoshi, K.; Kamada, M.; Fujioka, K.; Tojo, K.; Manome, Y. Expression of urocortin I in normal tissues and malignant tumors. Cancer Cell Microenviron., 2014.
[106]
Wang, Y.L.; Han, Q.Q.; Gong, W.Q.; Pan, D.H.; Wang, L.Z.; Hu, W.; Yang, M.; Li, B.; Yu, J.; Liu, Q. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J. Neuroinflammation, 2018, 15(1), 21.
[http://dx.doi.org/10.1186/s12974-018-1054-3] [PMID: 29343269]
[107]
Henckens, M.J.A.G.; Deussing, J.M.; Chen, A. Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat. Rev. Neurosci., 2016, 17(10), 636-651.
[http://dx.doi.org/10.1038/nrn.2016.94] [PMID: 27586075]
[108]
Simpson, S.; Shankar, K.; Kimbrough, A.; George, O. Role of corticotropin-releasing factor in alcohol and nicotine addiction. Brain Res., 2020, 1740, 146850.
[http://dx.doi.org/10.1016/j.brainres.2020.146850] [PMID: 32330519]
[109]
Kishimoto, T.; Radulovic, J.; Radulovic, M.; Lin, C.R.; Schrick, C.; Hooshmand, F.; Hermanson, O.; Rosenfeld, M.G.; Spiess, J. Deletion of Crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat. Genet., 2000, 24(4), 415-419.
[http://dx.doi.org/10.1038/74271] [PMID: 10742109]
[110]
Neufeld-Cohen, A.; Kelly, P.A.T.; Paul, E.D.; Carter, R.N.; Skinner, E.; Olverman, H.J.; Vaughan, J.M.; Issler, O.; Kuperman, Y.; Lowry, C.A.; Vale, W.W.; Seckl, J.R.; Chen, A.; Jamieson, P.M. Chronic activation of corticotropin-releasing factor type 2 receptors reveals a key role for 5-HT1A receptor responsiveness in mediating behavioral and serotonergic responses to stressful challenge. Biol. Psychiatry, 2012, 72(6), 437-447.
[http://dx.doi.org/10.1016/j.biopsych.2012.05.005] [PMID: 22704666]
[111]
Bale, T.L.; Contarino, A.; Smith, G.W.; Chan, R.; Gold, L.H.; Sawchenko, P.E.; Koob, G.F.; Vale, W.W.; Lee, K.F. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat. Genet., 2000, 24(4), 410-414.
[http://dx.doi.org/10.1038/74263] [PMID: 10742108]
[112]
Yong, W.; Spence, J.P.; Eskay, R.; Fitz, S.D.; Damadzic, R.; Lai, D.; Foroud, T.; Carr, L.G.; Shekhar, A.; Chester, J.A.; Heilig, M.; Liang, T. Alcohol-preferring rats show decreased corticotropin-releasing hormone-2 receptor expression and differences in HPA activation compared to alcohol-nonpreferring rats. Alcohol. Clin. Exp. Res., 2014, 38(5), 1275-1283.
[http://dx.doi.org/10.1111/acer.12379] [PMID: 24611993]
[113]
Pandey, S.C.; Zhang, H.; Roy, A.; Xu, T. Deficits in amygdaloid cAMP-responsive element-binding protein signaling play a role in genetic predisposition to anxiety and alcoholism. J. Clin. Invest., 2005, 115(10), 2762-2773.
[http://dx.doi.org/10.1172/JCI24381] [PMID: 16200210]
[114]
Zhang, H.; Sakharkar, A.J.; Shi, G.; Ugale, R.; Prakash, A.; Pandey, S.C. Neuropeptide Y signaling in the central nucleus of amygdala regulates alcohol-drinking and anxiety-like behaviors of alcohol-preferring rats. Alcohol. Clin. Exp. Res., 2010, 34(3), 451-461.
[http://dx.doi.org/10.1111/j.1530-0277.2009.01109.x] [PMID: 20028368]
[115]
Tagliafierro, L.; Chiba-Falek, O. Up-regulation of SNCA gene expression: implications to synucleinopathies. Neurogenetics, 2016, 17(3), 145-157.
[http://dx.doi.org/10.1007/s10048-016-0478-0] [PMID: 26948950]
[116]
Burré, J.; Sharma, M.; Tsetsenis, T.; Buchman, V.; Etherton, M.R.; Südhof, T.C. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science, 2010, 329(5999), 1663-1667.
[http://dx.doi.org/10.1126/science.1195227] [PMID: 20798282]
[117]
Sun, J.; Wang, L.; Bao, H.; Premi, S.; Das, U.; Chapman, E.R.; Roy, S. Functional cooperation of α-synuclein and VAMP2 in synaptic vesicle recycling. Proc. Natl. Acad. Sci. USA, 2019, 116(23), 11113-11115.
[http://dx.doi.org/10.1073/pnas.1903049116] [PMID: 31110017]
[118]
Garcia-Reitboeck, P.; Anichtchik, O.; Dalley, J.W.; Ninkina, N.; Tofaris, G.K.; Buchman, V.L.; Spillantini, M.G. Endogenous alpha-synuclein influences the number of dopaminergic neurons in mouse substantia nigra. Exp. Neurol., 2013, 248, 541-545.
[http://dx.doi.org/10.1016/j.expneurol.2013.07.015] [PMID: 23933574]
[119]
Schaser, A.J.; Osterberg, V.R.; Dent, S.E.; Stackhouse, T.L.; Wakeham, C.M.; Boutros, S.W.; Weston, L.J.; Owen, N.; Weissman, T.A.; Luna, E.; Raber, J.; Luk, K.C.; McCullough, A.K.; Woltjer, R.L.; Unni, V.K. Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for Lewy body disorders. Sci. Rep., 2019, 9(1), 10919.
[http://dx.doi.org/10.1038/s41598-019-47227-z] [PMID: 31358782]
[120]
Nemani, V.M.; Lu, W.; Berge, V.; Nakamura, K.; Onoa, B.; Lee, M.K.; Chaudhry, F.A.; Nicoll, R.A.; Edwards, R.H. Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron, 2010, 65(1), 66-79.
[http://dx.doi.org/10.1016/j.neuron.2009.12.023] [PMID: 20152114]
[121]
Butler, B.; Sambo, D.; Khoshbouei, H. Alpha-synuclein modulates dopamine neurotransmission. J. Chem. Neuroanat., 2017, 83-84, 41-49.
[http://dx.doi.org/10.1016/j.jchemneu.2016.06.001] [PMID: 27334403]
[122]
Chiavegatto, S.; Izidio, G.S.; Mendes-Lana, A.; Aneas, I.; Freitas, T.A.; Torrão, A.S.; Conceição, I.M.; Britto, L.R.G.; Ramos, A. Expression of α-synuclein is increased in the hippocampus of rats with high levels of innate anxiety. Mol. Psychiatry, 2009, 14(9), 894-905.
[http://dx.doi.org/10.1038/mp.2008.43] [PMID: 18427558]
[123]
Kokhan, V.S.; Afanasyeva, M.A.; Van’kin, G.I. α-Synuclein knockout mice have cognitive impairments. Behav. Brain Res., 2012, 231(1), 226-230.
[http://dx.doi.org/10.1016/j.bbr.2012.03.026] [PMID: 22469626]
[124]
Peña-Oliver, Y.; Buchman, V.L.; Dalley, J.W.; Robbins, T.W.; Schumann, G.; Ripley, T.L.; King, S.L.; Stephens, D.N. Deletion of alpha‐synuclein decreases impulsivity in mice. Genes Brain Behav., 2012, 11(2), 137-146.
[http://dx.doi.org/10.1111/j.1601-183X.2011.00758.x] [PMID: 22142176]
[125]
Muñoz, M.; Coveñas, R. Involvement of substance P and the NK-1 receptor in human pathology. Amino Acids, 2014, 46(7), 1727-1750.
[http://dx.doi.org/10.1007/s00726-014-1736-9] [PMID: 24705689]
[126]
Schank, J.R.; Heilig, M. Substance P and the Neurokinin-1 Receptor: The New CRF. Int. Rev. Neurobiol., 2017, 136, 151-175.
[http://dx.doi.org/10.1016/bs.irn.2017.06.008] [PMID: 29056150]
[127]
Steinhoff, M.S.; von Mentzer, B.; Geppetti, P.; Pothoulakis, C.; Bunnett, N.W. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol. Rev., 2014, 94(1), 265-301.
[http://dx.doi.org/10.1152/physrev.00031.2013] [PMID: 24382888]
[128]
Mistrova, E.; Kruzliak, P.; Chottova Dvorakova, M. Role of substance P in the cardiovascular system. Neuropeptides, 2016, 58, 41-51.
[http://dx.doi.org/10.1016/j.npep.2015.12.005] [PMID: 26706184]
[129]
Santarelli, L.; Gobbi, G.; Blier, P.; Hen, R. Behavioral and physiologic effects of genetic or pharmacologic inactivation of the substance P receptor (NK1). J. Clin. Psychiatry, 2002, 63(Suppl. 11), 11-17.
[PMID: 12562138]
[130]
Fan, X.; Bruno, K.J.; Hess, E.J. Rodent Models of ADHD. Curr. Top. Behav. Neurosci., 2011, 9, 273-300.
[http://dx.doi.org/10.1007/7854_2011_121] [PMID: 21516392]
[131]
Yan, T.C.; Dudley, J.A.; Weir, R.K.; Grabowska, E.M.; Peña-Oliver, Y.; Ripley, T.L.; Hunt, S.P.; Stephens, D.N.; Stanford, S.C. Performance deficits of NK1 receptor knockout mice in the 5-choice serial reaction-time task: effects of d-amphetamine, stress and time of day. PLoS One, 2011, 6(3), e17586.
[http://dx.doi.org/10.1371/journal.pone.0017586] [PMID: 21408181]
[132]
Santarelli, L.; Gobbi, G.; Debs, P.C.; Sibille, E.L.; Blier, P.; Hen, R.; Heath, M.J.S. Genetic and pharmacological disruption of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. Proc. Natl. Acad. Sci. USA, 2001, 98(4), 1912-1917.
[http://dx.doi.org/10.1073/pnas.98.4.1912] [PMID: 11172050]
[133]
Rupniak, N.M.J.; Carlson, E.C.; Harrison, T.; Oates, B.; Seward, E.; Owen, S.; de Felipe, C.; Hunt, S.; Wheeldon, A. Pharmacological blockade or genetic deletion of substance P (NK1) receptors attenuates neonatal vocalisation in guinea-pigs and mice. Neuropharmacology, 2000, 39(8), 1413-1421.
[http://dx.doi.org/10.1016/S0028-3908(00)00052-6] [PMID: 10818257]
[134]
Rupniak, N.M.J.; Carlson, E.J.; Webb, J.K.; Harrison, T.; Porsolt, R.D.; Roux, S.; de Felipe, C.; Hunt, S.P.; Oates, B.; Wheeldon, A. Comparison of the phenotype of NK1R−/− mice with pharmacological blockade of the substance P (NK 1 ) receptor in assays for antidepressant and anxiolytic drugs. Behav. Pharmacol., 2001, 12(6), 497-508.
[http://dx.doi.org/10.1097/00008877-200111000-00011] [PMID: 11742144]
[135]
Duarte, F.S.; Testolin, R.; De Lima, T.C.M. Further evidence on the anxiogenic-like effect of substance P evaluated in the elevated plus-maze in rats. Behav. Brain Res., 2004, 154(2), 501-510.
[http://dx.doi.org/10.1016/j.bbr.2004.03.020] [PMID: 15313039]
[136]
Ebner, K.; Rupniak, N.M.; Saria, A.; Singewald, N. Substance P in the medial amygdala: Emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc. Natl. Acad. Sci. USA, 2004, 101(12), 4280-4285.
[http://dx.doi.org/10.1073/pnas.0400794101] [PMID: 15024126]
[137]
Malkesman, O.; Braw, Y.; Weller, A. Assessment of antidepressant and anxiolytic properties of NK1 antagonists and Substance P in Wistar Kyoto rats. Physiol. Behav., 2007, 90(4), 619-625.
[http://dx.doi.org/10.1016/j.physbeh.2006.11.014] [PMID: 17258242]
[138]
Carvalho, M.C.; Masson, S.; Brandão, M.L.; de Souza Silva, M.A. Anxiolytic-like effects of substance P administration into the dorsal, but not ventral, hippocampus and its influence on serotonin. Peptides, 2008, 29(7), 1191-1200.
[http://dx.doi.org/10.1016/j.peptides.2008.02.014] [PMID: 18490080]
[139]
Ebner, K.; Singewald, G.M.; Whittle, N.; Ferraguti, F.; Singewald, N. Neurokinin 1 receptor antagonism promotes active stress coping via enhanced septal 5-HT transmission. Neuropsychopharmacology, 2008, 33(8), 1929-1941.
[http://dx.doi.org/10.1038/sj.npp.1301594] [PMID: 17957216]
[140]
Zhao, Z.; Yang, Y.; Walker, D.L.; Davis, M. Effects of substance P in the amygdala, ventromedial hypothalamus, and periaqueductal gray on fear-potentiated startle. Neuropsychopharmacology, 2009, 34(2), 331-340.
[http://dx.doi.org/10.1038/npp.2008.55] [PMID: 18418359]
[141]
Vendruscolo, L.F.; Takahashi, R.N.; Brüske, G.R.; Ramos, A. Evaluation of the anxiolytic-like effect of NKP608, a NK1-receptor antagonist, in two rat strains that differ in anxiety-related behaviors. Psychopharmacology (Berl.), 2003, 170(3), 287-293.
[http://dx.doi.org/10.1007/s00213-003-1545-4] [PMID: 12915956]
[142]
Jurek, B.; Neumann, I.D. The oxytocin receptor: from intracellular signaling to behavior. Physiol. Rev., 2018, 98(3), 1805-1908.
[http://dx.doi.org/10.1152/physrev.00031.2017] [PMID: 29897293]
[143]
Ross, H.E.; Young, L.J. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front. Neuroendocrinol., 2009, 30(4), 534-547.
[http://dx.doi.org/10.1016/j.yfrne.2009.05.004] [PMID: 19481567]
[144]
MacDonald, K.; MacDonald, T.M. The peptide that binds: a systematic review of oxytocin and its prosocial effects in humans. Harv. Rev. Psychiatry, 2010, 18(1), 1-21.
[http://dx.doi.org/10.3109/10673220903523615] [PMID: 20047458]
[145]
Kohlhoff, J.; Cibralic, S.; Hawes, D.J.; Eapen, V. Oxytocin receptor gene (OXTR) polymorphisms and social, emotional and behavioral functioning in children and adolescents: A systematic narrative review. Neurosci. Biobehav. Rev., 2022, 135, 104573.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104573] [PMID: 35149102]
[146]
Nishimori, K.; Takayanagi, Y.; Yoshida, M.; Kasahara, Y.; Young, L.; Kawamata, M. New aspects of oxytocin receptor function revealed by knockout mice: sociosexual behaviour and control of energy balance. Prog. Brain Res., 2008, 170, 79-90.
[http://dx.doi.org/10.1016/S0079-6123(08)00408-1] [PMID: 18655874]
[147]
Knobloch, H.S.; Charlet, A.; Hoffmann, L.C.; Eliava, M.; Khrulev, S.; Cetin, A.H.; Osten, P.; Schwarz, M.K.; Seeburg, P.H.; Stoop, R.; Grinevich, V. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron, 2012, 73(3), 553-566.
[http://dx.doi.org/10.1016/j.neuron.2011.11.030] [PMID: 22325206]
[148]
Winslow, J.T.; Insel, T.R. The social deficits of the oxytocin knockout mouse. Neuropeptides, 2002, 36(2-3), 221-229.
[http://dx.doi.org/10.1054/npep.2002.0909] [PMID: 12359512]
[149]
Janeček, M.; Dabrowska, J. Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies—potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST). Cell Tissue Res., 2019, 375(1), 143-172.
[http://dx.doi.org/10.1007/s00441-018-2889-8] [PMID: 30054732]
[150]
Uvnäs-Moberg, K.; Ahlenius, S.; Hillegaart, V.; Alster, P. High doses of oxytocin cause sedation and low doses cause an anxiolytic-like effect in male rats. Pharmacol. Biochem. Behav., 1994, 49(1), 101-106.
[http://dx.doi.org/10.1016/0091-3057(94)90462-6] [PMID: 7816858]
[151]
Windle, R.J.; Shanks, N.; Lightman, S.L.; Ingram, C.D. Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology, 1997, 138(7), 2829-2834.
[http://dx.doi.org/10.1210/endo.138.7.5255] [PMID: 9202224]
[152]
Jurek, B.; Meyer, M. Anxiolytic and anxiogenic? how the transcription factor MEF2 might explain the manifold behavioral effects of oxytocin. Front. Endocrinol. (Lausanne), 2020, 11, 186.
[http://dx.doi.org/10.3389/fendo.2020.00186] [PMID: 32322239]
[153]
Kushner, S.C.; Herzhoff, K.; Vrshek-Schallhorn, S.; Tackett, J.L. Depression in early adolescence: Contributions from relational aggression and variation in the oxytocin receptor gene. Aggress. Behav., 2018, 44(1), 60-68.
[http://dx.doi.org/10.1002/ab.21724] [PMID: 28868757]
[154]
Hostinar, C.E.; Cicchetti, D.; Rogosch, F.A. Oxytocin receptor gene polymorphism, perceived social support, and psychological symptoms in maltreated adolescents. Dev. Psychopathol., 2014, 26(2), 465-477.
[http://dx.doi.org/10.1017/S0954579414000066] [PMID: 24621832]
[155]
Thompson, S.M.; Hammen, C.; Starr, L.R.; Najman, J.M. Oxytocin receptor gene polymorphism (rs53576) moderates the intergenerational transmission of depression. Psychoneuroendocrinology, 2014, 43, 11-19.
[http://dx.doi.org/10.1016/j.psyneuen.2014.01.012] [PMID: 24703166]
[156]
Adrian, M.; Kiff, C.; Glazner, C.; Kohen, R.; Tracy, J.H.; Zhou, C.; McCauley, E.; Vander Stoep, A. Examining gene-environment interactions in comorbid depressive and disruptive behavior disorders using a Bayesian approach. J. Psychiatr. Res., 2015, 68, 125-133.
[http://dx.doi.org/10.1016/j.jpsychires.2015.06.004] [PMID: 26228411]
[157]
Byrd, A.L.; Tung, I.; Manuck, S.D.; Vine, V.; Horner, M.; Hipwell, A.E.; Stepp, S.D. An interaction between early threat exposure and the oxytocin receptor in females: Disorder-specific versus general risk for psychopathology and social-emotional mediators. Dev. Psychopathol., 2021, 33(4), 1248-1263.
[http://dx.doi.org/10.1017/S0954579420000462] [PMID: 32693857]
[158]
Lauby, S.C.; Ashbrook, D.G.; Malik, H.R.; Chatterjee, D.; Pan, P.; Fleming, A.S.; McGowan, P.O. The role of interindividual licking received and dopamine genotype on later‐life licking provisioning in female rat offspring. Brain Behav., 2021, 11(4), e02069.
[http://dx.doi.org/10.1002/brb3.2069] [PMID: 33560574]
[159]
Gaffen, S.L. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol., 2009, 9(8), 556-567.
[http://dx.doi.org/10.1038/nri2586] [PMID: 19575028]
[160]
Song, X.; He, X.; Li, X.; Qian, Y. The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell. Mol. Immunol., 2016, 13(4), 418-431.
[http://dx.doi.org/10.1038/cmi.2015.105] [PMID: 27018218]
[161]
Amatya, N.; Garg, A.V.; Gaffen, S.L. IL-17 Signaling: The Yin and the Yang. Trends Immunol., 2017, 38(5), 310-322.
[http://dx.doi.org/10.1016/j.it.2017.01.006] [PMID: 28254169]
[162]
Onishi, R.M.; Gaffen, S.L. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology, 2010, 129(3), 311-321.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03240.x] [PMID: 20409152]
[163]
Liu, Y.; Ho, R.C.M.; Mak, A. The role of interleukin (IL)-17 in anxiety and depression of patients with rheumatoid arthritis. Int. J. Rheum. Dis., 2012, 15(2), 183-187.
[http://dx.doi.org/10.1111/j.1756-185X.2011.01673.x] [PMID: 22462422]
[164]
Waisman, A.; Hauptmann, J.; Regen, T. The role of IL-17 in CNS diseases. Acta Neuropathol., 2015, 129(5), 625-637.
[http://dx.doi.org/10.1007/s00401-015-1402-7] [PMID: 25716179]
[165]
Alves de Lima, K.; Rustenhoven, J.; Da Mesquita, S.; Wall, M.; Salvador, A.F.; Smirnov, I.; Martelossi Cebinelli, G.; Mamuladze, T.; Baker, W.; Papadopoulos, Z.; Lopes, M.B.; Cao, W.S.; Xie, X.S.; Herz, J.; Kipnis, J. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat. Immunol., 2020, 21(11), 1421-1429.
[http://dx.doi.org/10.1038/s41590-020-0776-4] [PMID: 32929273]
[166]
Hansen, K.B.; Yi, F.; Perszyk, R.E.; Furukawa, H.; Wollmuth, L.P.; Gibb, A.J.; Traynelis, S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol., 2018, 150(8), 1081-1105.
[http://dx.doi.org/10.1085/jgp.201812032] [PMID: 30037851]
[167]
Paoletti, P.; Neyton, J. NMDA receptor subunits: function and pharmacology. Curr. Opin. Pharmacol., 2007, 7(1), 39-47.
[http://dx.doi.org/10.1016/j.coph.2006.08.011] [PMID: 17088105]
[168]
Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci., 2013, 14(6), 383-400.
[http://dx.doi.org/10.1038/nrn3504] [PMID: 23686171]
[169]
Abulseoud, O.A.; Ruby, C.L.; Karpyak, V. Role of glutamate transport in alcohol withdrawal. In: Neuropathology of Drug Addictions and Substance Misuse: Foundations of Understanding, Tobacco, Alcohol, Cannabinoids and Opioids, 1st ed; Preedy, V., Ed.; Elsevier Inc, 2016; pp. 466-477.
[http://dx.doi.org/10.1016/B978-0-12-800213-1.00043-2]
[170]
Rammes, G.; Mattusch, C.; Wulff, M.; Seeser, F.; Kreuzer, M.; Zhu, K.; Deussing, J.M.; Herms, J.; Parsons, C.G. Involvement of GluN2B subunit containing N-methyl- d -aspartate (NMDA) receptors in mediating the acute and chronic synaptotoxic effects of oligomeric amyloid-beta (Aβ) in murine models of Alzheimer’s disease (AD). Neuropharmacology, 2017, 123, 100-115.
[http://dx.doi.org/10.1016/j.neuropharm.2017.02.003] [PMID: 28174113]
[171]
Mikics, E.; Toth, M.; Biro, L.; Bruzsik, B.; Nagy, B.; Haller, J. The role of GluN2B-containing NMDA receptors in short- and longterm fear recall. Physiol. Behav., 2017, 177, 44-48.
[http://dx.doi.org/10.1016/j.physbeh.2017.04.005] [PMID: 28400283]
[172]
Tsuchida, N.; Hamada, K.; Shiina, M.; Kato, M.; Kobayashi, Y.; Tohyama, J.; Kimura, K.; Hoshino, K.; Ganesan, V.; Teik, K.W.; Nakashima, M.; Mitsuhashi, S.; Mizuguchi, T.; Takata, A.; Miyake, N.; Saitsu, H.; Ogata, K.; Miyatake, S.; Matsumoto, N. GRIN2D variants in three cases of developmental and epileptic encephalopathy. Clin. Genet., 2018, 94(6), 538-547.
[http://dx.doi.org/10.1111/cge.13454] [PMID: 30280376]
[173]
Liu, S.; Zhou, L.; Yuan, H.; Vieira, M.; Sanz-Clemente, A.; Badger, J.D., II; Lu, W.; Traynelis, S.F.; Roche, K.W. A rare variant identified within the GluN2B C-Terminus in a patient with autism affects NMDA receptor surface expression and spine density. J. Neurosci., 2017, 37(15), 4093-4102.
[http://dx.doi.org/10.1523/JNEUROSCI.0827-16.2017] [PMID: 28283559]
[174]
Dorval, K.M.; Wigg, K.G.; Crosbie, J.; Tannock, R.; Kennedy, J.L.; Ickowicz, A.; Pathare, T.; Malone, M.; Schachar, R.; Barr, C.L. Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder. Genes Brain Behav., 2007, 6(5), 444-452.
[http://dx.doi.org/10.1111/j.1601-183X.2006.00273.x] [PMID: 17010153]
[175]
Tang, Y.P.; Shimizu, E.; Dube, G.R.; Rampon, C.; Kerchner, G.A.; Zhuo, M.; Liu, G.; Tsien, J.Z. Genetic enhancement of learning and memory in mice. Nature, 1999, 401(6748), 63-69.
[http://dx.doi.org/10.1038/43432] [PMID: 10485705]
[176]
Jensen, V.; Rinholm, J.E.; Johansen, T.J.; Medin, T.; Storm-Mathisen, J.; Sagvolden, T.; Hvalby, Ø.; Bergersen, L.H. Nmethyl-d-aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention-deficit/hyperactivity disorder. Neuroscience, 2009, 158(1), 353-364.
[http://dx.doi.org/10.1016/j.neuroscience.2008.05.016] [PMID: 18571865]
[177]
Köhr, G.; Jensen, V.; Koester, H.J.; Mihaljevic, A.L.A.; Utvik, J.K.; Kvello, A.; Ottersen, O.P.; Seeburg, P.H.; Sprengel, R.; Hvalby, Ø. Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction. J. Neurosci., 2003, 23(34), 10791-10799.
[http://dx.doi.org/10.1523/JNEUROSCI.23-34-10791.2003] [PMID: 14645471]
[178]
Gao, C.; Gill, M.B.; Tronson, N.C.; Guedea, A.L.; Guzmán, Y.F.; Huh, K.H.; Corcoran, K.A.; Swanson, G.T.; Radulovic, J. Hippocampal NMDA receptor subunits differentially regulate fear memory formation and neuronal signal propagation. Hippocampus, 2010, 20(9), 1072-1082.
[http://dx.doi.org/10.1002/hipo.20705] [PMID: 19806658]
[179]
Shin, W.; Kim, K.; Serraz, B.; Cho, Y.S.; Kim, D.; Kang, M.; Lee, E.J.; Lee, H.; Bae, Y.C.; Paoletti, P.; Kim, E. Early correction of synaptic long-term depression improves abnormal anxiety-like behavior in adult GluN2B-C456Y-mutant mice. PLoS Biol., 2020, 18(4), e3000717.
[http://dx.doi.org/10.1371/journal.pbio.3000717] [PMID: 32353004]
[180]
Sagvolden, T.; Johansen, E.B.; Wøien, G.; Walaas, S.I.; Storm-Mathisen, J.; Bergersen, L.H.; Hvalby, Ø.; Jensen, V.; Aase, H.; Russell, V.A.; Killeen, P.R.; DasBanerjee, T.; Middleton, F.A.; Faraone, S.V. The spontaneously hypertensive rat model of ADHD - The importance of selecting the appropriate reference strain. Neuropharmacology, 2009, 57(7-8), 619-626.
[http://dx.doi.org/10.1016/j.neuropharm.2009.08.004] [PMID: 19698722]
[181]
Neeley, E.W.; Berger, R.; Koenig, J.I.; Leonard, S. Strain dependent effects of prenatal stress on gene expression in the rat hippocampus. Physiol. Behav., 2011, 104(2), 334-339.
[http://dx.doi.org/10.1016/j.physbeh.2011.02.032] [PMID: 21382392]
[182]
Izídio, G.S. A Influência de Fatores Genéticos e Ambientais em Modelos Animais de Ansiedade e sua Relação com um Modelo de Alcoolismo. [Master thesis]. Federal University of Santa Catarina 2005. Available from: https://repositorio.ufsc.br/handle/123456789/192248?show=full
[183]
Salim, S. Oxidative stress: a potential link between emotional wellbeing and immune response. Curr. Opin. Pharmacol., 2016, 29, 70-76.
[http://dx.doi.org/10.1016/j.coph.2016.06.006] [PMID: 27400336]
[184]
de Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci., 2005, 6(6), 463-475.
[http://dx.doi.org/10.1038/nrn1683] [PMID: 15891777]
[185]
Kudielka, B.M.; Wüst, S. Human models in acute and chronic stress: Assessing determinants of individual hypothalamuspituitary-adrenal axis activity and reactivity. Stress, 2010, 13(1), 1-14.
[http://dx.doi.org/10.3109/10253890902874913] [PMID: 20105052]
[186]
Gonik, M.; Frank, E.; Keßler, M.S.; Czamara, D.; Bunck, M.; Yen, Y.C.; Pütz, B.; Holsboer, F.; Bettecken, T.; Landgraf, R.; Müller-Myhsok, B.; Touma, C.; Czibere, L. The endocrine stress response is linked to one specific locus on chromosome 3 in a mouse model based on extremes in trait anxiety. BMC Genomics, 2012, 13(1), 579.
[http://dx.doi.org/10.1186/1471-2164-13-579] [PMID: 23114097]
[187]
Turvey, S.E.; Broide, D.H. Innate immunity. J. Allergy Clin. Immunol., 2010, 125(2)(Suppl. 2), S24-S32.
[http://dx.doi.org/10.1016/j.jaci.2009.07.016] [PMID: 19932920]
[188]
Huckans, M.; Fuller, B.E.; Chalker, A.L.N.; Adams, M.; Loftis, J.M. Plasma inflammatory factors are associated with anxiety, depression, and cognitive problems in adults with and without methamphetamine dependence: An exploratory protein array study. Front. Psychiatry, 2015, 6, 178.
[http://dx.doi.org/10.3389/fpsyt.2015.00178] [PMID: 26732994]
[189]
McAfoose, J.; Baune, B.T. Evidence for a cytokine model of cognitive function. Neurosci. Biobehav. Rev., 2009, 33(3), 355-366.
[http://dx.doi.org/10.1016/j.neubiorev.2008.10.005] [PMID: 18996146]
[190]
Capuron, L.; Miller, A.H. Immune system to brain signaling: Neuropsychopharmacological implications. Pharmacol. Ther., 2011, 130(2), 226-238.
[http://dx.doi.org/10.1016/j.pharmthera.2011.01.014] [PMID: 21334376]
[191]
Miller, A.H.; Haroon, E.; Raison, C.L.; Felger, J.C. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress. Anxiety, 2013, 30(4), 297-306.
[http://dx.doi.org/10.1002/da.22084] [PMID: 23468190]
[192]
Gimsa, U.; Kanitz, E.; Otten, W.; Tuchscherer, M.; Tuchscherer, A.; Ibrahim, S.M. Tumour necrosis factor receptor deficiency alters anxiety-like behavioural and neuroendocrine stress responses of mice. Cytokine, 2012, 59(1), 72-78.
[http://dx.doi.org/10.1016/j.cyto.2012.04.001] [PMID: 22561136]
[193]
Baune, B.T.; Ponath, G.; Rothermundt, M.; Riess, O.; Funke, H.; Berger, K. Association between genetic variants of IL-1β, IL-6 and TNF-α cytokines and cognitive performance in the elderly general population of the MEMO-study. Psychoneuroendocrinology, 2008, 33(1), 68-76.
[http://dx.doi.org/10.1016/j.psyneuen.2007.10.002] [PMID: 17988804]
[194]
Togo, T.; Akiyama, H.; Iseki, E.; Kondo, H.; Ikeda, K.; Kato, M.; Oda, T.; Tsuchiya, K.; Kosaka, K. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J. Neuroimmunol., 2002, 124(1-2), 83-92.
[http://dx.doi.org/10.1016/S0165-5728(01)00496-9] [PMID: 11958825]
[195]
Neumann, H.; Medana, I.M.; Bauer, J.; Lassmann, H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci., 2002, 25(6), 313-319.
[http://dx.doi.org/10.1016/S0166-2236(02)02154-9] [PMID: 12086750]
[196]
Yuan, N.; Chen, Y.; Xia, Y.; Dai, J.; Liu, C. Inflammation-related biomarkers in major psychiatric disorders: a cross-disorder assessment of reproducibility and specificity in 43 meta-analyses. Transl. Psychiatry, 2019, 9(1), 233.
[http://dx.doi.org/10.1038/s41398-019-0570-y] [PMID: 31534116]
[197]
Kim, Y.K.; Maes, M. The role of the cytokine network in psychological stress. Acta Neuropsychiatr., 2003, 15(3), 148-155.
[http://dx.doi.org/10.1034/j.1601-5215.2003.00026.x] [PMID: 26983358]
[198]
Lim, C.M.; Kim, S.W.; Park, J.Y.; Kim, C.; Yoon, S.H.; Lee, J.K. Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. J. Neurosci. Res., 2009, 87(4), 1037-1045.
[http://dx.doi.org/10.1002/jnr.21899] [PMID: 18855941]
[199]
Wekerle, H.; Linington, C.; Lassmann, H.; Meyermann, R. Cellular immune reactivity within the CNS. Trends Neurosci., 1986, 9, 271-277.
[http://dx.doi.org/10.1016/0166-2236(86)90077-9]
[200]
Hickey, W.F.; Hsu, B.L.; Kimura, H. T-lymphocyte entry into the central nervous system. J. Neurosci. Res., 1991, 28(2), 254-260.
[http://dx.doi.org/10.1002/jnr.490280213] [PMID: 2033653]
[201]
Yednock, T.A.; Cannon, C.; Fritz, L.C.; Sanchez-Madrid, F.; Steinman, L.; Karin, N. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin. Nature, 1992, 356(6364), 63-66.
[http://dx.doi.org/10.1038/356063a0] [PMID: 1538783]
[202]
Huang, D.; Han, Y.; Rani, M.R.S.; Glabinski, A.; Trebst, C.; Sørensen, T.; Tani, M.; Wang, J.; Chien, P.; O’Bryan, S.; Bielecki, B.; Zhou, Z.L.; Majumder, S.; Ransohoff, R.M. Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and exquisite regulation. Immunol. Rev., 2000, 177(1), 52-67.
[http://dx.doi.org/10.1034/j.1600-065X.2000.17709.x] [PMID: 11138785]
[203]
Lidman, O.; Swanberg, M.; Horvath, L.; Broman, K.W.; Olsson, T.; Piehl, F. Discrete gene loci regulate neurodegeneration, lymphocyte infiltration, and major histocompatibility complex class II expression in the CNS. J. Neurosci., 2003, 23(30), 9817-9823.
[http://dx.doi.org/10.1523/JNEUROSCI.23-30-09817.2003] [PMID: 14586010]
[204]
Aloisi, F.; Ria, F.; Adorini, L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol. Today, 2000, 21(3), 141-147.
[http://dx.doi.org/10.1016/S0167-5699(99)01512-1] [PMID: 10689302]
[205]
Serafini, G.; Amore, M.; Rihmer, Z. The role of glutamate excitotoxicity and neuroinflammation in depression and suicidal behavior: focus on microglia cells. Neuroimmunol. Neuroinflamm., 2015, 2(3), 127.
[http://dx.doi.org/10.4103/2347-8659.157955]
[206]
Diez, M.; Abdelmagid, N.; Harnesk, K.; Ström, M.; Lidman, O.; Swanberg, M.; Lindblom, R.; Al-Nimer, F.; Jagodic, M.; Olsson, T.; Piehl, F. Identification of gene regions regulating inflammatory microglial response in the rat CNS after nerve injury. J. Neuroimmunol., 2009, 212(1-2), 82-92.
[http://dx.doi.org/10.1016/j.jneuroim.2009.05.004] [PMID: 19525015]
[207]
Marta, M.; Stridh, P.; Becanovic, K.; Gillett, A.; Öckinger, J.; Lorentzen, J.C.; Jagodic, M.; Olsson, T. Multiple loci comprising immune-related genes regulate experimental neuroinflammation. Genes Immun., 2010, 11(1), 21-36.
[http://dx.doi.org/10.1038/gene.2009.62] [PMID: 19675581]
[208]
Lloyd, C.M.; Snelgrove, R.J. Type 2 immunity: Expanding our view. Sci. Immunol., 2018, 3(25), eaat1604.
[http://dx.doi.org/10.1126/sciimmunol.aat1604] [PMID: 29980619]
[209]
Spellberg, B.; Edwards, J.E., Jr Type 1/Type 2 immunity in infectious diseases. Clin. Infect. Dis., 2001, 32(1), 76-102.
[http://dx.doi.org/10.1086/317537] [PMID: 11118387]
[210]
Moss, D.J.H.; Pardiñas, A.F.; Langbehn, D.; Lo, K.; Leavitt, B.R.; Roos, R.; Durr, A.; Mead, S.; Holmans, P.; Jones, L.; Tabrizi, S.J.; Coleman, A.; Santos, R.D.; Decolongon, J.; Sturrock, A.; Bardinet, E.; Ret, C.J.; Justo, D.; Lehericy, S.; Marelli, C.; Nigaud, K.; Valabrègue, R.; van den Bogaard, S.J.A.; Dumas, E.M.; van der Grond, J.; t’ Hart, E.P.; Jurgens, C.; Witjes-Ane, M-N.; Arran, N.; Callaghan, J.; Stopford, C.; Frost, C.; Jones, R.; Hobbs, N.; Lahiri, N.; Ordidge, R.; Owen, G.; Pepple, T.; Read, J.; Say, M.; Wild, E.; Patel, A.; Fox, N.C.; Gibbard, C.; Malone, I.; Crawford, H.; Whitehead, D.; Keenan, S.; Cash, D.M.; Berna, C.; Bechtel, N.; Bohlen, S.; Man, A.H.; Kraus, P.; Axelson, E.; Wang, C.; Acharya, T.; Lee, S.; Monaco, W.; Campbell, C.; Queller, S.; Whitlock, K.; Campbell, C.; Campbell, M.; Frajman, E.; Milchman, C.; O’Regan, A.; Labuschagne, I.; Stout, J.; Landwehrmeyer, B.; Craufurd, D.; Scahill, R.; Hicks, S.; Kennard, C.; Johnson, H.; Tobin, A.; Rosas, H.D.; Reilmann, R.; Borowsky, B.; Pourchot, C.; Andrews, S.C.; Bachoud-Lévi, A-C.; Bentivoglio, A.R.; Biunno, I.; Bonelli, R.; Burgunder, J-M.; Dunnett, S.; Ferreira, J.; Handley, O.; Heiberg, A.; Illmann, T.; Landwehrmeyer, G.B.; Levey, J.; Ramos-Arroyo, M.A.; Nielsen, J.; Koivisto, S.P.; Päivärinta, M.; Roos, R.A.C.; Sebastián, A.R.; Tabrizi, S.; Vandenberghe, W.; Verellen-Dumoulin, C.; Uhrova, T.; Wahlström, J.; Zaremba, J.; Baake, V.; Barth, K.; Garde, M.B.; Betz, S.; Bos, R.; Callaghan, J.; Come, A.; Guedes, L.C.; Ecker, D.; Finisterra, A.M.; Fullam, R.; Gilling, M.; Gustafsson, L.; Handley, O.J.; Hvalstedt, C.; Held, C.; Koppers, K.; Lamanna, C.; Laurà, M.; Descals, A.M.; Martinez-Horta, S.; Mestre, T.; Minster, S.; Monza, D.; Mütze, L.; Oehmen, M.; Orth, M.; Padieu, H.; Paterski, L.; Peppa, N.; Koivisto, S.P.; Di Renzo, M.; Rialland, A.; Røren, N.; Šašinková, P.; Timewell, E.; Townhill, J.; Cubillo, P.T.; da Silva, W.V.; van Walsem, M.R.; Whalstedt, C.; Witjes-Ané, M-N.; Witkowski, G.; Wright, A.; Zielonka, D.; Zielonka, E.; Zinzi, P.; Bonelli, R.M.; Lilek, S.; Hecht, K.; Herranhof, B.; Holl, A.; Kapfhammer, H-P.; Koppitz, M.; Magnet, M.; Müller, N.; Otti, D.; Painold, A.; Reisinger, K.; Scheibl, M.; Schöggl, H.; Ullah, J.; Braunwarth, E-M.; Brugger, F.; Buratti, L.; Hametner, E-M.; Hepperger, C.; Holas, C.; Hotter, A.; Hussl, A.; Müller, C.; Poewe, W.; Seppi, K.; Sprenger, F.; Wenning, G.; Boogaerts, A.; Calmeyn, G.; Delvaux, I.; Liessens, D.; Somers, N.; Dupuit, M.; Minet, C.; van Paemel, D.; Ribaï, P.; Verellen-Dumoulin, C.; Boogaerts, A.; Vandenberghe, W.; van Reijen, D.; Klempír, J.; Majerová, V.; Roth, J.; Stárková, I.; Hjermind, L.E.; Jacobsen, O.; Nielsen, J.E.; Larsen, I.U.; Vinther-Jensen, T.; Hiivola, H.; Hyppönen, H.; Martikainen, K.; Tuuha, K.; Allain, P.; Bonneau, D.; Bost, M.; Gohier, B.; Guérid, M-A.; Olivier, A.; Prundean, A.; Scherer-Gagou, C.; Verny, C.; Babiloni, B.; Debruxelles, S.; Duché, C.; Goizet, C.; Jameau, L.; Lafoucrière, D.; Spampinato, U.; Barthélémy, R.; De Bruycker, C.; Carette, M.C.A-S.; Defebvre, E.D.L.; Delliaux, M.; Delval, A.; Destee, A.; Dujardin, K.; Lemaire, M-H.; Manouvrier, S.; Peter, M.; Plomhouse, L.; Sablonnière, B.; Simonin, C.; Thibault-Tanchou, S.; Vuillaume, I.; Bellonet, M.; Berrissoul, H.; Blin, S.; Courtin, F.; Duru, C.; Fasquel, V.; Godefroy, O.; Krystkowiak, P.; Mantaux, B.; Roussel, M.; Wannepain, S.; Azulay, J-P.; Delfini, M.; Eusebio, A.; Fluchere, F.; Mundler, L.; Anheim, M.; Julié, C.; Boukbiza, O.L.; Longato, N.; Rudolf, G.; Tranchant, C.; Zimmermann, M-A.; Kosinski, C.M.; Milkereit, E.; Probst, D.; Reetz, K.; Sass, C.; Schiefer, J.; Schlangen, C.; Werner, C.J.; Gelderblom, H.; Priller, J.; Prüß, H.; Spruth, E.J.; Ellrichmann, G.; Herrmann, L.; Hoffmann, R.; Kaminski, B.; Kotz, P.; Prehn, C.; Saft, C.; Lange, H.; Maiwald, R.; Löhle, M.; Maass, A.; Schmidt, S.; Bosredon, C.; Storch, A.; Wolz, A.; Wolz, M.; Capetian, P.; Lambeck, J.; Zucker, B.; Boelmans, K.; Ganos, C.; Heinicke, W.; Hidding, U.; Lewerenz, J.; Münchau, A.; Orth, M.; Schmalfeld, J.; Stubbe, L.; Zittel, S.; Diercks, G.; Dressler, D.; Gorzolla, H.; Schrader, C.; Tacik, P.; Ribbat, M.; Longinus, B.; Bürk, K.; Möller, J.C.; Rissling, I.; Mühlau, M.; Peinemann, A.; Städtler, M.; Weindl, A.; Winkelmann, J.; Ziegler, C.; Bechtel, N.; Beckmann, H.; Bohlen, S.; Hölzner, E.; Lange, H.; Reilmann, R.; Rohm, S.; Rumpf, S.; Schepers, S.; Weber, N.; Dose, M.; Leythäuser, G.; Marquard, R.; Raab, T.; Wiedemann, A.; Barth, K.; Buck, A.; Connemann, J.; Ecker, D.; Geitner, C.; Held, C.; Kesse, A.; Landwehrmeyer, B.; Lang, C.; Lewerenz, J.; Lezius, F.; Nepper, S.; Niess, A.; Orth, M.; Schneider, A.; Schwenk, D.; Süßmuth, S.; Trautmann, S.; Weydt, P.; Cormio, C.; Sciruicchio, V.; Serpino, C.; de Tommaso, M.; Capellari, S.; Cortelli, P.; Galassi, R.; Rizzo, G.; Poda, R.; Scaglione, C.; Bertini, E.; Ghelli, E.; Ginestroni, A.; Massaro, F.; Mechi, C.; Paganini, M.; Piacentini, S.; Pradella, S.; Romoli, A.M.; Sorbi, S.; Abbruzzese, G.; di Poggio, M.B.; Ferrandes, G.; Mandich, P.; Marchese, R.; Albanese, A.; Di Bella, D.; Castaldo, A.; Di Donato, S.; Gellera, C.; Genitrini, S.; Mariotti, C.; Monza, D.; Nanetti, L.; Paridi, D.; Soliveri, P.; Tomasello, C.; De Michele, G.; Di Maio, L.; Massarelli, M.; Peluso, S.; Roca, A.; Russo, C.V.; Salvatore, E.; Sorrentino, P.; Amico, E.; Favellato, M.; Griguoli, A.; Mazzante, I.; Petrollini, M.; Squitieri, F.; D’Alessio, B.; Esposito, C.; Bentivoglio, R.; Frontali, M.; Guidubaldi, A.; Ialongo, T.; Jacopini, G.; Piano, C.; Romano, S.; Soleti, F.; Spadaro, M.; Zinzi, P.; van Hout, M.S.E.; Verhoeven, M.E.; van Vugt, J.P.P.; de Weert, A.M.; Bolwijn, J.J.W.; Dekker, M.; Kremer, B.; Leenders, K.L.; van Oostrom, J.C.H.; van den Bogaard, S.J.A.; Bos, R.; Dumas, E.M.; ’t Hart, E.P.; Roos, R.A.C.; Kremer, B.; Verstappen, C.C.P.; Aaserud, O.; C, J.F.; Heiberg, A.; van Walsem, M.R.; Wehus, R.; Bjørgo, K.; Fannemel, M.; Gørvell, P.F.; Lorentzen, E.; Koivisto, S.P.; Retterstøl, L.; Stokke, B.; Bjørnevoll, I.; Sando, S.B.; Dziadkiewicz, A.; Nowak, M.; Robowski, P.; Sitek, E.; Slawek, J.; Soltan, W.; Szinwelski, M.; Blaszcyk, M.; Boczarska-Jedynak, M.; Ciach-Wysocka, E.; Gorzkowska, A.; Jasinska-Myga, B.; Klodowska-Duda, G.; Opala, G.; Stompel, D.; Banaszkiewicz, K.; Bocwinska, D.; Bojakowska-Jaremek, K.; Dec, M.; Krawczyk, M.; Rudzinska, M.; Szczygiel, E.; Szczudlik, A.; Wasielewska, A.; Wójcik, M.; Bryl, A.; Ciesielska, A.; Klimberg, A.; Marcinkowski, J.; Samara, H.; Sempolowicz, J.; Zielonka, D.; Gogol, A.; Janik, P.; Kwiecinski, H.; Jamrozik, Z.; Antczak, J.; Jachinska, K.; Krysa, W.; Rakowicz, M.; Richter, P.; Rola, R.; Ryglewicz, D.; Sienkiewicz-Jarosz, H.; Stepniak, I.; Sulek, A.; Witkowski, G.; Zaremba, J.; Zdzienicka, E.; Zieora-Jakutowicz, K.; Ferreira, J.J.; Coelho, M.; Guedes, L.C.; Mendes, T.; Mestre, T.; Valadas, A.; Andrade, C.; Gago, M.; Garrett, C.; Guerra, M.R.; Herrera, C.D.; Garcia, P.M.; Barbera, M.A.; Guia, D.B.; Hernanz, L.C.; Catena, J.L.; Ferrer, P.Q.; Sebastián, A.R.; Carruesco, G.T.; Bas, J.; Busquets, N.; Calopa, M.; Robert, M.F.; Viladrich, C.M.; Idiago, J.M.R.; Riballo, A.V.; Cubo, E.; Polo, C.G.; Mariscal, N.; Rivadeneyra, P.J.; Barrero, F.; Morales, B.; Fenollar, M.; García, R.G-R.; Ortega, P.; Villanueva, C.; Alegre, J.; Bascuñana, M.; Caldentey, J.G.; Ventura, M.F.; Ribas, G.G.; de Yébenes, J.G.; Moreno, J.L.L-S.; Cubillo, P.T.; Alegre, J.; Frech, F.A.; de Yébenes, J.G.; Ruíz, P.J.G.; Martínez-Descals, A.; Guerrero, R.; Artiga, M.J.S.; Sánchez, V.; Perea, M.F.N.; Fortuna, L.; Manzanares, S.; Reinante, G.; Torres, M.M.A.; Moreau, L.V.; González González, S.; Guisasola, L.M.; Salvador, C.; Martín, E.S.S.; Ramirez, I.L.; Gorospe, A.; Lopera, M.R.; Arques, P.N.; Rodríguez, M.J.T.; Pastor, B.V.; Gaston, I.; Martinez-Jaurrieta, M.D.; Ramos-Arroyo, M.A.; Moreno, J.M.G.; Lucena, C.M.; Damas, F.; Cortegana, H.E.P.; Peña, J.C.; Redondo, L.; Carrillo, F.; Teresa Cáceres, M.; Mir, P.; Suarez, M.J.L.; Vargas-González, L.; Bosca, M.E.; Brugada, F.C.; Burguera, J.A.; Campos, A.; Vilaplana, G.C.P.; Berglund, P.; Constantinescu, R.; Fredlund, G.; Høsterey-Ugander, U.; Linnsand, P.; Neleborn-Lingefjärd, L.; Wahlström, J.; Wentzel, M.; Loutfi, G.; Olofsson, C.; Stattin, E-L.; Westman, L.; Wikström, B.; Burgunder, J-M.; Stebler, Y.; Kaelin, A.; Romero, I.; Schüpbach, M.; Weber Zaugg, S.; Hauer, M.; Gonzenbach, R.; Jung, H.H.; Mihaylova, V.; Petersen, J.; Jack, R.; Matheson, K.; Miedzybrodzka, Z.; Rae, D.; Simpson, S.A.; Summers, F.; Ure, A.; Vaughan, V.; Akhtar, S.; Crooks, J.; Curtis, A.; de Souza, J.; Piedad, J.; Rickards, H.; Wright, J.; Coulthard, E.; Gethin, L.; Hayward, B.; Sieradzan, K.; Wright, A.; Armstrong, M.; Barker, R.A.; O’Keefe, D.; Di Pietro, A.; Fisher, K.; Goodman, A.; Hill, S.; Kershaw, A.; Mason, S.; Paterson, N.; Raymond, L.; Swain, R.; Guzman, N.V.; Busse, M.; Butcher, C.; Callaghan, J.; Dunnett, S.; Clenaghan, C.; Fullam, R.; Handley, O.; Hunt, S.; Jones, L.; Jones, U.; Khalil, H.; Minster, S.; Owen, M.; Price, K.; Rosser, A.; Townhill, J.; Edwards, M.; Ho, C.; Hughes, T.; McGill, M.; Pearson, P.; Porteous, M.; Smith, P.; Brockie, P.; Foster, J.; Johns, N.; McKenzie, S.; Rothery, J.; Thomas, G.; Yates, S.; Burrows, L.; Chu, C.; Fletcher, A.; Gallantrae, D.; Hamer, S.; Harding, A.; Klöppel, S.; Kraus, A.; Laver, F.; Lewis, M.; Longthorpe, M.; Markova, I.; Raman, A.; Robertson, N.; Silva, M.; Thomson, A.; Wild, S.; Yardumian, P.; Chu, C.; Evans, C.; Gallentrae, D.; Hamer, S.; Kraus, A.; Markova, I.; Raman, A.; Chu, C.; Hamer, S.; Hobson, E.; Jamieson, S.; Kraus, A.; Markova, I.; Raman, A.; Musgrave, H.; Rowett, L.; Toscano, J.; Wild, S.; Yardumian, P.; Bourne, C.; Clapton, J.; Clayton, C.; Dipple, H.; Freire-Patino, D.; Grant, J.; Gross, D.; Hallam, C.; Middleton, J.; Murch, A.; Thompson, C.; Alusi, S.; Davies, R.; Foy, K.; Gerrans, E.; Pate, L.; Andrews, T.; Dougherty, A.; Golding, C.; Kavalier, F.; Laing, H.; Lashwood, A.; Robertson, D.; Ruddy, D.; Santhouse, A.; Whaite, A.; Andrews, T.; Bruno, S.; Doherty, K.; Golding, C.; Haider, S.; Hensman, D.; Lahiri, N.; Lewis, M.; Novak, M.; Patel, A.; Robertson, N.; Rosser, E.; Tabrizi, S.; Taylor, R.; Warner, T.; Wild, E.; Arran, N.; Bek, J.; Callaghan, J.; Craufurd, D.; Fullam, R.; Hare, M.; Howard, L.; Huson, S.; Johnson, L.; Jones, M.; Murphy, H.; Oughton, E.; Partington-Jones, L.; Rogers, D.; Sollom, A.; Snowden, J.; Stopford, C.; Thompson, J.; Trender-Gerhard, I.; Verstraelen, N.; Westmoreland, L.; Armstrong, R.; Dixon, K.; Nemeth, A.H.; Siuda, G.; Valentine, R.; Harrison, D.; Hughes, M.; Parkinson, A.; Soltysiak, B.; Bandmann, O.; Bradbury, A.; Gill, P.; Fairtlough, H.; Fillingham, K.; Foustanos, I.; Kazoka, M.; O’Donovan, K.; Peppa, N.; Taylor, C.; Tidswell, K.; Quarrell, O.; Burgunder, J-M.; Lau, P.N.; Pica, E.; Tan, L. Identification of genetic variants associated with Huntington’s disease progression: a genome-wide association study. Lancet Neurol., 2017, 16(9), 701-711.
[http://dx.doi.org/10.1016/S1474-4422(17)30161-8] [PMID: 28642124]
[211]
Dorszewska, J.; Prendecki, M.; Oczkowska, A.; Dezor, M.; Kozubski, W. Molecular basis of familial and sporadic Alzheimer’s disease. Curr. Alzheimer Res., 2016, 13(9), 952-963.
[http://dx.doi.org/10.2174/1567205013666160314150501] [PMID: 26971934]
[212]
Perrino, M.; Cooke-Barber, J.; Dasgupta, R.; Geller, J.I. Genetic predisposition to cancer: Surveillance and intervention. Semin. Pediatr. Surg., 2019, 28(6), 150858.
[http://dx.doi.org/10.1016/j.sempedsurg.2019.150858] [PMID: 31931963]
[213]
Risch, N.; Merikangas, K. The future of genetic studies of complex human diseases. Science, 1996, 273(5281), 1516-1517.
[http://dx.doi.org/10.1126/science.273.5281.1516] [PMID: 8801636]
[214]
Willis-Owen, S.A.G.; Flint, J. Identifying the genetic determinants of emotionality in humans; insights from rodents. Neurosci. Biobehav. Rev., 2007, 31(1), 115-124.
[http://dx.doi.org/10.1016/j.neubiorev.2006.07.006] [PMID: 17010437]
[215]
Nagel, M.; Watanabe, K.; Stringer, S.; Posthuma, D.; van der Sluis, S. Item-level analyses reveal genetic heterogeneity in neuroticism. Nat. Commun., 2018, 9(1), 905.
[http://dx.doi.org/10.1038/s41467-018-03242-8] [PMID: 29500382]
[216]
Boomsma, D.I.; Beem, A.L.; van den Berg, M.; Dolan, C.V.; Koopmans, J.R.; Vink, J.M.; de Geus, E.J.C.; Slagboom, P.E. Netherlands twin family study of anxious depression (NETSAD). Twin Res., 2000, 3(4), 323-334.
[http://dx.doi.org/10.1375/136905200320565300] [PMID: 11463154]
[217]
Kirk, K.M.; Birley, A.J.; Statham, D.J.; Haddon, B.; Lake, R.I.E.; Andrews, J.G.; Martin, N.G. Anxiety and depression in twin and sib pairs extremely discordant and concordant for neuroticism: prodromus to a linkage study. Twin Res., 2000, 3(4), 299-309.
[http://dx.doi.org/10.1375/136905200320565274] [PMID: 11463151]
[218]
Martin, N.; Goodwin, G.; Fairburn, C.; Wilson, R.; Allison, D.; Cardon, L.R.; Flint, J. A population-based study of personality in 34, 000 sib-pairs. Twin Res., 2000, 3(4), 310-315.
[PMID: 11463152]
[219]
Nash, M.W.; Huezo-Diaz, P.; Williamson, R.J.; Sterne, A.; Purcell, S.; Hoda, F.; Cherny, S.S.; Abecasis, G.R.; Prince, M.; Gray, J.A.; Ball, D.; Asherson, P.; Mann, A.; Goldberg, D.; McGuffin, P.; Farmer, A.; Plomin, R.; Craig, I.W.; Sham, P.C. Genome-wide linkage analysis of a composite index of neuroticism and moodrelated scales in extreme selected sibships. Hum. Mol. Genet., 2004, 13(19), 2173-2182.
[http://dx.doi.org/10.1093/hmg/ddh239] [PMID: 15351774]
[220]
Heo, M.; Faith, M.S.; Allison, D.B. Power and sample sizes for linkage with extreme sampling under an oligogenic model for quantitative traits. Behav. Genet., 2002, 32(1), 23-36.
[http://dx.doi.org/10.1023/A:1014403827957] [PMID: 11958540]
[221]
Fullerton, J.; Cubin, M.; Tiwari, H.; Wang, C.; Bomhra, A.; Davidson, S.; Miller, S.; Fairburn, C.; Goodwin, G.; Neale, M.C.; Fiddy, S.; Mott, R.; Allison, D.B.; Flint, J. Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative-trait loci that influence variation in the human personality trait neuroticism. Am. J. Hum. Genet., 2003, 72(4), 879-890.
[http://dx.doi.org/10.1086/374178] [PMID: 12612864]
[222]
Neale, B.M.; Sullivan, P.F.; Kendler, K.S. A genome scan of neuroticism in nicotine dependent smokers. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2005, 132B(1), 65-69.
[http://dx.doi.org/10.1002/ajmg.b.30095] [PMID: 15389754]
[223]
Kendler, K.S.; Gatz, M.; Gardner, C.O.; Pedersen, N.L. Clinical indices of familial depression in the Swedish Twin Registry. Acta Psychiatr. Scand., 2007, 115(3), 214-220.
[http://dx.doi.org/10.1111/j.1600-0447.2006.00863.x] [PMID: 17302621]
[224]
Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature, 2015, 523(7562), 588-591.
[http://dx.doi.org/10.1038/nature14659] [PMID: 26176920]
[225]
Dehghan, A. Genome-Wide Association Studies. Methods Mol. Biol., 2018, 1793, 37-49.
[http://dx.doi.org/10.1007/978-1-4939-7868-7_4] [PMID: 29876890]
[226]
Uitterlinden, A. An introduction to genome-wide association studies: GWAS for dummies. Semin. Reprod. Med., 2016, 34(4), 196-204.
[http://dx.doi.org/10.1055/s-0036-1585406] [PMID: 27513020]
[227]
Pasaniuc, B.; Rohland, N.; McLaren, P.J.; Garimella, K.; Zaitlen, N.; Li, H.; Gupta, N.; Neale, B.M.; Daly, M.J.; Sklar, P.; Sullivan, P.F.; Bergen, S.; Moran, J.L.; Hultman, C.M.; Lichtenstein, P.; Magnusson, P.; Purcell, S.M.; Haas, D.W.; Liang, L.; Sunyaev, S.; Patterson, N.; de Bakker, P.I.W.; Reich, D.; Price, A.L. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat. Genet., 2012, 44(6), 631-635.
[http://dx.doi.org/10.1038/ng.2283] [PMID: 22610117]
[228]
Demontis, D.; Walters, R.K.; Martin, J.; Mattheisen, M.; Als, T.D.; Agerbo, E.; Baldursson, G.; Belliveau, R.; Bybjerg-Grauholm, J.; Bækvad-Hansen, M.; Cerrato, F.; Chambert, K.; Churchhouse, C.; Dumont, A.; Eriksson, N.; Gandal, M.; Goldstein, J.I.; Grasby, K.L.; Grove, J.; Gudmundsson, O.O.; Hansen, C.S.; Hauberg, M.E.; Hollegaard, M.V.; Howrigan, D.P.; Huang, H.; Maller, J.B.; Martin, A.R.; Martin, N.G.; Moran, J.; Pallesen, J.; Palmer, D.S.; Pedersen, C.B.; Pedersen, M.G.; Poterba, T.; Poulsen, J.B.; Ripke, S.; Robinson, E.B.; Satterstrom, F.K.; Stefansson, H.; Stevens, C.; Turley, P.; Walters, G.B.; Won, H.; Wright, M.J.; Andreassen, O.A.; Asherson, P.; Burton, C.L.; Boomsma, D.I.; Cormand, B.; Dalsgaard, S.; Franke, B.; Gelernter, J.; Geschwind, D.; Hakonarson, H.; Haavik, J.; Kranzler, H.R.; Kuntsi, J.; Langley, K.; Lesch, K.P.; Middeldorp, C.; Reif, A.; Rohde, L.A.; Roussos, P.; Schachar, R.; Sklar, P.; Sonuga-Barke, E.J.S.; Sullivan, P.F.; Thapar, A.; Tung, J.Y.; Waldman, I.D.; Medland, S.E.; Stefansson, K.; Nordentoft, M.; Hougaard, D.M.; Werge, T.; Mors, O.; Mortensen, P.B.; Daly, M.J.; Faraone, S.V.; Børglum, A.D.; Neale, B.M. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet., 2019, 51(1), 63-75.
[http://dx.doi.org/10.1038/s41588-018-0269-7] [PMID: 30478444]
[229]
Lee, S.H.; Ripke, S.; Neale, B.M.; Faraone, S.V.; Purcell, S.M.; Perlis, R.H.; Mowry, B.J.; Thapar, A.; Goddard, M.E.; Witte, J.S.; Absher, D.; Agartz, I.; Akil, H.; Amin, F.; Andreassen, O.A.; Anjorin, A.; Anney, R.; Anttila, V.; Arking, D.E.; Asherson, P.; Azevedo, M.H.; Backlund, L.; Badner, J.A.; Bailey, A.J.; Banaschewski, T.; Barchas, J.D.; Barnes, M.R.; Barrett, T.B.; Bass, N.; Battaglia, A.; Bauer, M.; Bayés, M.; Bellivier, F.; Bergen, S.E.; Berrettini, W.; Betancur, C.; Bettecken, T.; Biederman, J.; Binder, E.B.; Black, D.W.; Blackwood, D.H.; Bloss, C.S.; Boehnke, M.; Boomsma, D.I.; Breen, G.; Breuer, R.; Bruggeman, R.; Cormican, P.; Buccola, N.G.; Buitelaar, J.K.; Bunney, W.E.; Buxbaum, J.D.; Byerley, W.F.; Byrne, E.M.; Caesar, S.; Cahn, W.; Cantor, R.M.; Casas, M.; Chakravarti, A.; Chambert, K.; Choudhury, K.; Cichon, S.; Cloninger, C.R.; Collier, D.A.; Cook, E.H.; Coon, H.; Cormand, B.; Corvin, A.; Coryell, W.H.; Craig, D.W.; Craig, I.W.; Crosbie, J.; Cuccaro, M.L.; Curtis, D.; Czamara, D.; Datta, S.; Dawson, G.; Day, R.; De Geus, E.J.; Degenhardt, F.; Djurovic, S.; Donohoe, G.J.; Doyle, A.E.; Duan, J.; Dudbridge, F.; Duketis, E.; Ebstein, R.P.; Edenberg, H.J.; Elia, J.; Ennis, S.; Etain, B.; Fanous, A.; Farmer, A.E.; Ferrier, I.N.; Flickinger, M.; Fombonne, E.; Foroud, T.; Frank, J.; Franke, B.; Fraser, C.; Freedman, R.; Freimer, N.B.; Freitag, C.M.; Friedl, M.; Frisén, L.; Gallagher, L.; Gejman, P.V.; Georgieva, L.; Gershon, E.S.; Geschwind, D.H.; Giegling, I.; Gill, M.; Gordon, S.D.; Gordon-Smith, K.; Green, E.K.; Greenwood, T.A.; Grice, D.E.; Gross, M.; Grozeva, D.; Guan, W.; Gurling, H.; De Haan, L.; Haines, J.L.; Hakonarson, H.; Hallmayer, J.; Hamilton, S.P.; Hamshere, M.L.; Hansen, T.F.; Hartmann, A.M.; Hautzinger, M.; Heath, A.C.; Henders, A.K.; Herms, S.; Hickie, I.B.; Hipolito, M.; Hoefels, S.; Holmans, P.A.; Holsboer, F.; Hoogendijk, W.J.; Hottenga, J.J.; Hultman, C.M.; Hus, V.; Ingason, A.; Ising, M.; Jamain, S.; Jones, E.G.; Jones, I.; Jones, L.; Tzeng, J.Y.; Kähler, A.K.; Kahn, R.S.; Kandaswamy, R.; Keller, M.C.; Kennedy, J.L.; Kenny, E.; Kent, L.; Kim, Y.; Kirov, G.K.; Klauck, S.M.; Klei, L.; Knowles, J.A.; Kohli, M.A.; Koller, D.L.; Konte, B.; Korszun, A.; Krabbendam, L.; Krasucki, R.; Kuntsi, J.; Kwan, P.; Landén, M.; Långström, N.; Lathrop, M.; Lawrence, J.; Lawson, W.B.; Leboyer, M.; Ledbetter, D.H.; Lee, P.H.; Lencz, T.; Lesch, K.P.; Levinson, D.F.; Lewis, C.M.; Li, J.; Lichtenstein, P.; Lieberman, J.A.; Lin, D.Y.; Linszen, D.H.; Liu, C.; Lohoff, F.W.; Loo, S.K.; Lord, C.; Lowe, J.K.; Lucae, S.; MacIntyre, D.J.; Madden, P.A.; Maestrini, E.; Magnusson, P.K.; Mahon, P.B.; Maier, W.; Malhotra, A.K.; Mane, S.M.; Martin, C.L.; Martin, N.G.; Mattheisen, M.; Matthews, K.; Mattingsdal, M.; McCarroll, S.A.; McGhee, K.A.; McGough, J.J.; McGrath, P.J.; McGuffin, P.; McInnis, M.G.; McIntosh, A.; McKinney, R.; McLean, A.W.; McMahon, F.J.; McMahon, W.M.; McQuillin, A.; Medeiros, H.; Medland, S.E.; Meier, S.; Melle, I.; Meng, F.; Meyer, J.; Middeldorp, C.M.; Middleton, L.; Milanova, V.; Miranda, A.; Monaco, A.P.; Montgomery, G.W.; Moran, J.L.; Moreno-De-Luca, D.; Morken, G.; Morris, D.W.; Morrow, E.M.; Moskvina, V.; Muglia, P.; Mühleisen, T.W.; Muir, W.J.; Müller-Myhsok, B.; Murtha, M.; Myers, R.M.; Myin-Germeys, I.; Neale, M.C.; Nelson, S.F.; Nievergelt, C.M.; Nikolov, I.; Nimgaonkar, V.; Nolen, W.A.; Nöthen, M.M.; Nurnberger, J.I.; Nwulia, E.A.; Nyholt, D.R.; O’Dushlaine, C.; Oades, R.D.; Olincy, A.; Oliveira, G.; Olsen, L.; Ophoff, R.A.; Osby, U.; Owen, M.J.; Palotie, A.; Parr, J.R.; Paterson, A.D.; Pato, C.N.; Pato, M.T.; Penninx, B.W.; Pergadia, M.L.; Pericak-Vance, M.A.; Pickard, B.S.; Pimm, J.; Piven, J.; Posthuma, D.; Potash, J.B.; Poustka, F.; Propping, P.; Puri, V.; Quested, D.J.; Quinn, E.M.; Ramos-Quiroga, J.A.; Rasmussen, H.B.; Raychaudhuri, S.; Rehnström, K.; Reif, A.; Ribasés, M.; Rice, J.P.; Rietschel, M.; Roeder, K.; Roeyers, H.; Rossin, L.; Rothenberger, A.; Rouleau, G.; Ruderfer, D.; Rujescu, D.; Sanders, A.R.; Sanders, S.J.; Santangelo, S.L.; Sergeant, J.A.; Schachar, R.; Schalling, M.; Schatzberg, A.F.; Scheftner, W.A.; Schellenberg, G.D.; Scherer, S.W.; Schork, N.J.; Schulze, T.G.; Schumacher, J.; Schwarz, M.; Scolnick, E.; Scott, L.J.; Shi, J.; Shilling, P.D.; Shyn, S.I.; Silverman, J.M.; Slager, S.L.; Smalley, S.L.; Smit, J.H.; Smith, E.N.; Sonuga-Barke, E.J.; St Clair, D.; State, M.; Steffens, M.; Steinhausen, H.C.; Strauss, J.S.; Strohmaier, J.; Stroup, T.S.; Sutcliffe, J.S.; Szatmari, P.; Szelinger, S.; Thirumalai, S.; Thompson, R.C.; Todorov, A.A.; Tozzi, F.; Treutlein, J.; Uhr, M.; van den Oord, E.J.; Van Grootheest, G.; Van Os, J.; Vicente, A.M.; Vieland, V.J.; Vincent, J.B.; Visscher, P.M.; Walsh, C.A.; Wassink, T.H.; Watson, S.J.; Weissman, M.M.; Werge, T.; Wienker, T.F.; Wijsman, E.M.; Willemsen, G.; Williams, N.; Willsey, A.J.; Witt, S.H.; Xu, W.; Young, A.H.; Yu, T.W.; Zammit, S.; Zandi, P.P.; Zhang, P.; Zitman, F.G.; Zöllner, S.; Devlin, B.; Kelsoe, J.R.; Sklar, P.; Daly, M.J.; O’Donovan, M.C.; Craddock, N.; Sullivan, P.F.; Smoller, J.W.; Kendler, K.S.; Wray, N.R. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet., 2013, 45(9), 984-994.
[http://dx.doi.org/10.1038/ng.2711] [PMID: 23933821]
[230]
Willis-Owen, S.A.G.; Flint, J. The genetic basis of emotional behaviour in mice. Eur. J. Hum. Genet., 2006, 14(6), 721-728.
[http://dx.doi.org/10.1038/sj.ejhg.5201569] [PMID: 16721408]
[231]
Talbot, C.J.; Nicod, A.; Cherny, S.S.; Fulker, D.W.; Collins, A.C.; Flint, J. High-resolution mapping of quantitative trait loci in outbred mice. Nat. Genet., 1999, 21(3), 305-308.
[http://dx.doi.org/10.1038/6825] [PMID: 10080185]
[232]
Mott, R.; Talbot, C.J.; Turri, M.G.; Collins, A.C.; Flint, J. A method for fine mapping quantitative trait loci in outbred animal stocks. Proc. Natl. Acad. Sci. USA, 2000, 97(23), 12649-12654.
[http://dx.doi.org/10.1073/pnas.230304397] [PMID: 11050180]
[233]
Jin, X.; Zhang, Y.; Celniker, S.E.; Xia, Y.; Mao, J.H.; Snijders, A.M.; Chang, H. Gut microbiome partially mediates and coordinates the effects of genetics on anxiety-like behavior in Collaborative Cross mice. Sci. Rep., 2021, 11(1), 270.
[http://dx.doi.org/10.1038/s41598-020-79538-x] [PMID: 33431988]
[234]
Xu, J.; Guo, S. Molecular genetic approaches to dissect complex behaviors in zebrafish. Behavioral and neural genetics of zebrafish; Elsevier, 2020, pp. 223-244.
[http://dx.doi.org/10.1016/B978-0-12-817528-6.00014-0]
[235]
Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J.C.; Koch, R.; Rauch, G.J.; White, S.; Chow, W.; Kilian, B.; Quintais, L.T.; Guerra-Assunção, J.A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J.H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S.F.; Laird, G.K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliott, D.; Threadgold, G.; Harden, G.; Ware, D.; Begum, S.; Mortimore, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Lloyd, C.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Barker, G.; Whitehead, S.; Kay, M.; Brown, J.; Murnane, C.; Gray, E.; Humphries, M.; Sycamore, N.; Barker, D.; Saunders, D.; Wallis, J.; Babbage, A.; Hammond, S.; Mashreghi-Mohammadi, M.; Barr, L.; Martin, S.; Wray, P.; Ellington, A.; Matthews, N.; Ellwood, M.; Woodmansey, R.; Clark, G.; Cooper, J.D.; Tromans, A.; Grafham, D.; Skuce, C.; Pandian, R.; Andrews, R.; Harrison, E.; Kimberley, A.; Garnett, J.; Fosker, N.; Hall, R.; Garner, P.; Kelly, D.; Bird, C.; Palmer, S.; Gehring, I.; Berger, A.; Dooley, C.M.; Ersan-Ürün, Z.; Eser, C.; Geiger, H.; Geisler, M.; Karotki, L.; Kirn, A.; Konantz, J.; Konantz, M.; Oberländer, M.; Rudolph-Geiger, S.; Teucke, M.; Lanz, C.; Raddatz, G.; Osoegawa, K.; Zhu, B.; Rapp, A.; Widaa, S.; Langford, C.; Yang, F.; Schuster, S.C.; Carter, N.P.; Harrow, J.; Ning, Z.; Herrero, J.; Searle, S.M.J.; Enright, A.; Geisler, R.; Plasterk, R.H.A.; Lee, C.; Westerfield, M.; de Jong, P.J.; Zon, L.I.; Postlethwait, J.H.; Nüsslein-Volhard, C.; Hubbard, T.J.P.; Crollius, H.R.; Rogers, J.; Stemple, D.L. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496(7446), 498-503.
[http://dx.doi.org/10.1038/nature12111] [PMID: 23594743]
[236]
Gerlai, R.T. Fear responses and antipredatory behavior of zebrafish: A translational perspective. Behavioral and neural genetics of zebrafish; Elsevier, 2020, pp. 155-171.
[http://dx.doi.org/10.1016/B978-0-12-817528-6.00010-3]
[237]
Wright, D.; Nakamichi, R.; Krause, J.; Butlin, R.K. QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behav. Genet., 2006, 36(2), 271-284.
[http://dx.doi.org/10.1007/s10519-005-9029-4] [PMID: 16408248]
[238]
Choi, J.H.; Jeong, Y.M.; Kim, S.; Lee, B.; Ariyasiri, K.; Kim, H.T.; Jung, S.H.; Hwang, K.S.; Choi, T.I.; Park, C.O.; Huh, W.K.; Carl, M.; Rosenfeld, J.A.; Raskin, S.; Ma, A.; Gecz, J.; Kim, H.G.; Kim, J.S.; Shin, H.C.; Park, D.S.; Gerlai, R.; Jamieson, B.B.; Kim, J.S.; Iremonger, K.J.; Lee, S.H.; Shin, H.S.; Kim, C.H. Targeted knockout of a chemokine-like gene increases anxiety and fear responses. Proc. Natl. Acad. Sci. USA, 2018, 115(5), E1041-E1050.
[http://dx.doi.org/10.1073/pnas.1707663115] [PMID: 29339520]
[239]
Wang, M.; Wang, Q.; Pan, Y. From QTL to QTN: candidate gene set approach and a case study in porcine IGF1-FoxO pathway. PLoS One, 2013, 8(1), e53452.
[http://dx.doi.org/10.1371/journal.pone.0053452] [PMID: 23341942]
[240]
Yoshimi, K.; Kaneko, T.; Voigt, B.; Mashimo, T. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat. Commun., 2014, 5(1), 4240.
[http://dx.doi.org/10.1038/ncomms5240] [PMID: 24967838]
[241]
Baud, A.; Flint, J. Identifying genes for neurobehavioural traits in rodents: progress and pitfalls. Dis. Model. Mech., 2017, 10(4), 373-383.
[http://dx.doi.org/10.1242/dmm.027789] [PMID: 28381599]
[242]
Chan, A.N.; Wang, L.L.; Zhu, Y.J.; Fan, Y.Y.; Zhuang, J.Y.; Zhang, Z.H. Identification through fine mapping and verification using CRISPR/Cas9-targeted mutagenesis for a minor QTL controlling grain weight in rice. Theor. Appl. Genet., 2021, 134(1), 327-337.
[http://dx.doi.org/10.1007/s00122-020-03699-6] [PMID: 33068118]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy