Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Natural Product Ligands of the Peroxisome Proliferator-Activated Receptor Gamma as Anti-Inflammatory Mediators

Author(s): Madhavi Derangula, Kumarla Kaluva Ruhinaz, Kalpana Panati, Parasuraman Aiya Subramani, Venkatramana Reddy Arva Tatireddigari and Venkata Ramireddy Narala*

Volume 13, Issue 6, 2023

Published on: 17 October, 2022

Article ID: e070922208617 Pages: 15

DOI: 10.2174/2210315512666220907150542

Price: $65

Abstract

Immunologists have long considered inflammation to be a two-edged sword. Short-term inflammation can be beneficial, but long-term chronic inflammation is damaging. Obesity, type 2 diabetes (T2D), and cancer have recently been added to the never-ending list of inflammatory diseases. The nuclear transcription factor peroxisome proliferator-activated receptor gamma (PPAR-γ) is involved in inflammation and obesity. Clinicians employed PPAR-γ agonists, both synthetic and natural, to treat disorders such as obesity and T2D without fully understanding the biochemical features and potential adverse effects. This is one of the reasons for the controversy surrounding the thiazolidinedione class of medicines, including rosiglitazone and pioglitazone. Nonetheless, various natural PPAR-γ ligands, including endogenous physiological ligands, are discovered regularly around the world. This review aims to summarise the physiochemical properties and possible antiinflammatory actions of ligands discovered in nature. Future research in this area should be supported in order to find improved commercial PPAR-γ ligand anti-inflammatory products.

Keywords: Inflammation, matrix metalloproteinase, natural ligands, PPAR-γ, peroxisome proliferator-activated receptor, antiinflammatory mediators.

Graphical Abstract
[1]
Papadimitriou, J.M. The pharmacological mediation of the acute inflammatory response: A brief review. Australas. J. Dermatol., 1974, 15(3), 132-136.
[http://dx.doi.org/10.1111/j.1440-0960.1974.tb00547.x] [PMID: 4141621]
[2]
Ryan, G.B.; Majno, G. Acute inflammation. A review. Am. J. Pathol., 1977, 86(1), 183-276.
[PMID: 64118]
[3]
Haslett, C. Resolution of acute inflammation and the role of apoptosis in the tissue fate of granulocytes. Clin. Sci., 1992, 83(6), 639-648.
[http://dx.doi.org/10.1042/cs0830639] [PMID: 1336433]
[4]
Meirow, Y.; Baniyash, M. Immune biomarkers for chronic inflammation related complications in non-cancerous and cancerous diseases. Cancer Immunol. Immunother., 2017, 66(8), 1089-1101.
[http://dx.doi.org/10.1007/s00262-017-2035-6] [PMID: 28674756]
[5]
Mantovani, A.; Ponzetta, A.; Inforzato, A.; Jaillon, S. Innate immunity, inflammation and tumour progression: Double‐edged swords. J. Intern. Med., 2019, 285(5), 524-532.
[http://dx.doi.org/10.1111/joim.12886] [PMID: 30873708]
[6]
Hamidzadeh, K.; Christensen, S.M.; Dalby, E.; Chandrasekaran, P.; Mosser, D.M. Macrophages and the recovery from acute and chronic inflammation. Annu. Rev. Physiol., 2017, 79(1), 567-592.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034348] [PMID: 27959619]
[7]
Musolino, C.; Allegra, A.; Innao, V.; Allegra, A.G.; Pioggia, G.; Gangemi, S. Inflammatory and anti-inflammatory equilibrium, proliferative and antiproliferative balance: The role of cytokines in multiple myeloma. Mediators Inflamm., 2017, 2017, 1-24.
[http://dx.doi.org/10.1155/2017/1852517] [PMID: 29089667]
[8]
Mirza, A.Z.; Althagafi, I.I.; Shamshad, H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur. J. Med. Chem., 2019, 166, 502-513.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.067] [PMID: 30739829]
[9]
Subramani, P.; Reddy, M.; Narala, V. The need for physiologically relevant peroxisome proliferator-activated receptor-gamma (PPAR-γ) ligands. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(2), 175-183.
[http://dx.doi.org/10.2174/18715303113139990003] [PMID: 23713695]
[10]
Janani, C.; Ranjitha, K.B.D. PPAR gamma gene – A review. Diabetes Metab. Syndr., 2015, 9(1), 46-50.
[http://dx.doi.org/10.1016/j.dsx.2014.09.015] [PMID: 25450819]
[11]
Yasmin, S.; Jayaprakash, V. Thiazolidinediones and PPAR orchestra as antidiabetic agents: From past to present. Eur. J. Med. Chem., 2017, 126, 879-893.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.020] [PMID: 27988463]
[12]
Nanjan, M.J.; Mohammed, M.; Prashantha Kumar, B.R.; Chandrasekar, M.J.N. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg. Chem., 2018, 77, 548-567.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.009] [PMID: 29475164]
[13]
Kothari, V.; Galdo, J.A.; Mathews, S.T. Hypoglycemic agents and potential anti-inflammatory activity. J. Inflamm. Res., 2016, 9, 27-38.
[PMID: 27114714]
[14]
Schoonjans, K.; Staels, B.; Auwerx, J. The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta Lipids Lipid Metab., 1996, 1302(2), 93-109.
[http://dx.doi.org/10.1016/0005-2760(96)00066-5] [PMID: 8695669]
[15]
Cho, M.C.; Lee, K.; Paik, S.G.; Yoon, D.Y. Peroxisome Proliferators- Activated Receptor (PPAR) modulators and metabolic disorders. PPAR research, 2008, 2008, 679137.
[16]
Chandra, V.; Huang, P.; Hamuro, Y.; Raghuram, S.; Wang, Y.; Burris, T.P.; Rastinejad, F. Structure of the intact PPAR-γ–RXR-α nuclear receptor complex on DNA. Nature, 2008, 456(7220), 350-356.
[http://dx.doi.org/10.1038/nature07413] [PMID: 19043829]
[17]
Berger, J.; Moller, D.E. The mechanisms of action of PPARs. Annu. Rev. Med., 2002, 53(1), 409-435.
[http://dx.doi.org/10.1146/annurev.med.53.082901.104018] [PMID: 11818483]
[18]
Kota, B.; Huang, T.; Roufogalis, B. An overview on biological mechanisms of PPARs. Pharmacol. Res., 2005, 51(2), 85-94.
[http://dx.doi.org/10.1016/j.phrs.2004.07.012] [PMID: 15629253]
[19]
Lazennec, G.; Canaple, L.; Saugy, D.; Wahli, W. Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators. Mol. Endocrinol., 2000, 14(12), 1962-1975.
[http://dx.doi.org/10.1210/mend.14.12.0575] [PMID: 11117527]
[20]
Krey, G.; Keller, H.; Mahfoudi, A.; Medin, J.; Ozato, K.; Dreyer, C.; Wahli, W. Xenopus peroxisome proliferator activated receptors: Genomic organization, response element recognition, heterodimer formation with retinoid X receptor and activation by fatty acids. J. Steroid Biochem. Mol. Biol., 1993, 47(1-6), 65-73.
[http://dx.doi.org/10.1016/0960-0760(93)90058-5] [PMID: 8274443]
[21]
Willson, T.M.; Brown, P.J.; Sternbach, D.D.; Henke, B.R. The PPARs: From orphan receptors to drug discovery. J. Med. Chem., 2000, 43(4), 527-550.
[http://dx.doi.org/10.1021/jm990554g] [PMID: 10691680]
[22]
Dowell, P.; Ishmael, J.E.; Avram, D.; Peterson, V.J.; Nevrivy, D.J.; Leid, M. Identification of nuclear receptor corepressor as a peroxisome proliferator-activated receptor α interacting protein. J. Biol. Chem., 1999, 274(22), 15901-15907.
[http://dx.doi.org/10.1074/jbc.274.22.15901] [PMID: 10336495]
[23]
Powell, E.; Kuhn, P.; Xu, W. Nuclear receptor cofactors in PPARγ-mediated adipogenesis and adipocyte energy metabolism. PPAR res., 2007, 2007, 53843M.
[http://dx.doi.org/10.1155/2007/53843]
[24]
Kliewer, S.A.; Umesono, K.; Noonan, D.J.; Heyman, R.A.; Evans, R.M. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature, 1992, 358(6389), 771-774.
[http://dx.doi.org/10.1038/358771a0] [PMID: 1324435]
[25]
Burns, K.; Vandenheuvel, J. Modulation of PPAR activity via phosphorylation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2007, 1771(8), 952-960.
[http://dx.doi.org/10.1016/j.bbalip.2007.04.018]
[26]
Abbott, B.D. Review of the expression of peroxisome proliferator-activated receptors alpha (PPARα), beta (PPARβ), and gamma (PPARγ) in rodent and human development. Reprod. Toxicol., 2009, 27(3-4), 246-257.
[http://dx.doi.org/10.1016/j.reprotox.2008.10.001] [PMID: 18996469]
[27]
Motojima, K. Peroxisome proliferator-activated receptor (PPAR): Structure, mechanisms of activation and diverse functions. Cell Struct. Funct., 1993, 18(5), 267-277.
[http://dx.doi.org/10.1247/csf.18.267] [PMID: 8168153]
[28]
Houseknecht, K.L.; Cole, B.M.; Steele, P.J. Peroxisome proliferator-activated receptor gamma (PPARγ) and its ligands: A review. Domest. Anim. Endocrinol., 2002, 22(1), 1-23.
[http://dx.doi.org/10.1016/S0739-7240(01)00117-5] [PMID: 11900961]
[29]
Evans, R.J.; Pline, K.; Loynes, C.A.; Needs, S.; Aldrovandi, M.; Tiefenbach, J.; Bielska, E.; Rubino, R.E.; Nicol, C.J.; May, R.C.; Krause, H.M.; O’Donnell, V.B.; Renshaw, S.A.; Johnston, S.A. 15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR-γ) to promote Cryptococcus neoformans growth during infection. PLoS Pathog., 2019, 15(3), e1007597.
[http://dx.doi.org/10.1371/journal.ppat.1007597] [PMID: 30921435]
[30]
Panati, K.; Subramani, P.A.; Reddy, M.M.; Derangula, M.; Arva Tatireddigari, V.R.R.; Kolliputi, N.; Narala, V.R. The nitrated fatty acid, 10-nitrooleate inhibits the neutrophil chemotaxis via peroxisome proliferator-activated receptor gamma in CLP-induced sepsis in mice. Int. Immunopharmacol., 2019, 72, 159-165.
[http://dx.doi.org/10.1016/j.intimp.2019.04.001] [PMID: 30981081]
[31]
Panati, K.; Thimmana, L.V.; Narala, V.R. Electrophilic nitrated fatty acids are potential therapeutic candidates for inflammatory and fibrotic lung diseases. Nitric oxide, 2020, 102, 28-38.
[32]
Yki-Järvinen, H. Thiazolidinediones. N. Engl. J. Med., 2004, 351(11), 1106-1118.
[http://dx.doi.org/10.1056/NEJMra041001] [PMID: 15356308]
[33]
Zhang, B.B.; Moller, D.E. New approaches in the treatment of type 2 diabetes. Curr. Opin. Chem. Biol., 2000, 4(4), 461-467.
[http://dx.doi.org/10.1016/S1367-5931(00)00103-4] [PMID: 10959776]
[34]
Wang, Q.; Imam, M.U.; Yida, Z.; Wang, F. Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) as a target for concurrent management of diabetes and obesity-related cancer. Curr. Pharm. Des., 2017, 23(25), 3677-3688.
[PMID: 28677503]
[35]
Narala, V.R.; Subramani, P.A.; Narasimha, V.R.; Shaik, F.B.; Panati, K. The role of nitrated fatty acids and peroxisome proliferator-activated receptor gamma in modulating inflammation. Int. Immunopharmacol., 2014, 23(1), 283-287.
[http://dx.doi.org/10.1016/j.intimp.2014.09.009] [PMID: 25241247]
[36]
Croasdell, A.; Duffney, P.F.; Kim, N.; Lacy, S.H.; Sime, P.J.; Phipps, R.P. PPARγ and the innate immune system mediate the resolution of inflammation. PPAR Res., 2015, 2015, 549691.
[37]
Neve, B.P.; Fruchart, J.C.; Staels, B. Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochem. Pharmacol., 2000, 60(8), 1245-1250.
[http://dx.doi.org/10.1016/S0006-2952(00)00430-5] [PMID: 11007963]
[38]
Ivanova, E.A.; Myasoedova, V.A.; Melnichenko, A.A.; Orekhov, A.N. Peroxisome Proliferator-Activated Receptor (PPAR) gamma agonists as therapeutic agents for cardiovascular disorders: Focus on atherosclerosis. Curr. Pharm. Des., 2017, 23(7), 1119-1124.
[http://dx.doi.org/10.2174/1381612823666161118145850] [PMID: 27855608]
[39]
Schintu, N.; Frau, L.; Ibba, M.; Caboni, P.; Garau, A.; Carboni, E.; Carta, A.R. PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur. J. Neurosci., 2009, 29(5), 954-963.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06657.x] [PMID: 19245367]
[40]
Natarajan, C.; Bright, J.J. Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun., 2002, 3(2), 59-70.
[http://dx.doi.org/10.1038/sj.gene.6363832] [PMID: 11960303]
[41]
Landreth, G.; Jiang, Q.; Mandrekar, S.; Heneka, M. PPARγ agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics, 2008, 5(3), 481-489.
[http://dx.doi.org/10.1016/j.nurt.2008.05.003] [PMID: 18625459]
[42]
Annese, V.; Rogai, F.; Settesoldi, A.; Bagnoli, S. PPARγ in inflammatory bowel disease. PPAR res., 2012, 2012, 620839.
[43]
Giaginis, C.; Giagini, A.; Theocharis, S. Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) ligands as potential therapeutic agents to treat arthritis. Pharmacol. Res., 2009, 60(3), 160-169.
[http://dx.doi.org/10.1016/j.phrs.2009.02.005] [PMID: 19646655]
[44]
Cariou, B.; Charbonnel, B.; Staels, B. Thiazolidinediones and PPARγ agonists: Time for a reassessment. Trends Endocrinol. Metab., 2012, 23(5), 205-215.
[http://dx.doi.org/10.1016/j.tem.2012.03.001] [PMID: 22513163]
[45]
Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J.M.; Heiss, E.H.; Schuster, D.; Kopp, B.; Bauer, R.; Stuppner, H.; Dirsch, V.M.; Atanasov, A.G. Natural product agonists of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ): A review. Biochem. Pharmacol., 2014, 92(1), 73-89.
[http://dx.doi.org/10.1016/j.bcp.2014.07.018] [PMID: 25083916]
[46]
Guzik, T.J.; Korbut, R.; Adamek-Guzik, T. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol., 2003, 54(4), 469-487.
[PMID: 14726604]
[47]
Vane, J.R.; Mitchell, J.A.; Appleton, I.; Tomlinson, A.; Bishop-Bailey, D.; Croxtall, J.; Willoughby, D.A. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc. Natl. Acad. Sci., 1994, 91(6), 2046-2050.
[http://dx.doi.org/10.1073/pnas.91.6.2046] [PMID: 7510883]
[48]
Mendez, M.; LaPointe, M.C. PPARgamma inhibition of cyclooxygenase-2, PGE2 synthase, and inducible nitric oxide synthase in cardiac myocytes. Hypertension, 2003, 42(4), 844-850.
[http://dx.doi.org/10.1161/01.HYP.0000085332.69777.D1] [PMID: 12885795]
[49]
Crosby, M.B.; Svenson, J.; Gilkeson, G.S.; Nowling, T.K. A novel PPAR response element in the murine iNOS promoter. Mol. Immunol., 2005, 42(11), 1303-1310.
[http://dx.doi.org/10.1016/j.molimm.2004.12.009] [PMID: 15950726]
[50]
Kaufmann, W.E.; Worley, P.F.; Pegg, J.; Bremer, M.; Isakson, P. COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc. Natl. Acad. Sci., 1996, 93(6), 2317-2321.
[http://dx.doi.org/10.1073/pnas.93.6.2317] [PMID: 8637870]
[51]
Crofford, L.J. COX-1 and COX-2 tissue expression: Implications and predictions. J. Rheumatol. Suppl., 1997, 49, 15-19.
[PMID: 9249646]
[52]
Seibert, K.; Masferrer, J.L. Role of inducible cyclooxygenase (COX-2) in inflammation. Receptor, 1994, 4(1), 17-23.
[PMID: 8038702]
[53]
Meade, E.A.; Smith, W.L.; DeWitt, D.L. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem., 1993, 268(9), 6610-6614.
[http://dx.doi.org/10.1016/S0021-9258(18)53294-4] [PMID: 8454631]
[54]
Yang, W.L.; Frucht, H. Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells. Carcinogenesis, 2001, 22(9), 1379-1383.
[http://dx.doi.org/10.1093/carcin/22.9.1379] [PMID: 11532858]
[55]
Choi, S.S.; Cha, B.Y.; Lee, Y.S.; Yonezawa, T.; Teruya, T.; Nagai, K.; Woo, J.T. Magnolol enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Life Sci., 2009, 84(25-26), 908-914.
[http://dx.doi.org/10.1016/j.lfs.2009.04.001] [PMID: 19376135]
[56]
Lin, M.H.; Chen, M.C.; Chen, T.H.; Chang, H.Y.; Chou, T.C. Magnolol ameliorates lipopolysaccharide-induced acute lung injury in rats through PPAR-γ-dependent inhibition of NF-kB activation. Int. Immunopharmacol., 2015, 28(1), 270-278.
[http://dx.doi.org/10.1016/j.intimp.2015.05.051] [PMID: 26072062]
[57]
Liang, Y.C.; Tsai, S.H.; Tsai, D.C.; Lin-Shiau, S.Y.; Lin, J.K. Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-γ by flavonoids in mouse macrophages. FEBS Lett., 2001, 496(1), 12-18.
[http://dx.doi.org/10.1016/S0014-5793(01)02393-6] [PMID: 11343698]
[58]
Tan, B.S.; Kang, O.; Mai, C.W.; Tiong, K.H.; Khoo, A.S.B.; Pichika, M.R.; Bradshaw, T.D.; Leong, C.O. 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor γ (PPARγ). Cancer Lett., 2013, 336(1), 127-139.
[http://dx.doi.org/10.1016/j.canlet.2013.04.014] [PMID: 23612072]
[59]
Pan, M.H.; Hsieh, M.C.; Hsu, P.C.; Ho, S.Y.; Lai, C.S.; Wu, H.; Sang, S.; Ho, C.T. 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol. Nutr. Food Res., 2008, 52(12), 1467-1477.
[http://dx.doi.org/10.1002/mnfr.200700515] [PMID: 18683823]
[60]
Katsukawa, M.; Nakata, R.; Takizawa, Y.; Hori, K.; Takahashi, S.; Inoue, H. Citral, a component of lemongrass oil, activates PPARα and γ and suppresses COX-2 expression. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2010, 1801(11), 1214-1220.
[http://dx.doi.org/10.1016/j.bbalip.2010.07.004] [PMID: 20656057]
[61]
Lee, H.J.; Jeong, H.S.; Kim, D.J.; Noh, Y.H.; Yuk, D.Y.; Hong, J.T. Inhibitory effect of citral on NO production by suppression of iNOS expression and NF-κB activation in RAW264.7 cells. Arch. Pharm. Res., 2008, 31(3), 342-349.
[http://dx.doi.org/10.1007/s12272-001-1162-0] [PMID: 18409048]
[62]
Shen, Y.; Sun, Z.; Guo, X. Citral inhibits lipopolysaccharide-induced acute lung injury by activating PPAR-γ. Eur. J. Pharmacol., 2015, 747, 45-51.
[http://dx.doi.org/10.1016/j.ejphar.2014.09.040] [PMID: 25281205]
[63]
Shyni, G.L.; Kavitha, S.; Indu, S.; Arya, A.D.; Anusree, S.S.; Vineetha, V.P.; Vandana, S.; Sundaresan, A.; Raghu, K.G. Chebulagic acid from Terminalia chebula enhances insulin mediated glucose uptake in 3T3-L1 adipocytes via PPARγ signaling pathway. Biofactors, 2014, 40(6), 646-657.
[http://dx.doi.org/10.1002/biof.1193] [PMID: 25529897]
[64]
Reddy, D.B.; Reddanna, P. Chebulagic Acid (CA) attenuates LPS-induced inflammation by suppressing NF-κB and MAPK activation in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun., 2009, 381(1), 112-117.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.022] [PMID: 19351605]
[65]
Fuhr, L.; Rousseau, M.; Plauth, A.; Schroeder, F.C.; Sauer, S. Amorfrutins are natural PPARγ agonists with potent anti-inflammatory properties. J. Nat. Prod., 2015, 78(5), 1160-1164.
[http://dx.doi.org/10.1021/np500747y] [PMID: 25938459]
[66]
Weidner, C.; Wowro, S.J.; Freiwald, A.; Kawamoto, K.; Witzke, A.; Kliem, M.; Siems, K.; Müller-Kuhrt, L.; Schroeder, F.C.; Sauer, S. Amorfrutin B is an efficient natural Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) agonist with potent glucose-lowering properties. Diabetologia, 2013, 56(8), 1802-1812.
[http://dx.doi.org/10.1007/s00125-013-2920-2] [PMID: 23680913]
[67]
Lee, H.J.; Ju, J.; Paul, S.; So, J.Y.; DeCastro, A.; Smolarek, A.; Lee, M.J.; Yang, C.S.; Newmark, H.L.; Suh, N. Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPAR-gamma. Clin. Cancer Res., 2009, 15(12), 4242-4249.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-3028] [PMID: 19509159]
[68]
Nesaretnam, K.; Meganathan, P. Tocotrienols: Inflammation and cancer. Ann. N. Y. Acad. Sci., 2011, 1229(1), 18-22.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06088.x] [PMID: 21793834]
[69]
Hotta, M.; Nakata, R.; Katsukawa, M.; Hori, K.; Takahashi, S.; Inoue, H. Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression. J. Lipid Res., 2010, 51(1), 132-139.
[http://dx.doi.org/10.1194/jlr.M900255-JLR200] [PMID: 19578162]
[70]
Kim, C.S.; Park, W.H.; Park, J.Y.; Kang, J.H.; Kim, M.O.; Kawada, T.; Yoo, H.; Han, I.S.; Yu, R. Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor gamma in HT-29 human colon cancer cells. J. Med. Food, 2004, 7(3), 267-273.
[http://dx.doi.org/10.1089/jmf.2004.7.267] [PMID: 15383218]
[71]
Yu, Y.; Correll, P.H.; Vanden, H.J.P. Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: Evidence for a PPARγ-dependent mechanism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2002, 1581(3), 89-99.
[http://dx.doi.org/10.1016/S1388-1981(02)00126-9] [PMID: 12020636]
[72]
Belury, M.A.; Moya-Camarena, S.Y.; Lu, M.; Shi, L.; Leesnitzer, L.M.; Blanchard, S.G. Conjugated linoleic acid is an activator and ligand for peroxisome proliferator-activated receptor-gamma (PPARγ). Nutr. Res., 2002, 22(7), 817-824.
[http://dx.doi.org/10.1016/S0271-5317(02)00393-7]
[73]
Moya-Camarena, S.Y.; Heuvel, J.P.V.; Blanchard, S.G.; Leesnitzer, L.A.; Belury, M.A. Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARα. J. Lipid Res., 1999, 40(8), 1426-1433.
[http://dx.doi.org/10.1016/S0022-2275(20)33384-8] [PMID: 10428978]
[74]
Siddiqui, A.M.; Cui, X.; Wu, R.; Dong, W.; Zhou, M.; Hu, M.; Simms, H.H.; Wang, P. The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-γ. Crit. Care Med., 2006, 34(7), 1874-1882.
[http://dx.doi.org/10.1097/01.CCM.0000221921.71300.BF] [PMID: 16715036]
[75]
Liu, Z.J.; Liu, W.; Liu, L.; Xiao, C.; Wang, Y.; Jiao, J.S. Curcumin protects neuron against cerebral ischemia-induced inflammation through improving PPAR-gamma function. Evi. Based Compl. Alternat. Med., 2013, 2013, 470975.
[http://dx.doi.org/10.1155/2013/470975]
[76]
Zou, G.; Gao, Z.; Wang, J.; Zhang, Y.; Ding, H.; Huang, J.; Chen, L.; Guo, Y.; Jiang, H.; Shen, X. Deoxyelephantopin inhibits cancer cell proliferation and functions as a selective partial agonist against PPARγ. Biochem. Pharmacol., 2008, 75(6), 1381-1392.
[77]
Zhang, D.; Haruna, M.; McPhail, A.T.; Lee, K.H. Cytotoxic germacranolides of Elephantopus carolinianus and the structure and stereochemistry of isodeoxyelephantopin. Phytochemistry, 1986, 25(4), 899-904.
[http://dx.doi.org/10.1016/0031-9422(86)80023-1]
[78]
Ichikawa, H.; Nair, M.S.; Takada, Y.; Sheeja, D.B.A.; Kumar, M.A.S.; Oommen, O.V.; Aggarwal, B.B. Isodeoxyelephantopin, a novel sesquiterpene lactone, potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis through suppression of nuclear factor-kB (NF) activation and NF-kB-regulated gene expression. Clin. Cancer Res., 2006, 12(19), 5910-5918.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0916] [PMID: 17021000]
[79]
Lam, A.N.C.; Demasi, M.; James, M.J.; Husband, A.J.; Walker, C. Effect of red clover isoflavones on cox-2 activity in murine and human monocyte/macrophage cells. Nutr. Cancer, 2004, 49(1), 89-93.
[http://dx.doi.org/10.1207/s15327914nc4901_12] [PMID: 15456640]
[80]
Lee, S.M.; Moon, J.; Cho, Y.; Chung, J.H.; Shin, M.J. Quercetin up-regulates expressions of peroxisome proliferator-activated receptor γ liver X receptor α, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human macrophage cell line. Nutr. Res., 2013, 33(2), 136-143.
[http://dx.doi.org/10.1016/j.nutres.2012.11.010] [PMID: 23399664]
[81]
Banerjee, T.; Van der Vliet, A.; Ziboh, V.A. Downregulation of COX-2 and iNOS by amentoflavone and quercetin in A549 human lung adenocarcinoma cell line. Prostaglandins Leukot. Essent. Fatty Acids, 2002, 66(5-6), 485-492.
[http://dx.doi.org/10.1054/plef.2002.0387] [PMID: 12144868]
[82]
Sung, M.S.; Lee, E.G.; Jeon, H.S.; Chae, H.J.; Park, S.J.; Lee, Y.C.; Yoo, W.H. Quercetin inhibits IL-1β-induced proliferation and production of MMPs, COX-2, and PGE2 by rheumatoid synovial fibroblast. Inflammation, 2012, 35(4), 1585-1594.
[http://dx.doi.org/10.1007/s10753-012-9473-2] [PMID: 22592909]
[83]
Park, S.J.; Shin, W.H.; Seo, J.W.; Kim, E.J. Anthocyanins inhibit airway inflammation and hyperresponsiveness in a murine asthma model. Food Chem. Toxicol., 2007, 45(8), 1459-1467.
[http://dx.doi.org/10.1016/j.fct.2007.02.013] [PMID: 17512652]
[84]
Valles, S.L.; Dolz-Gaiton, P.; Gambini, J.; Borras, C.; LLoret, A.; Pallardo, F.V.; Viña, J. Estradiol or genistein prevent Alzheimer’s disease-associated inflammation correlating with an increase PPARγ expression in cultured astrocytes. Brain Res., 2010, 1312, 138-144.
[http://dx.doi.org/10.1016/j.brainres.2009.11.044] [PMID: 19948157]
[85]
Rossi, A.; Serraino, I.; Dugo, P.; Di Paola, R.; Mondello, L.; Genovese, T.; Morabito, D.; Dugo, G.; Sautebin, L.; Caputi, A.P.; Cuzzocrea, S. Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation. Free Radic. Res., 2003, 37(8), 891-900.
[http://dx.doi.org/10.1080/1071576031000112690] [PMID: 14567449]
[86]
Lima, M.S.; Quintans-Júnior, L.J.; de Santana, W.A.; Martins Kaneto, C.; Pereira Soares, M.B.; Villarreal, C.F. Anti-inflammatory effects of carvacrol: Evidence for a key role of interleukin-10. Eur. J. Pharmacol., 2013, 699(1-3), 112-117.
[http://dx.doi.org/10.1016/j.ejphar.2012.11.040] [PMID: 23220159]
[87]
Tang, J.; Luo, K.; Li, Y.; Chen, Q.; Tang, D.; Wang, D.; Xiao, J. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα. Int. Immunopharmacol., 2015, 28(1), 264-269.
[http://dx.doi.org/10.1016/j.intimp.2015.06.007] [PMID: 26093270]
[88]
Lee, K.H.; Lee, Y.C.; Kim, T.I.; Noh, S.H.; Kim, J.; Paik, H.; Kim, C.H. Inhibitory effect of capsaicin on interleukin-8 production by Helicobacter pylori-infected MKN-45 cells. J. Microbiol. Biotechnol., 2006, 16(7), 1078.
[89]
Salam, N.K.; Huang, T.H.W.; Kota, B.P.; Kim, M.S.; Li, Y.; Hibbs, D.E. Novel PPAR-gamma agonists identified from a natural product library: A virtual screening, induced-fit docking and biological assay study. Chem. Biol. Drug Des., 2008, 71(1), 57-70.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00606.x] [PMID: 18086153]
[90]
Qiu, L.; Lin, B.; Lin, Z.; Lin, Y.; Lin, M.; Yang, X. Biochanin A ameliorates the cytokine secretion profile of lipopolysaccharide-stimulated macrophages by a PPARγ-dependent pathway. Mol. Med. Rep., 2012, 5(1), 217-222.
[PMID: 21946955]
[91]
Ming, X.; Ding, M.; Zhai, B.; Xiao, L.; Piao, T.; Liu, M. Biochanin A inhibits lipopolysaccharide-induced inflammation in human umbilical vein endothelial cells. Life Sci., 2015, 136, 36-41.
[http://dx.doi.org/10.1016/j.lfs.2015.06.015] [PMID: 26141992]
[92]
Derangula, M.; Panati, K.; Narala, V.R.; Biochanin, A. Biochanin A ameliorates ovalbumin-induced airway inflammation through peroxisome proliferator-activated receptor-gamma in a mouse model. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(1), 145-155.
[http://dx.doi.org/10.2174/1871530320666200503051609] [PMID: 32359341]
[93]
Reyesgordillo, K.; Segovia, J.; Shibayama, M.; Vergara, P.; Moreno, M.; Muriel, P. Curcumin protects against acute liver damage in the rat by inhibiting NF-κB, proinflammatory cytokines production and oxidative stress. Biochim. Biophys. Acta, Gen. Subj., 2007, 1770(6), 989-996.
[http://dx.doi.org/10.1016/j.bbagen.2007.02.004] [PMID: 17383825]
[94]
Bachmeier, B.E.; Mohrenz, I.V.; Mirisola, V.; Schleicher, E.; Romeo, F.; Höhneke, C.; Jochum, M.; Nerlich, A.G.; Pfeffer, U. Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFκB. Carcinogenesis, 2008, 29(4), 779-789.
[http://dx.doi.org/10.1093/carcin/bgm248] [PMID: 17999991]
[95]
Kim, K.H.; Lee, E.N.; Park, J.K.; Lee, J.R.; Kim, J.H.; Choi, H.J.; Kim, B.S.; Lee, H.W.; Lee, K.S.; Yoon, S. Curcumin attenuates TNF-α-induced expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and proinflammatory cytokines in human endometriotic stromal cells. Phytother. Res., 2012, 26(7), 1037-1047.
[http://dx.doi.org/10.1002/ptr.3694] [PMID: 22183741]
[96]
Cho, S.Y.; Park, S.J.; Kwon, M.J.; Jeong, T.S.; Bok, S.H.; Choi, W.Y.; Jeong, W.I.; Ryu, S.Y.; Do, S.H.; Lee, C.S.; Song, J.C.; Jeong, K.S. Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-kappaB pathway in lipopolysaccharide-stimulated macrophage. Mol. Cell. Biochem., 2003, 243(1/2), 153-160.
[http://dx.doi.org/10.1023/A:1021624520740] [PMID: 12619901]
[97]
Min, Y.D.; Choi, C.H.; Bark, H.; Son, H.Y.; Park, H.H.; Lee, S.; Park, J.W.; Park, E.K.; Shin, H.I.; Kim, S.H. Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line. Inflamm. Res., 2007, 56(5), 210-215.
[http://dx.doi.org/10.1007/s00011-007-6172-9] [PMID: 17588137]
[98]
Corbel, M.; Belleguic, C.; Boichot, E.; Lagente, V. Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis. Cell Biol. Toxicol., 2002, 18(1), 51-61.
[http://dx.doi.org/10.1023/A:1014471213371] [PMID: 11991086]
[99]
Fahmi, H.; Di Battista, J.A.; Pelletier, J.P.; Mineau, F.; Ranger, P.; Martel-Pelletier, J. Peroxisome proliferator-activated receptor? activators inhibit interleukin-1?-induced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes. Arthritis Rheum., 2001, 44(3), 595-607.
[http://dx.doi.org/10.1002/1529-0131(200103)44:3<595:AID-ANR108>3.0.CO;2-8] [PMID: 11263774]
[100]
Marx, N.; Sukhova, G.; Murphy, C.; Libby, P.; Plutzky, J. Macrophages in human atheroma contain PPARgamma: Differentiation-dependent Peroxisomal Proliferator-Activated Receptor γ-(PPAR-gamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am. J. Pathol., 1998, 153(1), 17-23.
[http://dx.doi.org/10.1016/S0002-9440(10)65540-X] [PMID: 9665460]
[101]
Reka, A.K.; Kurapati, H.; Narala, V.R.; Bommer, G.; Chen, J.; Standiford, T.J.; Keshamouni, V.G. Peroxisome proliferator-activated receptor-gamma activation inhibits tumor metastasis by antagonizing Smad3-mediated epithelial-mesenchymal transition. Mol. Cancer Ther., 2010, 9(12), 3221-3232.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0570] [PMID: 21159608]
[102]
Ling, H.; Yang, H.; Tan, S.H.; Chui, W.K.; Chew, E.H. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation. Br. J. Pharmacol., 2010, 161(8), 1763-1777.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00991.x] [PMID: 20718733]
[103]
Choi, Y.J.; Lee, Y.H.; Lee, S.T. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells. Mol. Cells, 2015, 38(2), 151-155.
[http://dx.doi.org/10.14348/molcells.2015.2229] [PMID: 25518925]
[104]
Gong, J.H.; Cho, I.H.; Shin, D.; Han, S.Y.; Park, S.H.; Kang, Y.H. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice. Lab. Invest., 2014, 94(3), 297-308.
[http://dx.doi.org/10.1038/labinvest.2013.137] [PMID: 24378645]
[105]
Yang, H.; Liu, Q.; Ahn, J.H.; Kim, S.B.; Kim, Y.C.; Sung, S.H.; Hwang, B.Y.; Lee, M.K. Luteolin downregulates IL-1β-induced MMP-9 and -13 expressions in osteoblasts via inhibition of ERK signalling pathway. J. Enzyme Inhib. Med. Chem., 2012, 27(2), 261-266.
[http://dx.doi.org/10.3109/14756366.2011.587415] [PMID: 21679050]
[106]
Ji, H.T.; Shi, X.J.; Hong, Y.; Wang, Y.; Wang, H.L.; Wang, Z.Y.; Fang, X.X. Inhibition of matrix metalloproteinases activities by luteolin. Chem. Res. Chin. Univ., 2009, 25(6), 895-898.
[107]
Fan, K.; Li, X.; Cao, Y.; Qi, H.; Li, L.; Zhang, Q.; Sun, H. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs, 2015, 26(8), 813-823.
[http://dx.doi.org/10.1097/CAD.0000000000000263] [PMID: 26214321]
[108]
Subramaniyan, J.; Krishnan, G.; Balan, R.; Mgj, D.; Ramasamy, E.; Ramalingam, S.; Veerabathiran, R.; Thandavamoorthy, P.; Mani, G.K.; Thiruvengadam, D. Carvacrol modulates instability of xenobiotic metabolizing enzymes and downregulates the expressions of PCNA, MMP-2, and MMP-9 during diethylnitrosamine-induced hepatocarcinogenesis in rats. Mol. Cell. Biochem., 2014, 395(1-2), 65-76.
[http://dx.doi.org/10.1007/s11010-014-2112-5] [PMID: 24880485]
[109]
Koneru, M.; Sahu, B.D.; Mir, S.M.; Ravuri, H.G.; Kuncha, M.; Mahesh, K.J.; Kilari, E.K.; Sistla, R. Capsaicin, the pungent principle of peppers, ameliorates alcohol-induced acute liver injury in mice via modulation of matrix metalloproteinases. Can. J. Physiol. Pharmacol., 2018, 96(4), 419-427.
[http://dx.doi.org/10.1139/cjpp-2017-0473] [PMID: 29053935]
[110]
Li, B.; Yuan, L. Inhibitory effects of capsaicin on migration and invasion of breast cancer MDA-MB-231 cells and its mechanism. Sheng Li Xue Bao, 2017, 69(2), 183-188.
[111]
Hwang, Y.P.; Yun, H.J.; Choi, J.H.; Han, E.H.; Kim, H.G.; Song, G.Y.; Kwon, K.; Jeong, T.C.; Jeong, H.G. Suppression of EGF-induced tumor cell migration and matrix metalloproteinase-9 expression by capsaicin via the inhibition of EGFR-mediated FAK/Akt, PKC/Raf/ERK, p38 MAPK, and AP-1 signaling. Mol. Nutr. Food Res., 2011, 55(4), 594-605.
[http://dx.doi.org/10.1002/mnfr.201000292] [PMID: 21462327]
[112]
Mo, N.; Li, Z.Q.; Li, J.; Cao, Y.D. Curcumin inhibits TGF-β1-induced MMP-9 and invasion through ERK and Smad signaling in breast cancer MDA- MB-231 cells. As. Pac. J. Cancer Prev., 2012, 13(11), 5709-5714.
[http://dx.doi.org/10.7314/APJCP.2012.13.11.5709] [PMID: 23317243]
[113]
Yu, Y.M.; Lin, H.C. Curcumin prevents human aortic smooth muscle cells migration by inhibiting of MMP-9 expression. Nutr. Metab. Cardiovasc. Dis., 2010, 20(2), 125-132.
[http://dx.doi.org/10.1016/j.numecd.2009.03.001] [PMID: 19447587]
[114]
Ding, L.; Jin, D.; Chen, X. Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes. J. Nutr. Biochem., 2010, 21(10), 941-947.
[http://dx.doi.org/10.1016/j.jnutbio.2009.07.009] [PMID: 19954946]
[115]
Puhl, A.C.; Bernardes, A.; Silveira, R.L.; Yuan, J.; Campos, J.L.O.; Saidemberg, D.M.; Palma, M.S.; Cvoro, A.; Ayers, S.D.; Webb, P.; Reinach, P.S.; Skaf, M.S.; Polikarpov, I. Mode of peroxisome proliferator-activated receptor γ activation by luteolin. Mol. Pharmacol., 2012, 81(6), 788-799.
[http://dx.doi.org/10.1124/mol.111.076216] [PMID: 22391103]
[116]
Yoon, G.; Jung, Y.D.; Cheon, S.H. Cytotoxic allyl retrochalcone from the roots of Glycyrrhiza inflata. Chem. Pharm. Bull., 2005, 53(6), 694-695.
[http://dx.doi.org/10.1248/cpb.53.694] [PMID: 15930786]
[117]
Park, H.G.; Bak, E.J.; Woo, G.H.; Kim, J.M.; Quan, Z.; Kim, J.M.; Yoon, H.K.; Cheon, S.H.; Yoon, G.; Yoo, Y.J.; Na, Y.; Cha, J.H. Licochalcone E has an antidiabetic effect. J. Nutr. Biochem., 2012, 23(7), 759-767.
[http://dx.doi.org/10.1016/j.jnutbio.2011.03.021] [PMID: 21840191]
[118]
Weidner, C.; Wowro, S.J.; Rousseau, M.; Freiwald, A.; Kodelja, V.; Abdel-Aziz, H.; Kelber, O.; Sauer, S. Antidiabetic effects of chamomile flowers extract in obese mice through transcriptional stimulation of nutrient sensors of the Peroxisome Proliferator-Activated Receptor (PPAR) family. PLoS One, 2013, 8(11), e80335.
[http://dx.doi.org/10.1371/journal.pone.0080335] [PMID: 24265809]
[119]
Shin, D.W.; Kim, S.N.; Lee, S.M.; Lee, W.; Song, M.J.; Park, S.M.; Lee, T.R.; Baik, J.H.; Kim, H.K.; Hong, J.H.; Noh, M. Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPARγ transactivation. Biochem. Pharmacol., 2009, 77(1), 125-133.
[http://dx.doi.org/10.1016/j.bcp.2008.09.033] [PMID: 18951882]
[120]
Atanasov, A.G.; Wang, J.N.; Gu, S.P.; Bu, J.; Kramer, M.P.; Baumgartner, L.; Fakhrudin, N.; Ladurner, A.; Malainer, C.; Vuorinen, A.; Noha, S.M.; Schwaiger, S.; Rollinger, J.M.; Schuster, D.; Stuppner, H.; Dirsch, V.M.; Heiss, E.H. Honokiol: A non-adipogenic PPARγ agonist from nature. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(10), 4813-4819.
[http://dx.doi.org/10.1016/j.bbagen.2013.06.021]
[121]
Shen, P.; Liu, M.H.; Ng, T.Y.; Chan, Y.H.; Yong, E.L. Differential effects of isoflavones, from Astragalus membranaceus and Pueraria thomsonii, on the activation of PPARalpha, PPARgamma, and adipocyte differentiation in vitro. J. Nutr., 2006, 136(4), 899-905.
[http://dx.doi.org/10.1093/jn/136.4.899] [PMID: 16549448]
[122]
Shashni, B.; Sharma, K.; Singh, R.; Sakharkar, K.R.; Dhillon, S.K.; Nagasaki, Y.; Sakharkar, M.K. RETRACTED ARTICLE: Coffee component hydroxyl hydroquinone (HHQ) as a putative ligand for PPAR gamma and implications in breast cancer. BMC Genomics, 2013, 14(S5), S6.
[http://dx.doi.org/10.1186/1471-2164-14-S5-S6] [PMID: 24564733]
[123]
Rebhun, J.F.; Glynn, K.M.; Missler, S.R. Identification of glabridin as a bioactive compound in licorice (Glycyrrhiza glabra L.) extract that activates human Peroxisome Proliferator-Activated Receptor gamma (PPARγ). Fitoterapia, 2015, 106, 55-61.
[http://dx.doi.org/10.1016/j.fitote.2015.08.004] [PMID: 26297329]
[124]
Simmler, C.; Pauli, G.F.; Chen, S.N. Phytochemistry and biological properties of glabridin. Fitoterapia, 2013, 90, 160-184.
[http://dx.doi.org/10.1016/j.fitote.2013.07.003] [PMID: 23850540]
[125]
Pferschy-Wenzig, E.M.; Atanasov, A.G.; Malainer, C.; Noha, S.M.; Kunert, O.; Schuster, D.; Heiss, E.H.; Oberlies, N.H.; Wagner, H.; Bauer, R.; Dirsch, V.M. Identification of isosilybin a from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma. J. Nat. Prod., 2014, 77(4), 842-847.
[http://dx.doi.org/10.1021/np400943b] [PMID: 24597776]
[126]
Changhua, L.; Jindong, Y.; Defa, L.; Lidan, Z.; Shiyan, Q.; Jianjun, X. Conjugated linoleic acid attenuates the production and gene expression of proinflammatory cytokines in weaned pigs challenged with lipopolysaccharide. J. Nutr., 2005, 135(2), 239-244.
[http://dx.doi.org/10.1093/jn/135.2.239] [PMID: 15671220]
[127]
Li, F.; Tan, W.; Kang, Z.; Wong, C.W. Tocotrienol enriched palm oil prevents atherosclerosis through modulating the activities of peroxisome proliferators-activated receptors. Atherosclerosis, 2010, 211(1), 278-282.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.01.015] [PMID: 20138624]
[128]
Weidner, C.; Wowro, S.J.; Freiwald, A.; Kodelja, V.; Abdel-Aziz, H.; Kelber, O.; Sauer, S. Lemon balm extract causes potent antihyperglycemic and antihyperlipidemic effects in insulin-resistant obese mice. Mol. Nutr. Food Res., 2014, 58(4), 903-907.
[http://dx.doi.org/10.1002/mnfr.201300477] [PMID: 24272914]
[129]
Ohtera, A.; Miyamae, Y.; Nakai, N.; Kawachi, A.; Kawada, K.; Han, J.; Isoda, H.; Neffati, M.; Akita, T.; Maejima, K.; Masuda, S.; Kambe, T.; Mori, N.; Irie, K.; Nagao, M. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist. Biochem. Biophys. Res. Commun., 2013, 440(2), 204-209.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.003] [PMID: 24025677]
[130]
Selvaraj, G.; Kaliamurthi, S.; Thirugnasambandan, R. Effect of glycosin alkaloid from Rhizophora apiculata in non-insulin dependent diabetic rats and its mechanism of action: In vivo and in silico studies. Phytomedicine, 2016, 23(6), 632-640.
[http://dx.doi.org/10.1016/j.phymed.2016.03.004] [PMID: 27161404]
[131]
Suganthi, R.U.; Manpal, S. Biological and pharmacological of actions carvacrol and its effects on poultry: An updated review. World J. Pharm. Pharm. Sci., 2013, 2, 3581-3595.
[132]
Ibrahim, M.; Jang, M.; Park, M.; Gobianand, K.; You, S.; Yeon, S.H.; Park, S.; Kima, M. J.; Lee, H.J. Food & function. Royal Soc. Chem.,, 2015, 1-14.
[133]
El-Houri, R.B.; Kotowska, D.E.; Christensen, K.B.; Fretté, X.C.; Kristiansen, K.; Christensen, L.P. Polyacetylenes from carrots with potential anti-diabetic effects. Planta Med., 2012, 78(11), PI349.
[http://dx.doi.org/10.1055/s-0032-1321036]
[134]
El-Houri, R.B.; Wolber, G.; Christensen, L.P. Polyacetylenes and alkamides as modulators of PPARγ activity and promising candidates for the treatment of type 2 diabetes. Planta Med, 2016, 81(S 01), S1-S381.
[http://dx.doi.org/10.1055/s-0036-1596912]
[135]
Atanasov, A.G.; Blunder, M.; Fakhrudin, N.; Liu, X.; Noha, S.M.; Malainer, C.; Kramer, M.P.; Cocic, A.; Kunert, O.; Schinkovitz, A.; Heiss, E.H.; Schuster, D.; Dirsch, V.M.; Bauer, R. Polyacetylenes from notopterygium incisum-new selective partial agonists of peroxisome proliferator-activated receptor-gamma. PLoS One, 2013, 8(4), e61755.
[http://dx.doi.org/10.1371/journal.pone.0061755] [PMID: 23630612]
[136]
Hontecillas, R.; O’Shea, M.; Einerhand, A.; Diguardo, M.; Bassaganya-Riera, J. Activation of PPAR γ and α by punicic acid ameliorates glucose tolerance and suppresses obesity-related inflammation. J. Am. Coll. Nutr., 2009, 28(2), 184-195.
[http://dx.doi.org/10.1080/07315724.2009.10719770] [PMID: 19828904]
[137]
Anusree, S.S.; Priyanka, A.; Nisha, V.M.; Das, A.A.; Raghu, K.G. An in vitro study reveals the nutraceutical potential of punicic acid relevant to diabetes via enhanced GLUT4 expression and adiponectin secretion. Food Funct., 2014, 5(10), 2590-2601.
[http://dx.doi.org/10.1039/C4FO00302K] [PMID: 25143251]
[138]
Shyni, G.L.; Sasidharan, K.; Francis, S.K.; Das, A.A.; Nair, M.S.; Raghu, K.G. Licarin B from Myristica fragrans improves insulin sensitivity via PPARγ and activation of GLUT4 in the IRS-1/PI3K/AKT pathway in 3T3-L1 adipocytes. RSC Adv., 2016, 6(83), 79859-79870.
[http://dx.doi.org/10.1039/C6RA13055K]
[139]
Xia, M.; Hou, M.; Zhu, H.; Ma, J.; Tang, Z.; Wang, Q.; Li, Y.; Chi, D.; Yu, X.; Zhao, T.; Han, P.; Xia, X.; Ling, W. Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages: The role of the peroxisome proliferator-activated receptor γ-liver X receptor α-ABCA1 pathway. J. Biol. Chem., 2005, 280(44), 36792-36801.
[http://dx.doi.org/10.1074/jbc.M505047200] [PMID: 16107338]
[140]
Takahashi, N.; Goto, T.; Taimatsu, A.; Egawa, K.; Katoh, S.; Kusudo, T.; Sakamoto, T.; Ohyane, C.; Lee, J.Y.; Kim, Y.; Uemura, T.; Hirai, S.; Kawada, T. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARγ activation. Biochem. Biophys. Res. Commun., 2009, 390(4), 1372-1376.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.162] [PMID: 19891958]
[141]
O’Sullivan, S.E.; Kendall, D.A. Cannabinoid activation of peroxisome proliferator-activated receptors: Potential for modulation of inflammatory disease. Immunobiology, 2010, 215(8), 611-616.
[http://dx.doi.org/10.1016/j.imbio.2009.09.007] [PMID: 19833407]
[142]
Yokoi, H.; Mizukami, H.; Nagatsu, A.; Ohno, T.; Tanabe, H.; Inoue, M. Peroxisome proliferator-activated receptor γ ligands isolated from adlay seed (Coix lacryma-jobi L. var. ma-yuen STAPF.). Biol. Pharm. Bull., 2009, 32(4), 735-740.
[http://dx.doi.org/10.1248/bpb.32.735] [PMID: 19336916]
[143]
Lim, T. Coix lachryma-jobi. In: Dordrecht Edible Medicinal And Non-Medicinal Plants; Springer, 2013; pp. 243-261.
[http://dx.doi.org/10.1007/978-94-007-5653-3_14]
[144]
Cornick, C.L.; Strongitharm, B.H.; Sassano, G.; Rawlins, C.; Mayes, A.E.; Joseph, A.N.; O’Dowd, J.; Stocker, C.; Wargent, E.; Cawthorne, M.A.; Brown, A.L.; Arch, J.R.S. Identification of a novel agonist of peroxisome proliferator-activated receptors α and γ that may contribute to the anti-diabetic activity of guggulipid in Lepob/Lepob mice. J. Nutr. Biochem., 2009, 20(10), 806-815.
[http://dx.doi.org/10.1016/j.jnutbio.2008.07.010] [PMID: 18926687]
[145]
Tu, Y.C.; Lian, T.W.; Yen, J.H.; Chen, Z.T.; Wu, M.J. Antiatherogenic effects of kaempferol and rhamnocitrin. J. Agric. Food Chem., 2007, 55(24), 9969-9976.
[http://dx.doi.org/10.1021/jf0717788] [PMID: 17973448]
[146]
Chaouki, W.; Leger, D.Y.; Liagre, B.; Beneytout, J.L.; Hmamouchi, M. Citral inhibits cell proliferation and induces apoptosis and cell cycle arrest in MCF-7 cells. Fundam. Clin. Pharmacol., 2009, 23(5), 549-556.
[http://dx.doi.org/10.1111/j.1472-8206.2009.00738.x] [PMID: 19656204]
[147]
Kotowska, D.; El-Houri, R.; Borkowski, K.; Petersen, R.; Fretté, X.; Wolber, G.; Grevsen, K.; Christensen, K.; Christensen, L.; Kristiansen, K. Isomeric C12-alkamides from the roots of Echinacea purpurea improve basal and insulin-dependent glucose uptake in 3T3-L1 adipocytes. Planta Med., 2014, 80(18), 1712-1720.
[http://dx.doi.org/10.1055/s-0034-1383252] [PMID: 25371981]
[148]
Relic, B.; Zeddou, M.; Desoroux, A.; Beguin, Y.; de Seny, D.; Malaise, M.G. Genistein induces adipogenesis but inhibits leptin induction in human synovial fibroblasts. Lab. Invest., 2009, 89(7), 811-822.
[http://dx.doi.org/10.1038/labinvest.2009.41] [PMID: 19434061]
[149]
Fang, X.K.; Gao, J.; Zhu, D.N. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci., 2008, 82(11-12), 615-622.
[http://dx.doi.org/10.1016/j.lfs.2007.12.021] [PMID: 18262572]
[150]
Overman, A.; Chuang, C.C.; McIntosh, M. Quercetin attenuates inflammation in human macrophages and adipocytes exposed to macrophage-conditioned media. Int. J. Obes., 2011, 35(9), 1165-1172.
[http://dx.doi.org/10.1038/ijo.2010.272] [PMID: 21224828]
[151]
Hwang, B.Y.; Lee, J.H.; Nam, J.B.; Kim, H.S.; Hong, Y.S.; Lee, J.J. Two new furanoditerpenes from Saururus chinenesis and their effects on the activation of peroxisome proliferator-activated receptor γ. J. Nat. Prod., 2002, 65(4), 616-617.
[http://dx.doi.org/10.1021/np010440j] [PMID: 11975517]
[152]
Jung, S.H.; Park, S.Y.; Kim-Pak, Y.; Lee, H.K.; Park, K.S.; Shin, K.H.; Ohuchi, K.; Shin, H.K.; Keum, S.R.; Lim, S.S. Synthesis and PPAR-γ ligand-binding activity of the new series of 2′-hydroxychalcone and thiazolidinedione derivatives. Chem. Pharm. Bull., 2006, 54(3), 368-371.
[http://dx.doi.org/10.1248/cpb.54.368] [PMID: 16508194]
[153]
Eissa, L.A.; Elsherbiny, N.M.; Maghmomeh, A.O. Effect of 2-hydroxychalcone on adiponectin level in type 2 diabetes induced experimentally in rats. Egyptian J. Basic Appl. Sci., 2017, 4(1), 1-8.
[http://dx.doi.org/10.1016/j.ejbas.2016.12.002]
[154]
Chen, L.; Li, Q.Y.; Shi, X.J.; Mao, S.L.; Du, Y.L. 6-Hydroxydaidzein enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. J. Agric. Food Chem., 2013, 61(45), 10714-10719.
[http://dx.doi.org/10.1021/jf402694m] [PMID: 24180341]
[155]
Dymáková, A. Effect of synthetic magnolol derivatives on activity of nuclear receptors PPARγ and RXRα, Univerzita Karlova, Farmaceutická fakulta v Hradci Králové, 2016. Available from: https://dspace.cuni.cz/handle/20.500.11956/94988?localeattribute= en
[156]
Mezei, O.; Banz, W.J.; Steger, R.W.; Peluso, M.R.; Winters, T.A.; Shay, N. Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J. Nutr., 2003, 133(5), 1238-1243.
[http://dx.doi.org/10.1093/jn/133.5.1238] [PMID: 12730403]
[157]
Hurtado, O.; Ballesteros, I.; Cuartero, M.I.; Moraga, A.; Pradillo, J.M.; Ramírez-Franco, J.; Bartolomé-Martín, D.; Pascual, D.; Torres, M.; Sánchez-Prieto, J.; Salom, J.B.; Lizasoain, I.; Moro, M.A. Daidzein has neuroprotective effects through ligand-binding-independent PPARγ activation. Neurochem. Int., 2012, 61(1), 119-127.
[http://dx.doi.org/10.1016/j.neuint.2012.04.007] [PMID: 22521773]
[158]
Sakamoto, Y.; Kanatsu, J.; Toh, M.; Naka, A.; Kondo, K.; Iida, K. The dietary isoflavone daidzein reduces expression of pro-inflammatory genes through PPARα/γ and JNK pathways in adipocyte and macrophage co-cultures. PLoS One, 2016, 11(2), e0149676.
[http://dx.doi.org/10.1371/journal.pone.0149676] [PMID: 26901838]
[159]
Isa, Y.; Miyakawa, Y.; Yanagisawa, M.; Goto, T.; Kang, M.S.; Kawada, T.; Morimitsu, Y.; Kubota, K.; Tsuda, T. 6-Shogaol and 6-gingerol, the pungent of ginger, inhibit TNF-α mediated downregulation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun., 2008, 373(3), 429-434.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.046] [PMID: 18577375]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy