Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

DFT and In-silico Investigations, along with In-vitro Antitumor and Antimicrobial Assessments of Pharmacological Molecules

Author(s): Mosa H. Alsehli, Daya S. Seth, Mohamed S.A. El-Gaby, Rawda M. Okasha, Mohamed Hagar, Tarek H. Afifi* and Arshi Naqvi*

Volume 20, Issue 5, 2023

Published on: 26 December, 2022

Page: [523 - 545] Pages: 23

DOI: 10.2174/1570179419666220913141629

Price: $65

Abstract

Background: Molecules bearing an active methylene bridge are one of the most fruitful and remarkable precursors that have been incorporated into the synthetic strategy of an assortment of bioactive compounds.

Objective: The reactive methylene derivatives have been endowed with multiple reactions, which target biological and medicinal applications and result from their structural diversity and discrete reactivity.

Methods: The present report endeavors to synthesize, characterize, and in-vitro evaluate several novel propanoic acids, coumarin, and pyrazole derivatives as antimicrobial and antiproliferative agents. The in-silico molecular docking, physicochemical, pharmacokinetic/ADMET, bioactivity, and drug-likeness predictions were conducted for all the synthesized compounds.

Results: The highest docking score is -9.9 and -8.3 kcal/mol, respectively, for compound 9 (azocoumarin) and 13 (acrylic acid derivative) with the target proteins E. coli topoisomerase II, DNA gyrase subunit B and PI3K p110α domain, respectively. Moreover, this study predicts the synthesized molecules that may inhibit the novel COVID-19, obtained through virtual screenings only, where compounds 9, 13, 14, 17, and 19 came to the limelight with good docking scores i.e., more than -8 Kcal/mol. Safety profiling of the most potent compound 9 was utilized against normal cell lines and the hemolytic effect on RBCs.

Conclusion: The in-silico ADMET studies of the synthesized compounds revealed moderate to good -likeness, high gastro intestinal (GI) absorption, and inhibiting the Cytochrome CYP2C19 and CYP2C9 and all the derivatives possess non-cancerous nature. The in-vitro screening demonstrated that several of the novel molecules are promising drug candidates. The density functional theory (DFT) theoretical calculations were performed to calculate the energy levels of the FMOs and their energy gaps, dipolemoment, andmolecular electrostatic potential. Such parameters, along with the physicochemical parameters, could be a good tool to confirm biological activity.

Keywords: Coumarin, benzocoumarin, molecular docking, in-vitro screenings, DFT calculations. antitumor.

Graphical Abstract
[1]
Herrmann, W.A. In Advances in Organometallic Chemistry; Elsevier, Amsterdam, Netherlands, 1982, 20, pp. 159-263.
[2]
House, H.O. Modern synthetic reactions. 1972. Available from: https://archive.org/details/ModernSyntheticReactions2ndEd
[3]
Gasparová, R.; Lácova, M. Reactions of 3-formylchromone with active methylene and methyl compounds and some subsequent reactions of the resulting condensation products. Molecules, 2005, 10(8), 937-960.
[http://dx.doi.org/10.3390/10080937] [PMID: 18007363]
[4]
Al-Mulla, A. A review: Biological importance of heterocyclic compounds. Pharma. Chem., 2017, 9(13), 141-1472.
[5]
Amariucai, M.D.; Mangalagiu, V.; Danac, R.; Mangalagiu, I.I. Microwave assisted reactions of azaheterocycles formedicinal chemistry applications. Molecules, 2020, 25(3), 716.
[http://dx.doi.org/10.3390/molecules25030716] [PMID: 32046020]
[6]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma, R.C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[7]
Dua, R.; Shrivastava, S.; Sonwane, S.; Srivastava, S. Pharmacological significance of synthetic heterocycles scaffold: A review. Adv. Biol. Res., 2011, 5(3), 120-144.
[8]
Alvárez, B.J.; Barluenga, J. Heterocyclic compounds: An introduction. Mod. Heterocycl. Chem, 2011, 1, 196750206.
[9]
Assirey, E.; Alsaggaf, A.; Naqvi, A.; Moussa, Z.; Okasha, R.M.; Afifi, T.H.; El-Aziz, A.A.S. Synthesis, biological assessment, and structure activity relationship studies of new flavanones embodying chromene moieties. Molecules, 2020, 25(3), 544.
[http://dx.doi.org/10.3390/molecules25030544] [PMID: 32012737]
[10]
Lv, H.N.; Tu, P.F.; Jiang, Y. Benzocoumarins: Isolation, synthesis, and biological activities. Mini Rev. Med. Chem., 2014, 14(7), 603-622.
[http://dx.doi.org/10.2174/1389557514666140622204608] [PMID: 24958219]
[11]
Fernandes, M.J.G.; Gonçalves, M.S.T.; Costa, S.P.G. Comparative study of polyaromatic and polyheteroaromatic fluorescent photocleavable protecting groups. Tetrahedron, 2008, 64(13), 3032-3038.
[http://dx.doi.org/10.1016/j.tet.2008.01.032]
[12]
El-Aziz, A.A.S.; Alsaggaf, A.T.; Okasha, R.M.; Ahmed, H.E.A.; Bissessur, R.; Abdelghani, A.A.; Afifi, T.H. Antimicrobial and antitumor screening of fluorescent 5,7-dihydroxy-4-propyl- 2H -chromen-2-one derivatives with docking studies. Chem. Select, 2016, 1(15), 5025-5033.
[http://dx.doi.org/10.1002/slct.201600789]
[13]
Musa, M.A.; Badisa, V.L.; Latinwo, L.M.; Cooperwood, J.; Sinclair, A.; Abdullah, A. Cytotoxic activity of new acetoxycoumarin derivatives in cancer cell lines. Anticancer Res., 2011, 31(6), 2017-2022.
[PMID: 21737617]
[14]
Basile, A.; Sorbo, S.; Spadaro, V.; Bruno, M.; Maggio, A.; Faraone, N.; Rosselli, S. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules, 2009, 14(3), 939-952.
[http://dx.doi.org/10.3390/molecules14030939] [PMID: 19255552]
[15]
El-Aziz, A.A.S.; Mohamed, H.M.; Mohammed, S.; Zahid, S.; Ata, A.; Bedair, A.H.; El-Agrody, A.M.; Harvey, P.D. Synthesis of novel coumarin and benzocoumarin derivatives and their biological and photophysical studies. J. Heterocycl. Chem., 2007, 44(6), 1287-1301.
[http://dx.doi.org/10.1002/jhet.5570440610]
[16]
Witaicenis, A.; Seito, L.N.; Da Silveira, C.A.; De Almeida, L.D., Jr; Luchini, A.C.; Rodrigues, O.P.; Cestari, S.H.; Di Stasi, L.C. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine, 2014, 21(3), 240-246.
[http://dx.doi.org/10.1016/j.phymed.2013.09.001] [PMID: 24176844]
[17]
Salem, M.; Marzouk, M.; El-Kazak, A. Synthesis and characterization of some new coumarins with in vitro antitumor and antioxidant activity and high protective effects against DNA damage. Molecules, 2016, 21(2), 249.
[http://dx.doi.org/10.3390/molecules21020249] [PMID: 26907244]
[18]
Li, Z.; Hu, J.; Sun, M.; Ji, H.; Chu, S.; Liu, G.; Chen, N. Anti-inflammatory effect of IMMLG5521, a coumarin derivative, on sephadex-induced lung inflammation in rats. Int. Immunopharmacol., 2012, 14(2), 145-149.
[http://dx.doi.org/10.1016/j.intimp.2012.06.004] [PMID: 22771447]
[19]
Hirsh, J.; Dalen, J.E.; Anderson, D.R.; Poller, L.; Bussey, H.; Ansell, J.; Deykin, D. Oral anticoagulants: Mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest, 2001, 119(1)(Suppl.), 8S-21S.
[http://dx.doi.org/10.1378/chest.119.1_suppl.8S] [PMID: 11157640]
[20]
Sashidhara, K.V.; Kumar, A.; Kumar, M.; Sonkar, R.; Bhatia, G.; Khanna, A.K. Novel coumarin derivatives as potential antidyslipidemic agents. Bioorg. Med. Chem. Lett., 2010, 20(14), 4248-4251.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.023] [PMID: 20542691]
[21]
Yadagiri, B.; Holagunda, U.D.; Bantu, R.; Nagarapu, L.; Kumar, C.G.; Pombala, S.; Sridhar, B. Synthesis of novel building blocks of benzosuberone bearing coumarin moieties and their evaluation as potential anticancer agents. Eur. J. Med. Chem., 2014, 79, 260-265.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.015] [PMID: 24742385]
[22]
Završnik, D. Muratović, S.; Makuc, D.; Plavec, J.; Cetina, M.; Nagl, A.; Clercq, E.D.; Balzarini, J.; Mintas, M. Benzylidene-bis-(4-hydroxycoumarin) and benzopyrano-coumarin derivatives: Synthesis, 1H/13C-NMR conformational and X-ray crystal structure studies and in vitro antiviral activity evaluations. Molecules, 2011, 16(7), 6023-6040.
[http://dx.doi.org/10.3390/molecules16076023] [PMID: 21772234]
[23]
Murat, B.H.; Atmaca, M.; Deniz, O.B.; Özekinci, S. Taşdemir, E.; Ketani, A. Protective effects of coumarin and coumarin derivatives against carbon tetrachloride-induced acute hepatotoxicity in rats. Exp. Toxicol. Pathol., 2011, 63(4), 325-330.
[http://dx.doi.org/10.1016/j.etp.2010.02.006] [PMID: 20207117]
[24]
Manojkumar, P.; Ravi, T.K.; Gopalakrishnan, S. Antioxidant and antibacterial studies of arylazopyrazoles and arylhydrazonopyrazolones containing coumarin moiety. Eur. J. Med. Chem., 2009, 44(11), 4690-4694.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.004] [PMID: 19646797]
[25]
Gaffer, H.; Salem, M.; Marzouk, M. Synthesis of 4-hydroxy coumarin dyes and their applications. Pigm. Resin Technol., 2016, 45(5), 320-329.
[http://dx.doi.org/10.1108/PRT-09-2014-0071]
[26]
Kumar, P.S.; Ghosh, G.; Rout, S.; Paul, D. Synthesis and antimicrobial evaluation of some novel 4-hydroxy coumarin derivatives bearing azo moiety. Rasayan J. Chem., 2013, 6, 147-152.
[27]
Tamokou, J.D.; Tsemeugne, J.; Fondjo, E.S.; Sarkar, P.; Kuiate, J.R.; Djintchui, A.N.; Sondengam, B.L.; Bag, P.K. Antibacterial and cytotoxic activities and SAR of some azo compounds containing thiophene backbone. Pharmacologia, 2016, 7(4), 182-192.
[http://dx.doi.org/10.5567/pharmacologia.2016.182.192]
[28]
Nafea, H.M.; Al-Kawaz, A.M.N. Synthesis, characterization, antimicrobial, DNA cleavage and fluorescent activity of metal ion(II) coordinate with 2H-Chromene azo novel ligand. Int. J. Res. Pharm. Sci., 2020, 11(2), 1953-1960.
[http://dx.doi.org/10.26452/ijrps.v11i2.2116]
[29]
Sudha, B.; Sastry, V. Synthesis and evaluation of novel coumarinyl thiazole azodyes as anti-bacterial and analgesic. Int. J. Adv. Res., 2016, 4(3), 1225-1232.
[30]
Afifi, T.H.; Okasha, R.M.; Ahmed, H.E.A.; Ilaš, J.; Saleh, T.; El-Aziz, A.A.S. Structure-activity relationships and molecular docking studies of chromene and chromene based azo chromophores: A novel series of potent antimicrobial and anticancer agents. EXCLI J., 2017, 16, 868-902.
[PMID: 28828001]
[31]
Orabi, E.A.; Orabi, M.A.A.; Mahross, M.H.; Abdel, H.M. Computational investigation of the structure and antioxidant activity of some pyrazole and pyrazolone derivatives. J. Saudi Chem. Soc., 2018, 22(6), 705-714.
[http://dx.doi.org/10.1016/j.jscs.2017.12.003]
[32]
Dawood, D.H.; Nossier, E.S.; Ali, M.M.; Mahmoud, A.E. Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase. Bioorg. Chem., 2020, 101, 103916.
[http://dx.doi.org/10.1016/j.bioorg.2020.103916] [PMID: 32559576]
[33]
Bekhit, A.A.; Ashour, H.M.A.; Guemei, A.A. Novel pyrazole derivatives as potential promising anti-inflammatory antimicrobial agents. Arch. Pharm., 2005, 338(4), 167-174.
[http://dx.doi.org/10.1002/ardp.200400940] [PMID: 15864786]
[34]
Amir, M.; Kumar, S. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of 3, 5-dimethyl pyrazoles, 3-methyl pyrazol-5-ones and 3, 5-disubstituted pyrazolines. ChemInform, 2005, 37, 53523665.
[35]
Abdel, A.M.; Abuo, R.G.E.D.A.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.032] [PMID: 19268406]
[36]
Natella, F.; Nardini, M.; Di Felice, M.; Scaccini, C. Benzoic and cinnamic acid derivatives as antioxidants: Structure-activity relation. J. Agric. Food Chem., 1999, 47(4), 1453-1459.
[http://dx.doi.org/10.1021/jf980737w] [PMID: 10563998]
[37]
Leslie, B.J.; Holaday, C.R.; Nguyen, T.; Hergenrother, P.J. Phenylcinnamides as novel antimitotic agents. J. Med. Chem., 2010, 53(10), 3964-3972.
[http://dx.doi.org/10.1021/jm901805m] [PMID: 20411988]
[38]
Haj, M.K.; Banik, S.M.; Jacobsen, E.N. Catalytic, enantioselective 1,2-difluorination of cinnamamides. Org. Lett., 2019, 21(13), 4919-4923.
[http://dx.doi.org/10.1021/acs.orglett.9b00938] [PMID: 30963766]
[39]
Balsamo, A.; Crotti, P.; Lapucci, A.; Macchia, B.; Macchia, F.; Cuttica, A.; Passerini, N. Structure-activity relationship in cinnamamides. 3. Synthesis and anticonvulsant activity evaluation of some derivatives of (E)- and (Z)-m-(trifluoromethyl)cinnamamide. J. Med. Chem., 1981, 24(5), 525-532.
[http://dx.doi.org/10.1021/jm00137a010] [PMID: 7241510]
[40]
Guan, L.P.; Wei, C.X.; Deng, X.Q.; Sui, X.; Piao, H.R.; Quan, Z.S. Synthesis and anticonvulsant activity of N-(2-hydroxyethyl) cinnamamide derivatives. Eur. J. Med. Chem., 2009, 44(9), 3654-3657.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.015] [PMID: 19272675]
[41]
Pavić, K.; Perković, I.; Pospíšilová, Š.; Machado, M.; Fontinha, D.; Prudêncio, M.; Jampilek, J.; Coffey, A.; Endersen, L.; Rimac, H.; Zorc, B. Primaquine hybrids as promising antimycobacterial and antimalarial agents. Eur. J. Med. Chem., 2018, 143, 769-779.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.083] [PMID: 29220797]
[42]
Khan, T.; Dixit, S.; Ahmad, R.; Raza, S.; Azad, I.; Joshi, S.; Khan, A.R. Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its complexes. J. Chem. Biol., 2017, 10(3), 91-104.
[http://dx.doi.org/10.1007/s12154-017-0167-y] [PMID: 28684996]
[43]
Guan, L.; Yang, H.; Cai, Y.; Sun, L.; Di, P.; Li, W.; Liu, G.; Tang, Y. ADMET-score –A comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 2019, 10(1), 148-157.
[http://dx.doi.org/10.1039/C8MD00472B] [PMID: 30774861]
[44]
Belhassan, A.; Zaki, H.; Benlyas, M.; Lakhlifi, T.; Bouachrine, M. Study of novel triazolo-benzodiazepine analogues as antidepressants targeting by molecular docking and ADMET properties prediction. Heliyon, 2019, 5(9), e02446-e02446.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02446] [PMID: 31528753]
[45]
Naqvi, A.; Malasoni, R.; Srivastava, A.; Pandey, R.R.; Dwivedi, A.K. Design, synthesis and molecular docking of substituted 3-hydrazinyl-3-oxo-propanamides as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2014, 24(22), 5181-5184.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.080] [PMID: 25442308]
[46]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[47]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in advanced drug delivery reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[48]
Hou, T.; Wang, J. Structure – ADME relationship: Still a long way to go? Expert Opin. Drug Metab. Toxicol., 2008, 4(6), 759-770.
[http://dx.doi.org/10.1517/17425255.4.6.759] [PMID: 18611116]
[49]
Tetko, I.V.; Bruneau, P.; Mewes, H.W.; Rohrer, D.C.; Poda, G.I. Can we estimate the accuracy of ADME–Tox predictions? Drug Discov. Today, 2006, 11(15-16), 700-707.
[http://dx.doi.org/10.1016/j.drudis.2006.06.013] [PMID: 16846797]
[50]
Marchant, C.A.; Briggs, K.A.; Long, A. In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for windows, meteor, and vitic. Toxicol. Mech. Methods, 2008, 18(2-3), 177-187.
[http://dx.doi.org/10.1080/15376510701857320] [PMID: 20020913]
[51]
Lagunin, A.; Zakharov, A.; Filimonov, D.; Poroikov, V. QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol. Inform., 2011, 30(2-3), 241-250.
[http://dx.doi.org/10.1002/minf.201000151] [PMID: 27466777]
[52]
Engelman, J.A. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat. Rev. Cancer, 2009, 9(8), 550-562.
[http://dx.doi.org/10.1038/nrc2664] [PMID: 19629070]
[53]
Zhao, L.; Vogt, P.K.; Class, I. Class I PI3K in oncogenic cellular transformation. Oncogene, 2008, 27(41), 5486-5496.
[http://dx.doi.org/10.1038/onc.2008.244] [PMID: 18794883]
[54]
Mukohara, T. PI3K mutations in breast cancer: Prognostic and therapeutic implications. Breast Cancer (Dove Med. Press), 2015, 7, 111-123.
[http://dx.doi.org/10.2147/BCTT.S60696] [PMID: 26028978]
[55]
Liu, J.; Gao, G.; Zhang, X.; Cao, S.; Guo, C.; Wang, X.; Tong, L.; Ding, J.; Duan, W.; Meng, L. DW09849, a selective Phosphatidylinositol 3-Kinase (PI3K) inhibitor, prevents PI3K signaling and preferentially inhibits proliferation of cells containing the oncogenic mutation p110α (H1047R). J. Pharmacol. Exp. Ther., 2014, 348(3), 432-441.
[http://dx.doi.org/10.1124/jpet.113.210724] [PMID: 24361696]
[56]
Yuan, T.L.; Cantley, L.C. PI3K pathway alterations in cancer: Variations on a theme. Oncogene, 2008, 27(41), 5497-5510.
[http://dx.doi.org/10.1038/onc.2008.245] [PMID: 18794884]
[57]
Naqvi, A.; Rao, A.V.; Seth, D.S. Synthesis and characterization of some Azo compounds. Asian J. Res. Chem, 2010, 3(2), 428-429.
[58]
EUCAST. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID): Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. CMI, 2000, 6, 503-538. https://pubmed.ncbi.nlm.nih.gov/11168186/
[59]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[60]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[61]
Schüttelkopf, A.W.; Van Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[62]
Shahzadi, I.; Zahoor, A.F.; Rasul, A.; Mansha, A.; Ahmad, S.; Raza, Z. Synthesis, hemolytic studies, and in silico modeling of novel acefylline–1,2,4-triazole hybrids as potential anti-cancer agents against MCF-7 and A549. ACS Omega, 2021, 6(18), 11943-11953.
[http://dx.doi.org/10.1021/acsomega.1c00424] [PMID: 34056349]
[63]
Riaz, M.; Rasool, N.; Bukhari, I.; Shahid, M.; Zubair, M.; Rizwan, K.; Rashid, U. In vitro antimicrobial, antioxidant, cytotoxicity and GC-MS analysis of Mazus goodenifolius. Molecules, 2012, 17(12), 14275-14287.
[http://dx.doi.org/10.3390/molecules171214275] [PMID: 23208463]
[64]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[65]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[66]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[67]
Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[68]
Hagar, M.; Ahmed, H.A.; Aljohani, G.; Alhaddad, O.A. Investigation of some antiviral n-heterocycles as COVID 19 drug: Molecular docking and DFT calculations. Int. J. Mol. Sci., 2020, 21(11), 3922.
[http://dx.doi.org/10.3390/ijms21113922] [PMID: 32486229]
[69]
Al-Otaibi, J.S.; Sheena, M.Y. Shyma, Mary.Y.; Panicker, C.Y.; Thomas, R. Cocrystals of pyrazinamide with p-toluenesulfonic and ferulic acids: DFT investigations and molecular docking studies. J. Mol. Struct., 2019, 1175, 916-926.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.055]
[70]
Mohapatra, R.K.; El-ajaily, M.M.; Alassbaly, F.S.; Sarangi, A.K.; Das, D.; Maihub, A.A.; Ben, G.S.F.; Mahal, A.; Suleiman, M.; Perekhoda, L. DFT, anticancer, antioxidant and molecular docking investigations of some ternary Ni (II) complexes with 2-[(E)-[4-(dimethylamino) phenyl] methyleneamino] phenol. Chem. Pap., 2020, 75(6), 1-16.
[71]
Bouachrine, M.; Hamidi, M. Theoretical study on the structure and electronic properties of new materials based on thiophene and oxadiazole. 2009. Available from: https://www.sid.ir/paper/322797/en]
[72]
Yang, L.; Feng, J.K.; Ren, A.M. Theoretical studies on the electronic and optical properties of two thiophene–fluorene based π-conjugated copolymers. Polymer (Guildf.), 2005, 46(24), 10970-10981.
[http://dx.doi.org/10.1016/j.polymer.2005.09.050]
[73]
Alnoman, R.B.; Parveen, S.; Hagar, M.; Ahmed, H.A.; Knight, J.G. A new chiral Boron-Dipyrromethene (BODIPY)-based fluorescent probe: Molecular docking, DFT, antibacterial and antioxidant approaches. J. Biomol. Struct. Dyn., 2019, 38(18), 5429-5442.
[PMID: 31809642]
[74]
Alnoman, R.B.; Hagar, M.; Parveen, S.; Ahmed, H.A.; Knight, J.G. Computational and molecular docking approaches of a new axially chiral BODIPY fluorescent dye. J. Photochem. Photobiol. Chem., 2020, 395, 112508.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112508]
[75]
Joshi, R.; Pandey, N.; Yadav, S.K.; Tilak, R.; Mishra, H.; Pokharia, S. Synthesis, spectroscopic characterization, DFT studies and antifungal activity of (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione. J. Mol. Struct., 2018, 1164, 386-403.
[http://dx.doi.org/10.1016/j.molstruc.2018.03.081]
[76]
Joshi, R.; Kumari, A.; Singh, K.; Mishra, H.; Pokharia, S. Triorganotin(IV) complexes of Schiff base derived from 1,2,4-triazole moiety: Synthesis, spectroscopic investigation, DFT studies, antifungal activity and molecular docking studies. J. Mol. Struct., 2020, 1206, 127639.
[http://dx.doi.org/10.1016/j.molstruc.2019.127639]
[77]
Khodair, A.I.; Awad, M.K.; Gesson, J.P.; Elshaier, Y.A.M.M. New N-ribosides and N-mannosides of rhodanine derivatives with anticancer activity on leukemia cell line: Design, synthesis, DFT and molecular modelling studies. Carbohydr. Res., 2020, 487, 107894.
[http://dx.doi.org/10.1016/j.carres.2019.107894] [PMID: 31865252]
[78]
Suresh, K.S.; Athimoolam, S.; Sridhar, B. Structural, spectral, theoretical and anticancer studies on new co-crystal of the drug 5-fluorouracil. J. Mol. Struct., 2018, 1173, 951-958.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.079]
[79]
Hagar, M.; Ahmed, H.A.; El-Sayed, T.H.; Alnoman, R. Mesophase behavior and DFT conformational analysis of new symmetrical diester chalcone liquid crystals. J. Mol. Liq., 2019, 285, 96-105.
[http://dx.doi.org/10.1016/j.molliq.2019.04.083]
[80]
Grover, M.; Singh, B.; Bakshi, M.; Singh, S. Quantitative structure–property relationships in pharmaceutical research – Part 1. Pharm. Sci. Technol. Today, 2000, 3(1), 28-35.
[http://dx.doi.org/10.1016/S1461-5347(99)00214-X] [PMID: 10637598]
[81]
Malhotra, R.; Ravesh, A.; Singh, V. Synthesis, characterization, antimicrobial activities, and QSAR studies of organotin(IV) complexes. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(1), 99263945.
[http://dx.doi.org/10.1080/10426507.2016.1225054]
[82]
Kumer, A.; Sarker, M.N.; Paul, S. The Simulating Study of HOMO, LUMO, thermo physical and Quantitative Structure of Activity Relationship (QSAR) of some anticancer active ionic liquids. Eurasian J. Environ. Res., 2019, 3(1), 202067994.
[83]
Ali, M.S.; Farah, M.A.; Al-Lohedan, H.A.; Al-Anazi, K.M. Comprehensive exploration of the anticancer activities of procaine and its binding with calf thymus DNA: A multi spectroscopic and molecular modelling study. RSC Advances, 2018, 8(17), 9083-9093.
[http://dx.doi.org/10.1039/C7RA13647A] [PMID: 35541873]
[84]
Rachedi, K.O.; Ouk, T.S.; Bahadi, R.; Bouzina, A.; Djouad, S.E.; Bechlem, K.; Zerrouki, R.; Ben, H.T.; Almalki, F.; Berredjem, M. Synthesis, DFT and POM analyses of cytotoxicity activity of α-amidophosphonates derivatives: Identification of potential antiviral O,O-pharmacophore site. J. Mol. Struct., 2019, 1197, 196-203.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.053]
[85]
Da Costa, R.M.; Bastos, J.K.; Costa, M.C.A.; Ferreira, M.M.C.; Mizuno, C.S.; Caramori, G.F.; Nagurniak, G.R.; Simão, M.R.; Dos Santos, R.A.; Veneziani, R.C.S.; Ambrósio, S.R.; Parreira, R.L.T. In vitro cytotoxicity and structure-activity relationship approaches of ent-kaurenoic acid derivatives against human breast carcinoma cell line. Phytochemistry, 2018, 156, 214-223.
[http://dx.doi.org/10.1016/j.phytochem.2018.10.005] [PMID: 30321792]
[86]
Lewis, D.F.V. Quantitative Structure–Activity Relationships (QSARs) within the cytochrome P450 system: QSARs describing substrate binding, inhibition and induction of P450s. Inflammopharmacology, 2003, 11(1), 43-73.
[http://dx.doi.org/10.1163/156856003321547112] [PMID: 15035734]
[87]
Almehmadi, M.A.; Aljuhani, A.; Alraqa, S.Y.; Ali, I.; Rezki, N.; Aouad, M.R.; Hagar, M. Design, synthesis, DNA binding, modeling, anticancer studies and DFT calculations of Schiff bases tethering benzothiazole-1,2,3-triazole conjugates. J. Mol. Struct., 2021, 1225, 129148.
[http://dx.doi.org/10.1016/j.molstruc.2020.129148]
[88]
Ortega, J.T.; Serrano, M.L.; Pujol, F.H.; Rangel, H.R. Unrevealing sequence and structural features of novel coronavirus using in silico approaches: The main protease as molecular target. EXCLI J., 2020, 19, 400-409.
[PMID: 32210741]
[89]
Kouza, M.; Banerji, A.; Kolinski, A.; Buhimschi, I.; Kloczkowski, A. Role of resultant dipole moment in mechanical dissociation of biological complexes. Molecules, 2018, 23(8), 1995.
[http://dx.doi.org/10.3390/molecules23081995] [PMID: 30103417]
[90]
Shawon, J.; Khan, A.M.; Rahman, A.; Hoque, M.M.; Khan, M.A.K.; Sarwar, M.G.; Halim, M.A. Molecular recognition of azelaic acid and related molecules with DNA polymerase I investigated by molecular modeling calculations. Interdiscip. Sci., 2018, 10(3), 525-537.
[http://dx.doi.org/10.1007/s12539-016-0186-3] [PMID: 27696206]
[91]
Uzzaman, M.; Jabedul Hoque, M. Physiochemical, molecular docking, and pharmacokinetic studies of Naproxen and its modified derivatives based on DFT. Int. J. Sci. Res. Manag., 2018, 6(9), 12-19.
[http://dx.doi.org/10.18535/ijsrm/v6i9.c01]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy