Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Bacterial Peptides and Bacteriocins as a Promising Therapy for Solid Tumor

Author(s): Atieh Yaghoubi, Kiarash Ghazvini, Seyed Mahdi Hasanian, Amir Avan, Saman Soleimanpour* and Majid Khazaei*

Volume 28, Issue 38, 2022

Published on: 18 October, 2022

Page: [3105 - 3113] Pages: 9

DOI: 10.2174/1381612828666220921150037

Price: $65

Abstract

The conventional treatment is faced with limitations in treating solid tumors due to their specific pathophysiology. Several novel therapeutics have been introduced in recent decades to treat solid tumors. Among these new methods, tumor therapy using bacterial products like bacteriocins and peptides has been of great interest due to their unique characteristics and advantages of them in comparison to the conventional treatment, including that they can precisely target tumor cells, selective toxicity for tumor cells, low side effect on normal cells, toxicity activity for MDR cancer cells, used as the target delivery vehicles and enhancing drug delivery. Moreover, their small size and low molecular weight have made them easy to synthesize and modify. Furthermore, in recent years, genetic engineering has expanded the therapeutic ability of peptides to treat solid tumors, which results in overcoming the peptide drawbacks. The present review mainly focuses on the new advances in applying bacterial peptides and bacteriocins in treating human solid tumors.

Keywords: Bacteriotherapy, cancer, bacteria, carcinogen, treatment, bacteriocin, peptide.

Next »
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Nurgali, K.; Jagoe, R.T.; Abalo, R. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front. Pharmacol., 2018, 9, 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[4]
Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(1), 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[5]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
Cao, C.; Yan, T.D.; Black, D.; Morris, D.L. A systematic review and meta-analysis of cytoreductive surgery with perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis of colorectal origin. Ann. Surg. Oncol., 2009, 16(8), 2152-2165.
[http://dx.doi.org/10.1245/s10434-009-0487-4] [PMID: 19434455]
[7]
Janssens, G.O.; Rademakers, S.E.; Terhaard, C.H. Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: Results of a phase III randomized trial. J. Clin. Oncol., 2012, 30(15), 1777-1783.
[http://dx.doi.org/10.1200/JCO.2011.35.9315] [PMID: 22508814]
[8]
DiSilvestro, P.A.; Ali, S.; Craighead, P.S. Phase III randomized trial of weekly cisplatin and irradiation versus cisplatin and tirapazamine and irradiation in stages IB2, IIA, IIB, IIIB, and IVA cervical carcinoma limited to the pelvis: A Gynecologic Oncology Group study. J. Clin. Oncol., 2014, 32(5), 458-464.
[http://dx.doi.org/10.1200/JCO.2013.51.4265] [PMID: 24395863]
[9]
Peeters, S.G.; Zegers, C.M.; Lieuwes, N.G. A comparative study of the hypoxia PET tracers [18F] HX4,[18F] FAZA, and [18F] FMISO in a preclinical tumor model. Int. J. Radiat. Oncol. Biol. Phys., 2015, 91(2), 351-359.
[10]
Roberts, N.J.; Zhang, L.; Janku, F. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci. Transl. Med., 2014, 6(249), 249ra111.
[http://dx.doi.org/10.1126/scitranslmed.3008982]
[11]
Fujimori, M. Genetically engineeredbifidobacterium as a drug delivery system for systemic therapy of metastatic breast cancer patients. Breast Cancer, 2006, 13(1), 27-31.
[http://dx.doi.org/10.2325/jbcs.13.27] [PMID: 16518059]
[12]
Wiemann, B.; Starnes, C.O. Coley’s toxins, tumor necrosis factor and cancer research: A historical perspective. Pharmacol. Ther., 1994, 64(3), 529-564.
[http://dx.doi.org/10.1016/0163-7258(94)90023-X] [PMID: 7724661]
[13]
McCarthy, E.F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop. J., 2006, 26, 154-158.
[PMID: 16789469]
[14]
Gontero, P.; Bohle, A.; Malmstrom, P.U. The role of bacillus Calmette-Guérin in the treatment of non-muscle-invasive bladder cancer. Eur. Urol., 2010, 57(3), 410-429.
[http://dx.doi.org/10.1016/j.eururo.2009.11.023] [PMID: 19969411]
[15]
Zlotta, A.R.; Fleshner, N.E.; Jewett, M.A. The management of BCG failure in non-muscle-invasive bladder cancer: An update. Can. Urol. Assoc. J., 2009, 3(6)(Suppl. 4), S199-S205.
[PMID: 20019985]
[16]
Wei, M.Q.; Ellem, K.A.O.; Dunn, P.; West, M.J.; Bai, C.X.; Vogelstein, B. Facultative or obligate anaerobic bacteria have the potential for multimodality therapy of solid tumours. Eur. J. Cancer, 2007, 43(3), 490-496.
[http://dx.doi.org/10.1016/j.ejca.2006.10.005] [PMID: 17113280]
[17]
Chang, J.; Liu, Y.; Han, B.; Zhou, C.; Bai, C.; Li, J. Pseudomonas aeruginosa preparation plus chemotherapy for advanced non-small-cell lung cancer: A randomized, multicenter, double-blind phase III study. Med. Oncol., 2015, 32(5), 139.
[http://dx.doi.org/10.1007/s12032-015-0583-1] [PMID: 25801231]
[18]
Hetz, C.; Bono, M.R.; Barros, L.F.; Lagos, R. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 2696-2701.
[http://dx.doi.org/10.1073/pnas.052709699] [PMID: 11880624]
[19]
Yan, L.; Kanada, M.; Zhang, J.; Okazaki, S.; Terakawa, S. Photodynamic treatment of tumor with bacteria expressing killerred. PLoS One, 2015, 10(7), e0131518.
[http://dx.doi.org/10.1371/journal.pone.0131518] [PMID: 26213989]
[20]
Song, S.; Vuai, M.S.; Zhong, M. The role of bacteria in cancer therapy – enemies in the past, but allies at present. Infect. Agent. Cancer, 2018, 13(1), 9.
[http://dx.doi.org/10.1186/s13027-018-0180-y] [PMID: 29568324]
[21]
Danino, T.; Prindle, A.; Hasty, J.; Bhatia, S. Measuring growth and gene expression dynamics of tumor-targeted S. typhimurium bacteria. J. Vis. Exp., 2013, (77), e50540.
[http://dx.doi.org/10.3791/50540] [PMID: 23851642]
[22]
Boohaker, R.J.; Lee, M.W.; Vishnubhotla, P.; Perez, J.M.; Khaled, A.R. The use of therapeutic peptides to target and to kill cancer cells. Curr. Med. Chem., 2012, 19(22), 3794-3804.
[http://dx.doi.org/10.2174/092986712801661004] [PMID: 22725698]
[23]
Lee, H.; Kim, H.Y. Lantibiotics, class I bacteriocins from the genus Bacillus. J. Microbiol. Biotechnol., 2011, 21(3), 229-235.
[http://dx.doi.org/10.4014/jmb.1010.10017] [PMID: 21464591]
[24]
Sahl, H.G.; Bierbaum, G. Lantibiotics: Biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu. Rev. Microbiol., 1998, 52(1), 41-79.
[http://dx.doi.org/10.1146/annurev.micro.52.1.41] [PMID: 9891793]
[25]
Lax, A.J. Bacterial toxins and cancer — a case to answer? Nat. Rev. Microbiol., 2005, 3(4), 343-349.
[http://dx.doi.org/10.1038/nrmicro1130] [PMID: 15806096]
[26]
Kawai, Y.; Kemperman, R.; Kok, J.; Saito, T. The circular bacteriocins gassericin A and circularin A. Curr. Protein Pept. Sci., 2004, 5(5), 393-398.
[http://dx.doi.org/10.2174/1389203043379549] [PMID: 15544534]
[27]
van Belkum, M.J.; Martin-Visscher, L.A.; Vederas, J.C. Structure and genetics of circular bacteriocins. Trends Microbiol., 2011, 19(8), 411-418.
[http://dx.doi.org/10.1016/j.tim.2011.04.004] [PMID: 21664137]
[28]
Barnes, B.B.E.; Steindorf, K.; Hein, R.; Flesch-Janys, D.; Chang-Claude, J. Population attributable risk of invasive postmenopausal breast cancer and breast cancer subtypes for modifiable and non-modifiable risk factors. Cancer Epidemiol., 2011, 35(4), 345-352.
[http://dx.doi.org/10.1016/j.canep.2010.11.003] [PMID: 21159569]
[29]
New enterococcal anticancer peptide. In: 23rd European Congress of Clinical Microbiology and Infectious Diseases, Berlin, Germany2013, 27, p. 30.
[30]
Baindara, P.; Gautam, A.; Raghava, G.P.S.; Korpole, S. Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci. Rep., 2017, 7(1), 46541.
[http://dx.doi.org/10.1038/srep46541] [PMID: 28422156]
[31]
Oku, N.; Adachi, K.; Matsuda, S.; Kasai, H.; Takatsuki, A.; Shizuri, Y. Ariakemicins A and B, novel polyketide-peptide antibiotics from a marine gliding bacterium of the genus Rapidithrix. Org. Lett., 2008, 10(12), 2481-2484.
[http://dx.doi.org/10.1021/ol8007292] [PMID: 18498148]
[32]
Tareq, F.S.; Kim, J.H.; Lee, M.A. Ieodoglucomides A and B from a marine-derived bacterium Bacillus licheniformis. Org. Lett., 2012, 14(6), 1464-1467.
[http://dx.doi.org/10.1021/ol300202z] [PMID: 22360451]
[33]
Kanoh, K.; Matsuo, Y.; Adachi, K.; Imagawa, H.; Nishizawa, M.; Shizuri, Y. Mechercharmycins A and B, cytotoxic substances from marine-derived Thermoactinomyces sp. YM3-251. J. Antibiot., 2005, 58(4), 289-292.
[http://dx.doi.org/10.1038/ja.2005.36] [PMID: 15981418]
[34]
Matsuo, Y.; Kanoh, K.; Yamori, T. Urukthapelstatin A, a novel cytotoxic substance from marine-derived Mechercharimyces asporophorigenens YM11-542. I. Fermentation, isolation and biological activities. J. Antibiot., 2007, 60(4), 251-255.
[http://dx.doi.org/10.1038/ja.2007.30] [PMID: 17456975]
[35]
Hu, C.; Huang, Y.; Chen, Y. Targeted modification of the cationic anticancer peptide HPRP-A1 with iRGD to improve specificity, penetration, and tumor-tissue accumulation. Mol. Pharm., 2019, 16(2), 561-572.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00854] [PMID: 30592418]
[36]
Um, S.; Choi, T.J.; Kim, H. Ohmyungsamycins A and B: Cytotoxic and antimicrobial cyclic peptides produced by Streptomyces sp. from a volcanic island. J. Org. Chem., 2013, 78(24), 12321-12329.
[http://dx.doi.org/10.1021/jo401974g] [PMID: 24266328]
[37]
Wright, S.E. Immunotherapy of breast cancer. Expert Opin. Biol. Ther., 2012, 12(4), 479-490.
[http://dx.doi.org/10.1517/14712598.2012.665445] [PMID: 22413825]
[38]
Kaur, S.; Kaur, S. Bacteriocins as potential anticancer agents. Front. Pharmacol., 2015, 6, 272.
[http://dx.doi.org/10.3389/fphar.2015.00272] [PMID: 26617524]
[39]
Paiva, A.D.; de Oliveira, M.D.; de Paula, S.O.; Baracat-Pereira, M.C.; Breukink, E.; Mantovani, H.C. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology, 2012, 158(11), 2851-2858.
[http://dx.doi.org/10.1099/mic.0.062190-0] [PMID: 22956757]
[40]
Begde, D.; Bundale, S.; Mashitha, P.; Rudra, J.; Nashikkar, N.; Upadhyay, A. Immunomodulatory efficacy of nisin-a bacterial lantibiotic peptide. J. Pept. Sci., 2011, 17(6), 438-444.
[http://dx.doi.org/10.1002/psc.1341] [PMID: 21294231]
[41]
Yamada, T.; Goto, M.; Punj, V. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc. Natl. Acad. Sci. USA, 2002, 99(22), 14098-14103.
[http://dx.doi.org/10.1073/pnas.222539699] [PMID: 12393814]
[42]
Mohamed, M.S.; Fattah, S.A.; Mostafa, H.M. Azurin as antitumor protein and its effect on the cancer cell lines. Curr Res J Biol Sci, 2010, 2(6), 396-401.
[43]
Gao, M.; Zhou, J.; Su, Z.; Huang, Y. Bacterial cupredoxin azurin hijacks cellular signaling networks: Protein-protein interactions and cancer therapy. Protein Sci., 2017, 26(12), 2334-2341.
[http://dx.doi.org/10.1002/pro.3310] [PMID: 28960574]
[44]
Rishi, R.; Lulla, S.G.; Yamada, T. Phase 1 trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: A pediatric brain tumor consortium study. Neuro-oncol., 2016, 18(9), 1319-1325.
[PMID: 27022131]
[45]
Yamada, T.; Das Gupta, T.K.; Beattie, C.W. p28-mediated activation of p53 in G2–M phase of the cell cycle enhances the efficacy of DNA damaging and antimitotic chemotherapy. Cancer Res., 2016, 76(8), 2354-2365.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2355] [PMID: 26921335]
[46]
Sung, W.S.; Park, Y.; Choi, C.H.; Hahm, K.S.; Lee, D.G. Mode of antibacterial action of a signal peptide, Pep27 from Streptococcus pneumoniae. Biochem. Biophys. Res. Commun., 2007, 363(3), 806-810.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.041] [PMID: 17900534]
[47]
Lee, D.; Hahm, K.S.; Park, Y. Functional and structural characteristics of anticancer peptide Pep27 analogues. Cancer Cell Int., 2005, 5(1), 21.
[http://dx.doi.org/10.1186/1475-2867-5-21] [PMID: 16004618]
[48]
Symeonidis, D.; Christodoulidis, G.; Koukoulis, G.; Spyridakis, M.; Tepetes, K. Colorectal cancer surgery in the elderly: Limitations and drawbacks. Tech. Coloproctol., 2011, 15(1), 47-50.
[http://dx.doi.org/10.1007/s10151-011-0751-z] [PMID: 21887559]
[49]
Groza, D.; Gehrig, S.; Kudela, P. Bacterial ghosts as adjuvant to oxaliplatin chemotherapy in colorectal carcinomatosis. OncoImmunology, 2018, 7(5), e1424676.
[http://dx.doi.org/10.1080/2162402X.2018.1424676] [PMID: 29721389]
[50]
Villarante, K.I.; Elegado, F.B.; Iwatani, S.; Zendo, T.; Sonomoto, K.; de Guzman, E.E. Purification, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilactici K2a2-3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cells. World J. Microbiol. Biotechnol., 2011, 27(4), 975-980.
[http://dx.doi.org/10.1007/s11274-010-0541-1]
[51]
Kumar, B.; Balgir, P.P.; Kaur, B.; Mittu, B.; Chauhan, A. In vitro cytotoxicity of native andrec-pediocin CP2 against cancer cell lines: A comparativestudy. Pharm. Anal. Acta, 2012, 1, 316-321.
[52]
Joo, N.E.; Ritchie, K.; Kamarajan, P.; Miao, D.; Kapila, Y.L. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC 1. Cancer Med., 2012, 1(3), 295-305.
[http://dx.doi.org/10.1002/cam4.35] [PMID: 23342279]
[53]
Norouzi, Z.; Salimi, A.; Halabian, R.; Fahimi, H. Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. Microb. Pathog., 2018, 123, 183-189.
[http://dx.doi.org/10.1016/j.micpath.2018.07.006] [PMID: 30017942]
[54]
Asolkar, R.N.F.; Jensen, P.R.; Fenical, W. Arenamides A-C, cytotoxic NF B inhibitors from the marine actinomycete Salinispora arenicola. J. Nat. Prod., 2009, 72, 396-402.
[http://dx.doi.org/10.1021/np800617a] [PMID: 19117399]
[55]
Cho, J.Y.; Williams, P.G.; Kwon, H.C.; Jensen, P.R.; Fenical, W. Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis. J. Nat. Prod., 2007, 70(8), 1321-1328.
[http://dx.doi.org/10.1021/np070101b] [PMID: 17630797]
[56]
Zhang, H.L.; Hua, H.M.; Pei, Y.H.; Yao, X.S. Three new cytotoxic cyclic acylpeptides from marine Bacillus sp. Chem. Pharm. Bull., 2004, 52(8), 1029-1030.
[http://dx.doi.org/10.1248/cpb.52.1029] [PMID: 15305011]
[57]
Karpiński T.M. Habilitation Thesis. Scientific Publisher of Poznań University of Medical Sciences; Poznan, Poland: 2012. New Peptide (Entap) with Anti-Proliferative Activity Produced by Bacteria of Enterococcus Genus
[58]
Ohtsu, A. Current status and future prospects of chemotherapy for metastatic gastric cancer: A review. Gastric Cancer, 2005, 8(2), 95-102.
[http://dx.doi.org/10.1007/s10120-005-0324-9] [PMID: 15864716]
[59]
Yang, L.; Tan, R.; Wang, Q.; Huang, W.; Yin, Y. Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Lett., 2002, 43(37), 6545-6548.
[http://dx.doi.org/10.1016/S0040-4039(02)01458-2]
[60]
Fiedler, H.P.; Bruntner, C.; Riedlinger, J. Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot Res, 2008, 61(3), 158-163.
[http://dx.doi.org/10.1038/ja.2008.125] [PMID: 18503194]
[61]
Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol., 2009, 625(1-3), 190-194.
[http://dx.doi.org/10.1016/j.ejphar.2009.08.043] [PMID: 19835863]
[62]
Zhao, J.; Huang, Y.; Liu, D.; Chen, Y. Two hits are better than one: Synergistic anticancer activity of α-helical peptides and doxorubicin/epirubicin. Oncotarget, 2015, 6(3), 1769-1778.
[http://dx.doi.org/10.18632/oncotarget.2754] [PMID: 25593197]
[63]
Zhao, J.; Hao, X.; Liu, D.; Huang, Y.; Chen, Y. In vitro characterization of the rapid cytotoxicity of anticancer peptide HPRP-A2 through membrane destruction and intracellular mechanism against gastric cancer cell lines. PLoS One, 2015, 10(9), e0139578.
[http://dx.doi.org/10.1371/journal.pone.0139578] [PMID: 26422386]
[64]
Cho, E.; Lee, J.K.; Park, E.; Seo, C.H.; Luchian, T.; Park, Y. Antitumor activity of HPA3P through RIPK3-dependent regulated necrotic cell death in colon cancer. Oncotarget, 2018, 9(8), 7902-7917.
[http://dx.doi.org/10.18632/oncotarget.24083] [PMID: 29487701]
[65]
Antonarakis, E.S.; Eisenberger, M.A. Expanding treatment options for metastatic prostate cancer. N. Engl. J. Med., 2011, 364(21), 2055-2058.
[http://dx.doi.org/10.1056/NEJMe1102758] [PMID: 21612475]
[66]
Kantoff, P.W.; Higano, C.S.; Shore, N.D. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med., 2010, 363(5), 411-422.
[http://dx.doi.org/10.1056/NEJMoa1001294] [PMID: 20818862]
[67]
Rawla, P. Epidemiology of prostate cancer. World J. Oncol., 2019, 10(2), 63-89.
[http://dx.doi.org/10.14740/wjon1191] [PMID: 31068988]
[68]
Yamada, T.; Gupta, T.K.; Beattie, C.W. p28, an anionic cell-penetrating peptide, increases the activity of wild type and mutated p53 without altering its conformation. Mol. Pharm., 2013, 10(9), 3375-3383.
[http://dx.doi.org/10.1021/mp400221r] [PMID: 23952735]
[69]
Lagos, R.; Tello, M.; Mercado, G.; García, V.; Monasterio, O. Antibacterial and antitumorigenic properties of microcin E492, a pore-forming bacteriocin. Curr. Pharm. Biotechnol., 2009, 10(1), 74-85.
[http://dx.doi.org/10.2174/138920109787048643] [PMID: 19149591]
[70]
Balgir, P.P.; Bhatia, P.; Kaur, B. Sequence analysis and homology based modeling to assess structure-function relationship of pediocin CP2 of Pediococcus acidilactici MTCC 5101. Indian J. Biotechnol., 2010, 9(4), 431-434.
[71]
Abdi-Ali, A.; Worobec, E.A.; Deezagi, A.; Malekzadeh, F. Cytotoxic effects of pyocin S2 produced by Pseudomonas aeruginosa on the growth of three human cell lines. Can. J. Microbiol., 2004, 50(5), 375-381.
[http://dx.doi.org/10.1139/w04-019] [PMID: 15213746]
[72]
Watanabe, T.; Saito, H. Cytotoxicity of pyocin S2 to tumor and normal cells and its interaction with cell surfaces. Biochim. Biophys. Acta, Gen. Subj., 1980, 633(1), 77-86.
[http://dx.doi.org/10.1016/0304-4165(80)90039-2] [PMID: 6256005]
[73]
Kaur, B.; Balgir, P.P.; Mittu, B.; Kumar, B.; Garg, N. Biomedical applications of fermenticin HV6b isolated from Lactobacillus fermentum HV6b MTCC10770. BioMed Res. Int., 2013, 2013, 168438.
[74]
Yamada, T.; Mehta, R.R.; Lekmine, F. A peptide fragment of azurin induces a p53-mediated cell cycle arrest in human breast cancer cells. Mol. Cancer Ther., 2009, 8(10), 2947-2958.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0444] [PMID: 19808975]
[75]
Mehta, R.R.; Yamada, T.; Taylor, B.N. A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt. Angiogenesis, 2011, 14(3), 355-369.
[http://dx.doi.org/10.1007/s10456-011-9220-6] [PMID: 21667138]
[76]
Hu, C.; Chen, X.; Huang, Y.; Chen, Y. Co-administration of iRGD with peptide HPRP-A1 to improve anticancer activity and membrane penetrability. Sci. Rep., 2018, 8(1), 2274.
[http://dx.doi.org/10.1038/s41598-018-20715-4] [PMID: 29396568]
[77]
Hao, W.; Hu, C.; Huang, Y.; Chen, Y. Coadministration of kla peptide with HPRP-A1 to enhance anticancer activity. PLoS One, 2019, 14(11), e0223738.
[http://dx.doi.org/10.1371/journal.pone.0223738] [PMID: 31703065]
[78]
Hong, C.S.; Yamada, T.; Fialho, A.M.; Gupta, T.K.D.; Chakrabarty, A.M. Disrupting the entry barrier and attacking brain tumors: The role of the Neisseria lipobox-containing H. 8 epitope and the laz protein. Cell Cycle, 2006, 5(15), 1633-1641.
[http://dx.doi.org/10.4161/cc.5.15.2991] [PMID: 16861907]
[79]
Gotschlich, E.C.; Blake, M.S.; Koomey, J.M.; Seiff, M.; Derman, A. Cloning of the structural genes of three H8 antigens and of protein III of Neisseria gonorrhoeae. J. Exp. Med., 1986, 164(3), 868-881.
[http://dx.doi.org/10.1084/jem.164.3.868] [PMID: 3091756]
[80]
Taylor, B.N.; Mehta, R.R.; Yamada, T. Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer Res., 2009, 69(2), 537-546.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2932] [PMID: 19147567]
[81]
Liu, C.Y.; Chen, K.F.; Chen, P.J. Treatment of liver cancer. Cold Spring Harb. Perspect. Med., 2015, 5(9), a021535.
[http://dx.doi.org/10.1101/cshperspect.a021535] [PMID: 26187874]
[82]
Young, J.L., Jr; Ries, L.G.; Silverberg, E.; Horm, J.W.; Miller, R.W. Cancer incidence, survival, and mortality for children younger than age 15 years. Cancer, 1986, 58(S2), 598-602.
[http://dx.doi.org/10.1002/1097-0142(19860715)58:2+<598:AID-CNCR2820581332>3.0.CO;2-C]
[83]
Lulla, R.R.; Goldman, S.; Yamada, T. Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: A pediatric brain tumor consortium study. Neuro-oncol., 2016, 18(9), 1319-1325.
[http://dx.doi.org/10.1093/neuonc/now047] [PMID: 27022131]
[84]
Kamarajan, P.; Hayami, T.; Matte, B. Nisin ZP, a bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. PLoS One, 2015, 10(7), e0131008.
[http://dx.doi.org/10.1371/journal.pone.0131008] [PMID: 26132406]
[85]
Johnstone, S.A.; Gelmon, K.; Mayer, L.D.; Hancock, R.E.; Bally, M.B. In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines. Anticancer Drug Des., 2000, 15(2), 151-160.
[PMID: 10901303]
[86]
Riedl, S.; Zweytick, D.; Lohner, K. Membrane-active host defense peptides - Challenges and perspectives for the development of novel anticancer drugs. Chem. Phys. Lipids, 2011, 164(8), 766-781.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.09.004] [PMID: 21945565]
[87]
Tørfoss, V.; Isaksson, J.; Ausbacher, D. Improved anticancer potency by head-to-tail cyclization of short cationic anticancer peptides containing a lipophilic β2,2 -amino acid. J. Pept. Sci., 2012, 18(10), 609-619.
[http://dx.doi.org/10.1002/psc.2441] [PMID: 22933412]
[88]
Li, Z.J.; Wu, W.K.K.; Ng, S.S.M. A novel peptide specifically targeting the vasculature of orthotopic colorectal cancer for imaging detection and drug delivery. J. Control. Release, 2010, 148(3), 292-302.
[http://dx.doi.org/10.1016/j.jconrel.2010.09.015] [PMID: 20854857]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy