Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Progress in Competitive Purine Antagonists

Author(s): Dan-Xia Ying, Peng-Cheng Zhao, Wen Zhang and Guo-Wu Rao*

Volume 30, Issue 34, 2023

Published on: 29 December, 2022

Page: [3880 - 3904] Pages: 25

DOI: 10.2174/0929867329666221006112458

Price: $65

Abstract

Purine, one of the nucleotides, is an important substance for the metabolism and regulation of the body. Purine plays a key role not only in the composition of coenzymes but also in the supply of energy. Since purine was artificially synthesized, it has always been an important scaffold for respiratory diseases, cardiovascular diseases, and anti- tumor and anti-viral drugs. In addition to being widely used as competitive antagonists in the treatment of diseases, purines can be used in combination with other drugs and as precursors to benefit human life. Unfortunately, few new discoveries have been made in recent years. In this article, purine drugs in the market have been classified according to their different targets. In addition, their mechanism of action and structure-activity relationship have also been introduced. This paper provides details of the signaling pathways through which purine drugs can bind to the respective receptors on the surface of cells and cause consequent reactions within the cell, which finally affect the targeted diseases. The various receptors and biological reactions involved in the signaling for respective disease targets within the cells are discussed in detail.

Keywords: Purine derivatives, GPCR, anti-tumor, DNA polymerase, PI3K, cGMP-PDE, anti-viral.

[1]
Fischer, E.; Ach, L. About oxydichlorpurin. Ber. Dtsch. Chem. Ges., 1897, 30(2), 2208-2219.
[http://dx.doi.org/10.1002/cber.189703002205]
[2]
Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Linden, J.; Müller, C.E. International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacol. Rev., 2011, 63(1), 1-34.
[http://dx.doi.org/10.1124/pr.110.003285] [PMID: 21303899]
[3]
Lu, T.W.; Wu, J.; Aoto, P.C.; Weng, J.H.; Ahuja, L.G.; Sun, N.; Cheng, C.Y.; Zhang, P.; Taylor, S.S.; Two, P.K.A. Two PKA RIα holoenzyme states define ATP as an isoform-specific orthosteric inhibitor that competes with the allosteric activator, cAMP. PNAS, 116(33), 1091-6490.
[4]
Elkholy, K.O.; Hegazy, O.; Okunade, A.; Aktas, S.; Ajibawo, T. Regadenoson stress testing: A comprehensive review with a focused update. Cureus, 2021, 13(1), e12940.
[5]
Deng, Z.; Li, X.; Blanca Ramirez, M.; Purtell, K.; Choi, I.; Lu, J. H.; Yu, Q. A.-O.; Yue, Z. Selective autophagy of AKAP11 activates cAMP/PKA to fuel mitochondrial metabolism and tumor cell growth. PNAS, 2020, 2020, e2020215118.
[http://dx.doi.org/10.1073/pnas.2020215118]
[6]
Drury, A.N.; Szent-Györgyi, A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart1. J. Physiol., 1929, 68(3), 213-237.
[http://dx.doi.org/10.1113/jphysiol.1929.sp002608] [PMID: 16994064]
[7]
Göblyös, A.; IJzerman, A.P. Allosteric modulation of adenosine receptors. Biochim. Biophys. Acta Biomembr., 2011, 1808(5), 1309-1318.
[http://dx.doi.org/10.1016/j.bbamem.2010.06.013]
[8]
Peleli, M.; Fredholm, B.B.; Sobrevia, L.; Carlström, M. Pharmacological targeting of adenosine receptor signaling. Mol. Aspects Med., 2017, 55, 4-8.
[http://dx.doi.org/10.1016/j.mam.2016.12.002] [PMID: 28088486]
[9]
Ikehara, M.; Maruyama, T. Cheminform abstract: Studies of nucleosides and nucleotides part 65, purine cyclonucleosides part 26, a versatile method for the synthesis of purine o-cyclo-nucleosides. the first synthesis of 8,2′-anhydro-8-oxy-9-beta-D-arabinofuranosylguanine. Chem. Informationsd., 1975, 6(36), 197536402.
[http://dx.doi.org/10.1002/chin.197536402]
[10]
Timoshchuk, V.A.; Kulinkovich, L.N.; Vladyko, G.V.; Boreko, E.I. Synthesis and antiviral activity of N9-[β-D-arabinofuranosyl]guanine. Pharm. Chem. J., 1985, 19(4), 259-261.
[http://dx.doi.org/10.1007/BF00833354]
[11]
Glaudemans, C.P.J.; Fletcher, H.G., Jr Syntheses with partially benzylated sugars. III. 1A simple pathway to a “cis- nucleoside,” 9-β-D-arabinofuranosyladenine (Spongoadenosine). J. Org. Chem., 1963, 28(11), 3004-3006.
[http://dx.doi.org/10.1021/jo01046a016]
[12]
Liaudet, L.; Mabley, J.G.; Pacher, P.; Virág, L.; Soriano, F.G.; Marton, A.; Haskó, G.; Deitch, E.A.; Szabó, C. Inosine exerts a broad range of antiinflammatory effects in a murine model of acute lung injury. Ann. Surg., 2002, 235(4), 568-578.
[http://dx.doi.org/10.1097/00000658-200204000-00016] [PMID: 11923614]
[13]
Mager, L.F.; Burkhard, R.; Pett, N.; Cooke, N.C.A.; Brown, K.; Ramay, H.; Paik, S.; Stagg, J.; Groves, R.A.; Gallo, M.; Lewis, I.A.; Geuking, M.B.; McCoy, K.D. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science, 2020, 369(6510), 1481-1489.
[http://dx.doi.org/10.1126/science.abc3421] [PMID: 32792462]
[14]
Cappellacci, L.; Barboni, G.; Palmieri, M.; Pasqualini, M.; Grifantini, M.; Costa, B.; Martini, C.; Franchetti, P. Ribose-modified nucleosides as ligands for adenosine receptors: Synthesis, conformational analysis, and biological evaluation of 1′-C-methyl adenosine analogues. J. Med. Chem., 2002, 45(6), 1196-1202.
[http://dx.doi.org/10.1021/jm0102755] [PMID: 11881988]
[15]
Faudone, G.; Arifi, S.; Merk, D. The medicinal chemistry of caffeine. J. Med. Chem., 2021, 64(11), 7156-7178.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00261] [PMID: 34019396]
[16]
Fisone, G.; Borgkvist, A.; Usiello, A. Caffeine as a psychomotor stimulant: Mechanism of action. Cell. Mol. Life Sci., 2004, 61(7-8), 857-872.
[http://dx.doi.org/10.1007/s00018-003-3269-3] [PMID: 15095008]
[17]
Campolo, F.; Pofi, R.; Venneri, M.A.; Isidori, A.M. Priming metabolism with the type 5 phosphodiesterase: The role of cGMP-hydrolyzing enzymes. Curr. Opin. Pharmacol., 2021, 60, 298-305.
[http://dx.doi.org/10.1016/j.coph.2021.08.007] [PMID: 34507030]
[18]
Shimo, Y.; Maeda, T.; Chiu, S.W.; Yamaguchi, T.; Kashihara, K.; Tsuboi, Y.; Nomoto, M.; Hattori, N.; Watanabe, H.; Saiki, H.; Grp, J.F. Influence of istradefylline on non-motor symptoms of Parkinson’s disease: A subanalysis of a 1-year observational study in Japan (J-FIRST). Parkinsonism Relat. Disord., 2021, 91, 115-120.
[http://dx.doi.org/10.1016/j.parkreldis.2021.09.015] [PMID: 34583302]
[19]
Chen, J.F.; Cunha, R.A. The belated US FDA approval of the adenosine A2A receptor antagonist istradefylline for treatment of Parkinson’s disease. Purinergic Signal., 2020, 16(2), 167-174.
[http://dx.doi.org/10.1007/s11302-020-09694-2] [PMID: 32236790]
[20]
Kim, S.A.; Marshall, M.A.; Melman, N.; Kim, H.S.; Müller, C.E.; Linden, J.; Jacobson, K.A. Structure-activity relationships at human and rat A2B adenosine receptors of xanthine derivatives substituted at the 1-, 3-, 7-, and 8-positions. J. Med. Chem., 2002, 45(11), 2131-2138.
[http://dx.doi.org/10.1021/jm0104318] [PMID: 12014951]
[21]
Fishman, P.; Cohen, S.; Itzhak, I.; Amer, J.; Salhab, A.; Barer, F.; Safadi, R. The A3 adenosine receptor agonist, namodenoson, ameliorates non alcoholic steatohepatitis in mice. Int. J. Mol. Med., 2019, 44(6), 2256-2264.
[22]
Stemmer, S.M.; Manojlovic, N.S.; Marinca, M.V.; Petrov, P.; Cherciu, N.; Ganea, D.; Ciuleanu, T.E.; Pusca, I.A.; Beg, M.S.; Purcell, W.T.; Croitoru, A.E.; Ilieva, R.N.; Natošević, S.; Nita, A.L.; Kalev, D.N.; Harpaz, Z.; Farbstein, M.; Silverman, M.H.; Bristol, D.; Itzhak, I.; Fishman, P. Namodenoson in advanced hepatocellular carcinoma and child–pugh B cirrhosis: Randomized placebo-controlled clinical trial. Cancers (Basel), 2021, 13(2), 187.
[http://dx.doi.org/10.3390/cancers13020187] [PMID: 33430312]
[23]
Cohen, S.; Fishman, P. Targeting the A(3) adenosine receptor to treat cytokine release syndrome in cancer immunotherapy. Drug Des. Devel. Ther., 2019, 13, 491-497.
[24]
Gaarder, A.; Jonsen, J.; Laland, S.; Hellem, A.; Owren, P.A. Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. Nature, 1961, 192(4802), 531-532.
[http://dx.doi.org/10.1038/192531a0] [PMID: 13896038]
[25]
Nicholas, R.A. Identification of the P2Y(12) receptor: A novel member of the P2Y family of receptors activated by extracellular nucleotides. Mol. Pharmacol., 2001, 60(3), 416-420.
[PMID: 11502870]
[26]
Jin, J.; Daniel, J.L.; Kunapuli, S.P. Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J. Biol. Chem., 1998, 273(4), 2030-2034.
[http://dx.doi.org/10.1074/jbc.273.4.2030] [PMID: 9442040]
[27]
André, P.; Delaney, S.M.; LaRocca, T.; Vincent, D.; DeGuzman, F.; Jurek, M.; Koller, B.; Phillips, D.R.; Conley, P.B. P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J. Clin. Invest., 2003, 112(3), 398-406.
[http://dx.doi.org/10.1172/JCI17864] [PMID: 12897207]
[28]
Baqi, Y.; Müller, C.E. Antithrombotic P2Y12 receptor antagonists: Recent developments in drug discovery. Drug Discov. Today, 2019, 24(1), 325-333.
[http://dx.doi.org/10.1016/j.drudis.2018.09.021] [PMID: 30291899]
[29]
Conroy, S.; Kindon, N.; Kellam, B.; Stocks, M.J. Drug-like antagonists of P2Y receptors-from lead identification to drug development. J. Med. Chem., 2016, 59(22), 9981-10005.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01972] [PMID: 27413802]
[30]
Daly, J.W.; Padgett, W.L.; Shamim, M.T. ChemInform abstract: Analogues of caffeine and theophylline: Effect of structural alterations on affinity at adenosine receptors. Chem. Informationsd., 1986, 17(48), 198648334.
[http://dx.doi.org/10.1002/chin.198648334]
[31]
Powley, I. R.; Patel, M.; Miles, G.; Pringle, H.; Howells, L.; Thomas, A.; Kettleborough, C.; Bryans, J.; Hammonds, T.; MacFarlane, M.; Pritchard, C. Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Brit. J. Cancer, 2020, 122, 735-744.
[32]
Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharmacol. Rev., 2006, 58(3), 488-520.
[http://dx.doi.org/10.1124/pr.58.3.5] [PMID: 16968949]
[33]
Haas, B.; Mayer, P.; Jennissen, K.; Scholz, D.; Diaz, M.B.; Bloch, W.; Herzig, S.; Fässler, R.; Pfeifer, A. Protein kinase G controls brown fat cell differentiation and mitochondrial biogenesis. Sci. Signal., 2009, 2(99), ra78.
[http://dx.doi.org/10.1126/scisignal.2000511] [PMID: 19952371]
[34]
He, Y.; Huang, Y.; Mai, C.; Pan, H.; Luo, H. B.; Liu, L.; Xie, Y. The immunomodulatory role of PDEs inhibitors in immune cells: Therapeutic implication in rheumatoid arthritis. Pharmacol. Res., 2020, 161, 105134.
[35]
Roy, U.K.; Pal, M.; Datta, S.; Harlalka, S. Has oxidative stress any role on mechanisms of aminophylline-induced seizures? an animal study. Kathmandu Univ. Med. J., 2014, 12(48), 269-274.
[http://dx.doi.org/10.3126/kumj.v12i4.13733I] [PMID: 26333582]
[36]
Spatafora, M.; Chiappara, G.; Merendino, A.M.; D’Amico, D.; Bellia, V.; Bonsignore, G. Theopylline supresses the release of tumour necroses factor-α by blood monocytes and alveolar macrophages. Eur. Respir. J., 1994, 7(2), 223-228.
[http://dx.doi.org/10.1183/09031936.94.07020223] [PMID: 8162974]
[37]
van Mastbergen, J.; Jolas, T.; Allegra, L.; Page, C.P. The mechanism of action of doxofylline is unrelated to HDAC inhibition, PDE inhibition or adenosine receptor antagonism. Pulm. Pharmacol. Ther., 2012, 25(1), 55-61.
[http://dx.doi.org/10.1016/j.pupt.2011.10.007] [PMID: 22138191]
[38]
Mohler, W.; Bletz, I.; Reiser, M. The structure of preciptutes of 1-Hexyl-3,7-dimethylxanthine 1. Report on the metabolism of 1-hexyl-3,7-dimethylxanthine. Arch. Pharm. (Weinheim), 1966, 299(5), 448-456.
[http://dx.doi.org/10.1002/ardp.19662990512] [PMID: 5220368]
[39]
Marcel, G.A. Red cell deformability: Physiological, clinical and pharmacological aspects. Singapore Med. J., 1980, 21(2), 513-516.
[PMID: 7394554]
[40]
MÜLler, R.; Lehrach, F. Haemorheology and cerebrovascular disease: Multifunctional approach with pentoxifylline. Curr. Med. Res. Opin., 1981, 7(4), 253-263.
[http://dx.doi.org/10.1185/03007998109114271] [PMID: 7014106]
[41]
Ward, A.; Clissold, S.P. Pentoxifylline. Drugs, 1987, 34(1), 50-97.
[http://dx.doi.org/10.2165/00003495-198734010-00003] [PMID: 3308412]
[42]
Singh, N.; Shreshtha, A.K.; Thakur, M.S.; Patra, S. Xanthine scaffold: Scope and potential in drug development. Heliyon, 2018, 4(10), e00829.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00829] [PMID: 30302410]
[43]
Lyles, M.B.; Cameron, I.L.; Rawls, H.R. Structural basis for the binding affinity of xanthines with the DNA intercalator acridine orange. J. Med. Chem., 2001, 44(26), 4650-4660.
[http://dx.doi.org/10.1021/jm9904708] [PMID: 11741482]
[44]
Fritsch, R.; Downward, J. SnapShot: Class I PI3K isoform signaling. Cell, 2013, 154(4), 940-940.e1.
[http://dx.doi.org/10.1016/j.cell.2013.07.045] [PMID: 23953121]
[45]
Hu, H.; Juvekar, A.; Lyssiotis, C.A.; Lien, E.C.; Albeck, J.G.; Oh, D.; Varma, G.; Hung, Y.P.; Ullas, S.; Lauring, J.; Seth, P.; Lundquist, M.R.; Tolan, D.R.; Grant, A.K.; Needleman, D.J.; Asara, J.M.; Cantley, L.C.; Wulf, G.M. Phosphoinositide 3-Kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton. Cell, 2016, 164(3), 433-446.
[http://dx.doi.org/10.1016/j.cell.2015.12.042] [PMID: 26824656]
[46]
Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K pathway in human disease. Cell, 2017, 170(4), 605-635.
[http://dx.doi.org/10.1016/j.cell.2017.07.029] [PMID: 28802037]
[47]
Lannutti, B.J.; Meadows, S.A.; Herman, S.E.M.; Kashishian, A.; Steiner, B.; Johnson, A.J.; Byrd, J.C.; Tyner, J.W.; Loriaux, M.M.; Deininger, M.; Druker, B.J.; Puri, K.D.; Ulrich, R.G.; Giese, N.A. CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood, 2011, 117(2), 591-594.
[http://dx.doi.org/10.1182/blood-2010-03-275305] [PMID: 20959606]
[48]
Meadows, S.A.; Vega, F.; Kashishian, A.; Johnson, D.; Diehl, V.; Miller, L.L.; Younes, A.; Lannutti, B.J. PI3Kδ inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood, 2012, 119(8), 1897-1900.
[http://dx.doi.org/10.1182/blood-2011-10-386763] [PMID: 22210877]
[49]
Hoellenriegel, J.; Meadows, S.A.; Sivina, M.; Wierda, W.G.; Kantarjian, H.; Keating, M.J.; Giese, N.; O’Brien, S.; Yu, A.; Miller, L.L.; Lannutti, B.J.; Burger, J.A. The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood, 2011, 118(13), 3603-3612.
[http://dx.doi.org/10.1182/blood-2011-05-352492] [PMID: 21803855]
[50]
Patel, K.; Danilov, A.V.; Pagel, J.M. Duvelisib for CLL/SLL and follicular non-Hodgkin lymphoma. Blood, 2019, 134(19), 1573-1577.
[http://dx.doi.org/10.1182/blood.2019001795] [PMID: 31554637]
[51]
Flinn, I.W.; O’Brien, S.; Kahl, B.; Patel, M.; Oki, Y.; Foss, F.F.; Porcu, P.; Jones, J.; Burger, J.A.; Jain, N.; Kelly, V.M.; Allen, K.; Douglas, M.; Sweeney, J.; Kelly, P.; Horwitz, S. Duvelisib, a novel oral dual inhibitor of PI3K-δ,γ, is clinically active in advanced hematologic malignancies. Blood, 2018, 131(8), 877-887.
[http://dx.doi.org/10.1182/blood-2017-05-786566] [PMID: 29191916]
[52]
Liu, S.; Knafels, J.D.; Chang, J.S.; Waszak, G.A.; Baldwin, E.T.; Deibel, M.R., Jr; Thomsen, D.R.; Homa, F.L.; Wells, P.A.; Tory, M.C.; Poorman, R.A.; Gao, H.; Qiu, X.; Seddon, A.P. Crystal structure of the herpes simplex virus 1 DNA polymerase. J. Biol. Chem., 2006, 281(26), 18193-18200.
[http://dx.doi.org/10.1074/jbc.M602414200] [PMID: 16638752]
[53]
Lehman, I.R.; Boehmer, P.E. Replication of herpes simplex virus DNA. J. Biol. Chem., 1999, 274(40), 28059-28062.
[http://dx.doi.org/10.1074/jbc.274.40.28059] [PMID: 10497152]
[54]
Bridges, K.G.; Hua, Q.; Brigham-Burke, M.R.; Martin, J.D.; Hensley, P.; Dahl, C.E.; Digard, P.; Weiss, M.A.; Coen, D.M. Secondary structure and structure-activity relationships of peptides corresponding to the subunit interface of herpes simplex virus DNA polymerase. J. Biol. Chem., 2000, 275(1), 472-478.
[http://dx.doi.org/10.1074/jbc.275.1.472] [PMID: 10617641]
[55]
Strick, R.; Knopf, C.W. DNA binding properties and processive proofreading of herpes simplex virus type 1 DNA polymerase. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1998, 1388(2), 315-324.
[http://dx.doi.org/10.1016/S0167-4838(98)00181-2] [PMID: 9858758]
[56]
Hernandez, T.R.; Lehman, I.R. Functional interaction between the herpes simplex-1 DNA polymerase and UL42 protein. J. Biol. Chem., 1990, 265(19), 11227-11232.
[http://dx.doi.org/10.1016/S0021-9258(19)38580-1] [PMID: 2193033]
[57]
Guan, H.; Nuth, M.; Lee, V.; Lin, C.; Mitchell, C.H.; Lu, W.; Scott, R.W.; Parker, M.H.; Kulp, J.L., III; Reitz, A.B.; Ricciardi, R.P. Herpes Simplex Virus-1 infection in human primary corneal epithelial cells is blocked by a stapled peptide that targets processive DNA synthesis. Ocul. Surf., 2021, 19, 313-321.
[http://dx.doi.org/10.1016/j.jtos.2020.11.001] [PMID: 33161128]
[58]
Schwartz, P.M.; Novack, J.; Shipman, C., Jr; Drach, J.C. Metabolism of arabinosyladenine in herpes simplex virus-infected and uninfected cells. Biochem. Pharmacol., 1984, 33(15), 2431-2438.
[http://dx.doi.org/10.1016/0006-2952(84)90715-9] [PMID: 6087827]
[59]
Digard, P.; Bebrin, W.R.; Coen, D.M. Mutational analysis of DNA polymerase substrate recognition and subunit interactions using herpes simplex virus as prototype. In: Methods in Enzymology; Academic Press, 1995; 262, pp. 303-322.
[http://dx.doi.org/10.1016/0076-6879(95)62026-5]
[60]
Zhang, S.; Chen, Q.; Li, Q.; Huang, H.; Zhu, Q.; Ma, J.; Ju, J. The chemistry of purine nucleoside-based antibiotics. In: Comprehensive Natural Products III; Elsevier: Amsterdam, 2020; pp. 537-552.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.14709-2]
[61]
Komatsu, H.; Araki, T. Efficient chemo-enzymatic syntheses of pharmaceutically useful unnatural 2′-deoxynucleosides. Nucleosides Nucleotides Nucleic Acids, 2005, 24(5-7), 1127-1130.
[http://dx.doi.org/10.1081/NCN-200060154] [PMID: 16248106]
[62]
Goodman, G.R.; Beutler, E.; Saven, A. Cladribine in the treatment of hairy-cell leukaemia. Best Pract. Res. Clin. Haematol., 2003, 16(1), 101-116.
[http://dx.doi.org/10.1016/S1521-6926(02)00089-0] [PMID: 12670469]
[63]
Mazur, L.; Opydo-Chanek, M.; Stojak, M.; Janota, B.; Blicharski, K.; Wojcieszek, K.; Kaput, U.; Borowicz, P. In vitro response of human pathological hematopoietic cells to cladribine. Folia Biol. (Krakow), 2013, 61(3), 143-148.
[http://dx.doi.org/10.3409/fb61_3-4.143] [PMID: 24279161]
[64]
Spurgeon, S.; Yu, M.; Phillips, J.D.; Epner, E.M. Cladribine: Not just another purine analogue? Expert Opin. Investig. Drugs, 2009, 18(8), 1169-1181.
[http://dx.doi.org/10.1517/13543780903071038] [PMID: 19604118]
[65]
Lapponi, M.J.; Rivero, C.W.; Zinni, M.A.; Britos, C.N.; Trelles, J.A. New developments in nucleoside analogues biosynthesis: A review. J. Mol. Catal., B Enzym., 2016, 133, 218-233.
[http://dx.doi.org/10.1016/j.molcatb.2016.08.015]
[66]
Rossi, J.F.; Van Hoof, A.; De Boeck, K.; Johnson, S.A.; Bron, D.; Foussard, C.; Lister, T.A.; Berthou, C.; Kramer, M.H.H.; Littlewood, T.J.; Marcus, R.E.; Deconinck, E.; Montillo, M.; Guibon, O.; Tollerfield, S.M. Efficacy and safety of oral fludarabine phosphate in previously untreated patients with chronic lymphocytic leukemia. J. Clin. Oncol., 2004, 22(7), 1260-1267.
[http://dx.doi.org/10.1200/JCO.2004.05.012] [PMID: 15051774]
[67]
Rosenthal, E.L.; Chung, T.K.; Parker, W.B.; Allan, P.W.; Clemons, L.; Lowman, D.; Hong, J.; Hunt, F.R.; Richman, J.; Conry, R.M.; Mannion, K.; Carroll, W.R.; Nabell, L.; Sorscher, E.J. Phase I dose-escalating trial of Escherichia coli purine nucleoside phosphorylase and fludarabine gene therapy for advanced solid tumors. Ann. Oncol., 2015, 26(7), 1481-1487.
[http://dx.doi.org/10.1093/annonc/mdv196] [PMID: 25899782]
[68]
O’Hagan, D.; Deng, H. Enzymatic fluorination and biotechnological developments of the fluorinase. Chem. Rev., 2015, 115(2), 634-649.
[http://dx.doi.org/10.1021/cr500209t] [PMID: 25253234]
[69]
Robak, P.; Robak, T. Older and new purine nucleoside analogs for patients with acute leukemias. Cancer Treat. Rev., 2013, 39(8), 851-861.
[http://dx.doi.org/10.1016/j.ctrv.2013.03.006] [PMID: 23566572]
[70]
Kohnke, P.L.; Mactier, S.; Almazi, J.G.; Crossett, B.; Christopherson, R.I. Fludarabine and cladribine induce changes in surface proteins on human B-lymphoid cell lines involved with apoptosis, cell survival, and antitumor immunity. J. Proteome Res., 2012, 11(9), 4436-4448.
[http://dx.doi.org/10.1021/pr300079c] [PMID: 22839105]
[71]
Kantarjian, H.M.; Jeha, S.; Gandhi, V.; Wess, M.; Faderl, S. Clofarabine: Past, present, and future. Leuk. Lymphoma, 2007, 48(10), 1922-1930.
[http://dx.doi.org/10.1080/10428190701545644] [PMID: 17852710]
[72]
Gandhi, V.; Keating, M.J.; Bate, G.; Kirkpatrick, P. Nelarabine. Nat. Rev. Drug Discov., 2006, 5(1), 17-18.
[http://dx.doi.org/10.1038/nrd1933] [PMID: 16485343]
[73]
Suzuki, M.; Okuda, T.; Shiraki, K. Synergistic antiviral activity of acyclovir and vidarabine against herpes simplex virus types 1 and 2 and varicella-zoster virus. Antiviral Res., 2006, 72(2), 157-161.
[http://dx.doi.org/10.1016/j.antiviral.2006.05.001] [PMID: 16797734]
[74]
Shepp, D.H.; Dandliker, P.S.; Meyers, J.D. Treatment of varicella-zoster virus infection in severely immunocompromised patients. A randomized comparison of acyclovir and vidarabine. N. Engl. J. Med., 1986, 314(4), 208-212.
[http://dx.doi.org/10.1056/NEJM198601233140404] [PMID: 3001523]
[75]
Reist, E.J.; Benitez, A.; Goodman, L.; Baker, B.R.; Lee, W.W. Potential anticancer agents. 1 LXXVI. Synthesis of purine nucleosides of β-D-arabinofuranose. J. Org. Chem., 1962, 27(9), 3274-3279.
[http://dx.doi.org/10.1021/jo01056a071]
[76]
Andrei, G.; Snoeck, R.; Goubau, P.; Desmyter, J.; De Clercq, E. Comparative activity of various compounds against clinical strains of herpes simplex virus. Eur. J. Clin. Microbiol. Infect. Dis., 1992, 11(2), 143-151.
[http://dx.doi.org/10.1007/BF01967066] [PMID: 1327785]
[77]
Trépo, C.; Ouzan, D.; Fontanges, T.; Chevallier, M.; Chossegros, P.; Degos, F.; Chevallier, P.; Hantz, O. Therapeutic activity of vidarabine in symptomatic chronic active hepatitis related to HBV. J. Hepatol., 1986, 3(Suppl. 2), S97-S105.
[http://dx.doi.org/10.1016/S0168-8278(86)80106-4] [PMID: 2439581]
[78]
Collum, L.M.; O’Connor, M.; Logan, P. Comparison of the efficacy and toxicity of acyclovir and of adenine arabinoside when combined with dilute betamethasone in herpetic disciform keratitis: Preliminary results of a double-blind trial. Trans. Ophthalmol. Soc. U. K., 1983, 103(Pt 6), 597-599.
[PMID: 6385356]
[79]
Reardon, J.E.; Spector, T. Herpes simplex virus type 1 DNA polymerase. J. Biol. Chem., 1989, 264(13), 7405-7411.
[http://dx.doi.org/10.1016/S0021-9258(18)83248-3] [PMID: 2540193]
[80]
Beutner, K.R.; Friedman, D.J.; Forszpaniak, C.; Andersen, P.L.; Wood, M.J. Valaciclovir compared with acyclovir for improved therapy for herpes zoster in immunocompetent adults. Antimicrob. Agents Chemother., 1995, 39(7), 1546-1553.
[http://dx.doi.org/10.1128/AAC.39.7.1546] [PMID: 7492102]
[81]
Perry, C.M.; Faulds, D. Valaciclovir. Drugs, 1996, 52(5), 754-772.
[http://dx.doi.org/10.2165/00003495-199652050-00009] [PMID: 9118821]
[82]
Kamiyama, T.; Kurokawa, M.; Shiraki, K. Characterization of the DNA polymerase gene of varicella-zoster viruses resistant to acyclovir. J. Gen. Virol., 2001, 82(11), 2761-2765.
[http://dx.doi.org/10.1099/0022-1317-82-11-2761] [PMID: 11602787]
[83]
Degreef, H.; Andrejevic, L.; Aoki, F.; Arend, J.; Ashton, R.; Debacker, W.; Bartlett, K.; Vanblokland, W.B.; Bishop, S.; Boon, R.; Borbujo, J.; Calz, A.M.; Candaele, M.; Collins, P.; Crawford, G.; Cvijetic, O.; Decroix, J.; Decuyper, C.; Delescluse, J.; Demaubeuge, J.; Duschet, P.; Fransen, H.; Frenk, E.; Fritsch, P.; Gheeraert, P.; Goetijn, M.; Gonzalez, A.; Goossen, J.; Grcic, R.; Griffin, D.; Gschnait, F.; Hanssens, Y.; Harms, M.; Hosang, M.; Ilic, V.; Isenberg, Y.; Jansen, A.; Jones, S.; Jovovic, D.; Krafft, T.; Kranendonk, H.; Lalosevic, J.; Leen, C.; Marcias, M.; McGougall, B.; McKendrick, M.; Milojevic, M.; Naber, F.; Nelemans, F.; Nye, F.; Ona, M.B.; Parent, D.; Portnoy, J.; Prak, H.; Ranin, J.; Roelfsema, J.; Rol, H.; Rooyakkers, A.; Sacks, S.; Shafran, S.; Sleyffers, B.; Stalder, H.; Steenhuisen, W.; Steichen, V.; Stevancevic, Z.; Stratenus, M.; Takic, C.; Twynholm, M.; Vandencamp, M.; Vanderendt, J.; Vanhecke, E.; Verhelst, A.; Vujaklija, V.; Wade, A.; White, J.; Wood, M.; Zerjav, S. Famciclovir, a new oral antiherpes drug: Results of the first controlled clinical study demonstrating its efficacy and safety in the treatment of uncomplicated herpes zoster in immunocompetent patients. Int. J. Antimicrob. Agents, 1994, 4(4), 241-246.
[http://dx.doi.org/10.1016/0924-8579(94)90024-8] [PMID: 18611615]
[84]
Alauddin, M.M.; Conti, P.S. Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): A new potential imaging agent for viral infection and gene therapy using PET. Nucl. Med. Biol., 1998, 25(3), 175-180.
[http://dx.doi.org/10.1016/S0969-8051(97)00160-1] [PMID: 9620620]
[85]
Spruance, S.L.; Rea, T.L.; Thoming, C.; Tucker, R.; Saltzman, R.; Boon, R. Penciclovir cream for the treatment of herpes simplex labialis. A randomized, multicenter, double-blind, placebo-controlled trial. JAMA, 1997, 277(17), 1374-1379.
[http://dx.doi.org/10.1001/jama.1997.03540410052030] [PMID: 9134943]
[86]
Boyd, M.R.; Safrin, S.; Kern, E.R. Penciclovir: A review of its spectrum of activity, selectivity, and cross-resistance pattern. Antivir. Chem. Chemother., 1993, 4(6_suppl), 3-11.
[http://dx.doi.org/10.1177/095632029300401S01]
[87]
Hodge, R.A.V. Famciclovir and penciclovir. The mode of action of famciclovir including its conversion to penciclovir. Antivir. Chem. Chemother., 1993, 4(2), 67-84.
[http://dx.doi.org/10.1177/095632029300400201]
[88]
Pue, M.A.; Benet, L.Z. Pharmacokinetics of famciclovir in man. Antivir. Chem. Chemother., 1993, 4(6 Suppl), 47-55.
[http://dx.doi.org/10.1177/09563202930040S602]
[89]
Earnshaw, D.L.; Bacon, T.H.; Darlison, S.J.; Edmonds, K.; Perkins, R.M.; Vere Hodge, R.A. Mode of antiviral action of penciclovir in MRC-5 cells infected with herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus. Antimicrob. Agents Chemother., 1992, 36(12), 2747-2757.
[http://dx.doi.org/10.1128/AAC.36.12.2747] [PMID: 1336346]
[90]
Martin, J.C.; Dvorak, C.A.; Smee, D.F.; Matthews, T.R.; Verheyden, J.P.H. 9-(1,3-Dihydroxy-2-propoxymethyl)guanine: A new potent and selective antiherpes agent. J. Med. Chem., 1983, 26(5), 759-761.
[http://dx.doi.org/10.1021/jm00359a023] [PMID: 6302255]
[91]
Sullivan, V.; Talarico, C.L.; Stanat, S.C.; Davis, M.; Coen, D.M.; Biron, K.K. A protein kinase homologue controls phosphorylation of ganciclovir in human cytomegalovirus-infected cells. Nature, 1992, 358(6382), 162-164.
[http://dx.doi.org/10.1038/358162a0] [PMID: 1319560]
[92]
Goodrich, J.M.; Bowden, R.A.; Fisher, L.; Keller, C.; Schoch, G.; Meyers, J.D. Ganciclovir prophylaxis to prevent cytomegalovirus disease after allogeneic marrow transplant. Ann. Intern. Med., 1993, 118(3), 173-178.
[http://dx.doi.org/10.7326/0003-4819-118-3-199302010-00003] [PMID: 8380242]
[93]
Sugawara, M.; Huang, W.; Fei, Y.J.; Leibach, F.H.; Ganapathy, V.; Ganapathy, M.E. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J. Pharm. Sci., 2000, 89(6), 781-789.
[http://dx.doi.org/10.1002/(SICI)1520-6017(200006)89:6<781::AID-JPS10>3.0.CO;2-7] [PMID: 10824137]
[94]
Hunt, P.W.; Martin, J.N.; Sinclair, E.; Epling, L.; Teague, J.; Jacobson, M.A.; Tracy, R.P.; Corey, L.; Deeks, S.G. Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J. Infect. Dis., 2011, 203(10), 1474-1483.
[http://dx.doi.org/10.1093/infdis/jir060] [PMID: 21502083]
[95]
Kimberlin, D.W.; Jester, P.M.; Sánchez, P.J.; Ahmed, A.; Arav-Boger, R.; Michaels, M.G.; Ashouri, N.; Englund, J.A.; Estrada, B.; Jacobs, R.F.; Romero, J.R.; Sood, S.K.; Whitworth, M.S.; Abzug, M.J.; Caserta, M.T.; Fowler, S.; Lujan-Zilbermann, J.; Storch, G.A.; DeBiasi, R.L.; Han, J.Y.; Palmer, A.; Weiner, L.B.; Bocchini, J.A.; Dennehy, P.H.; Finn, A.; Griffiths, P.D.; Luck, S.; Gutierrez, K.; Halasa, N.; Homans, J.; Shane, A.L.; Sharland, M.; Simonsen, K.; Vanchiere, J.A.; Woods, C.R.; Sabo, D.L.; Aban, I.; Kuo, H.; James, S.H.; Prichard, M.N.; Griffin, J.; Giles, D.; Acosta, E.P.; Whitley, R.J. Valganciclovir for symptomatic congenital cytomegalovirus disease. N. Engl. J. Med., 2015, 372(10), 933-943.
[http://dx.doi.org/10.1056/NEJMoa1404599] [PMID: 25738669]
[96]
Paya, C.; Humar, A.; Dominguez, E.; Washburn, K.; Blumberg, E.; Alexander, B.; Freeman, R.; Heaton, N.; Pescovitz, M.D.; Valganciclovir Solid Organ, T. Efficacy and safety of valganciclovir vs. oral ganciclovir for prevention of cytomegalovirus disease in solid organ transplant recipients. Am. J. Transplant., 2004, 4(4), 611-620.
[http://dx.doi.org/10.1111/j.1600-6143.2004.00382.x] [PMID: 15023154]
[97]
Gane, E.; Saliba, F.; Valdecasas, G.J.C.; O’Grady, J.; Pescovitz, M.D.; Lyman, S.; Robinson, C.A. Randomised trial of efficacy and safety of oral ganciclovir in the prevention of cytomegalovirus disease in liver-transplant recipients. Lancet, 1997, 350(9093), 1729-1733.
[http://dx.doi.org/10.1016/S0140-6736(97)05535-9] [PMID: 9413463]
[98]
Kimberlin, D.W.; Acosta, E.P.; Sánchez, P.J.; Sood, S.; Agrawal, V.; Homans, J.; Jacobs, R.F.; Lang, D.; Romero, J.R.; Griffin, J.; Cloud, G.A.; Lakeman, F.D.; Whitley, R.J. Pharmacokinetic and pharmacodynamic assessment of oral valganciclovir in the treatment of symptomatic congenital cytomegalovirus disease. J. Infect. Dis., 2008, 197(6), 836-845.
[http://dx.doi.org/10.1086/528376] [PMID: 18279073]
[99]
Boeckh, M.; Gooley, T.A.; Myerson, D.; Cunningham, T.; Schoch, G.; Bowden, R.A. Cytomegalovirus pp65 antigenemia-guided early treatment with ganciclovir versus ganciclovir at engraftment after allogeneic marrow transplantation: A randomized double-blind study. Blood, 1996, 88(10), 4063-4071.
[http://dx.doi.org/10.1182/blood.V88.10.4063.bloodjournal88104063] [PMID: 8916975]
[100]
De Clercq, E. HIV-1-specific RT inhibitors: Highly selective inhibitors of human immunodeficiency virus type 1 that are specifically targeted at the viral reverse transcriptase. Med. Res. Rev., 1993, 13(3), 229-258.
[http://dx.doi.org/10.1002/med.2610130303] [PMID: 7683360]
[101]
Littler, E.; Zhou, X.X. 7.11 - Deoxyribonucleic Acid Viruses: Antivirals for Herpesviruses and Hepatitis B Virus. In: Comprehensive Medicinal Chemistry II; Taylor, J.B.; Triggle, D.J., Eds.; Elsevier: Oxford, 2007; pp. 295-327.
[http://dx.doi.org/10.1016/B0-08-045044-X/00212-1]
[102]
Deeks, S.G.; Collier, A.; Lalezari, J.; Pavia, A.; Rodrigue, D.; Drew, W.L.; Toole, J.; Jaffe, H.S.; Mulato, A.S.; Lamy, P.D.; Li, W.; Cherrington, J.M.; Hellmann, N.; Kahn, J. The safety and efficacy of adefovir dipivoxil, a novel anti-human immunodeficiency virus (HIV) therapy, in HIV-infected adults: A randomized, double-blind, placebo-controlled trial. J. Infect. Dis., 1997, 176(6), 1517-1523.
[http://dx.doi.org/10.1086/514150] [PMID: 9395363]
[103]
Perrillo, R.; Hann, H.; Mutimer, D.; Willems, B.; Leung, N.; Lee, W.M.; Moorat, A.; Gardner, S.; Woessner, M.; Bourne, E.; Brosgart, C.L.; Schiff, E. Adefovir dipivoxil added to ongoing lamivudine in chronic hepatitis B with YMDD mutant hepatitis B virus. Gastroenterology, 2004, 126(1), 81-90.
[http://dx.doi.org/10.1053/j.gastro.2003.10.050] [PMID: 14699490]
[104]
Lee, W.A.; He, G.X.; Eisenberg, E.; Cihlar, T.; Swaminathan, S.; Mulato, A.; Cundy, K.C. Selective intracellular activation of a novel prodrug of the human immunodeficiency virus reverse transcriptase inhibitor tenofovir leads to preferential distribution and accumulation in lymphatic tissue. Antimicrob. Agents Chemother., 2005, 49(5), 1898-1906.
[http://dx.doi.org/10.1128/AAC.49.5.1898-1906.2005] [PMID: 15855512]
[105]
Sax, P.E.; Wohl, D.; Yin, M.T.; Post, F.; DeJesus, E.; Saag, M.; Pozniak, A.; Thompson, M.; Podzamczer, D.; Molina, J.M.; Oka, S.; Koenig, E.; Trottier, B.; Andrade-Villanueva, J.; Crofoot, G.; Custodio, J.M.; Plummer, A.; Zhong, L.; Cao, H.; Martin, H.; Callebaut, C.; Cheng, A.K.; Fordyce, M.W.; McCallister, S. Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: Two randomised, double-blind, phase 3, non-inferiority trials. Lancet, 2015, 385(9987), 2606-2615.
[http://dx.doi.org/10.1016/S0140-6736(15)60616-X] [PMID: 25890673]
[106]
St Clair, M.H.; Martin, J.L.; Tudor-Williams, G.; Bach, M.C.; Vavro, C.L.; King, D.M.; Kellam, P.; Kemp, S.D.; Larder, B.A. Resistance to ddI and sensitivity to AZT induced by a mutation in HIV-1 reverse transcriptase. Science, 1991, 253(5027), 1557-1559.
[http://dx.doi.org/10.1126/science.1716788] [PMID: 1716788]
[107]
Montaner, J.S.G.; Reiss, P.; Cooper, D.; Vella, S.; Harris, M.; Conway, B.; Wainberg, M.A.; Smith, D.; Robinson, P.; Hall, D.; Myers, M.; Lange, J.M.A.; Grp, I.S. A randomized, double-blind trial comparing combinations of nevirapine, didanosine, and zidovudine for HIV-infected patients: The INCAS Trial. Italy, The Netherlands, Canada and Australia Study. JAMA, 1998, 279(12), 930-937.
[http://dx.doi.org/10.1001/jama.279.12.930] [PMID: 9544767]
[108]
Menéndez-Arias, L.; Álvarez, M.; Pacheco, B. Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: Mechanism of action and resistance. Curr. Opin. Virol., 2014, 8, 1-9.
[http://dx.doi.org/10.1016/j.coviro.2014.04.005] [PMID: 24814823]
[109]
Langley, D.R.; Walsh, A.W.; Baldick, C.J.; Eggers, B.J.; Rose, R.E.; Levine, S.M.; Kapur, A.J.; Colonno, R.J.; Tenney, D.J. Inhibition of hepatitis B virus polymerase by entecavir. J. Virol., 2007, 81(8), 3992-4001.
[http://dx.doi.org/10.1128/JVI.02395-06] [PMID: 17267485]
[110]
Yuen, M.F.; Seto, W.K.; Fung, J.; Wong, D.K.H.; Yuen, J.C.H.; Lai, C.L. Three years of continuous entecavir therapy in treatment-naïve chronic hepatitis B patients: VIRAL suppression, viral resistance, and clinical safety. Am. J. Gastroenterol., 2011, 106(7), 1264-1271.
[http://dx.doi.org/10.1038/ajg.2011.45] [PMID: 21364549]
[111]
De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol., 2004, 30(2), 115-133.
[http://dx.doi.org/10.1016/j.jcv.2004.02.009] [PMID: 15125867]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy