Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Advances in the Study of Hexokinase 2 (HK2) Inhibitors

Author(s): Shaopei Wang, Yan Zhuang, Jindan Xu, Yan Tong*, Xiaofei Li* and Chunhong Dong*

Volume 23, Issue 7, 2023

Published on: 04 November, 2022

Page: [736 - 746] Pages: 11

DOI: 10.2174/1871520623666221020092423

Price: $65

Abstract

Purpose: The Warburg effect is an important metabolic feature of tumours, and hexokinase is the first ratelimiting enzyme of the glycolytic pathway during tumour metabolism. Among hexokinase subtypes, hexokinase 2 (HK2) is increasingly proving to be a key target for cancer treatment. This study presents the challenges and potential strategies for developing HK2 inhibitors by systematically summarising the characteristics of HK2 inhibitors reported in the literature and patents.

Methods: In this study, we analysed the HK2 active site using molecular docking and evaluated the structure, biochemical and physiological function, activity, and action mechanism of reported HK2 inhibitors using databases (Science, SCI Finder, CNKI, and WANFANG DATA).

Results: In total, 6 natural inhibitors of HK2, 9 synthetic inhibitors of HK2, and 3 compounds with patent-pending HK2 inhibitory effects were obtained by searching 87 articles. These inhibitors have poor efficacy and specificity when used alone and have numerous side effects; therefore, there is an urgent need to develop HK2 inhibitors with improved activity and high selectivity.

Conclusion: HK2 has received much attention in anticancer drug development, but most previous studies have focused on elucidating the action mechanism of HK2 in carcinogenesis, whereas the development of its small-molecule inhibitors has rarely been reported. In this study, we analysed and illustrated the eutectic structure of small molecules with the catalytic structural domain of HK2 to develop highly selective and low-toxicity HK2 inhibitors.

Keywords: Warburg effect, hexokinase 2, glycolysis, energy metabolism, cancer, inhibitor.

Graphical Abstract
[1]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[2]
Zhang, X.D.; Deslandes, E.; Villedieu, M.; Poulain, L.; Duval, M.; Gauduchon, P.; Schwartz, L.; Icard, P. Effect of 2-deoxy-D-glucose on various malignant cell lines in vitro. Anticancer Res., 2006, 26(5A), 3561-3566.
[PMID: 17094483]
[3]
Qiu, J.B.; He, L. Novel therapeutic strategies for cancer chemotherapy based on warburg effect. Progr. Pharm. Sci., 2009, 33, 385-395.
[4]
Li, X.Y.; Bian, K. Research progress on intervention of chinese materia medica on cancer warburg effect. In: Acta Universitatis Traditionis Medicalis Sinensis Pharmacologiaeque Shanghai; , 2017; 31, pp. 87-99.
[5]
Ni, Q.; Yang, W.; Li, T. Alteration of cell glycometabolism pathway and tumor metastasis. Chin. J. Biochem. Mol. Biol., 2016, 32, 607-611.
[6]
Seyfried, T.N.; Shelton, L.M. Cancer as a metabolic disease. Nutr. Metab., 2010, 7(1), 7-29.
[http://dx.doi.org/10.1186/1743-7075-7-7] [PMID: 20181022]
[7]
Heneberg, P. Lactic acidosis in patients with solid cancer. Antioxid. Redox Signal., 2022, ars.2021.0267.
[http://dx.doi.org/10.1089/ars.2021.0267] [PMID: 35316087]
[8]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[9]
Wei, H.; Guo, L.; Li, L.; Zhou, Q.; Wu, Z. Mechanism of Warburg effect and its effect on tumor metastasis. Zhongguo Fei Ai Za Zhi, 2015, 18(3), 179-183.
[PMID: 25800576]
[10]
Cheung, E.C.; Ludwig, R.L.; Vousden, K.H. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc. Natl. Acad. Sci. USA, 2012, 109(50), 20491-20496.
[http://dx.doi.org/10.1073/pnas.1206530109] [PMID: 23185017]
[11]
Vander Heiden, M.G.; DeBerardinis, R.J. Understanding the intersections between metabolism and cancer biology. Cell, 2017, 168(4), 657-669.
[http://dx.doi.org/10.1016/j.cell.2016.12.039] [PMID: 28187287]
[12]
Luo, G.J.; Miao, M. Hexokinase-II and tumor. Chin. Archiv. General Surg., 2013, 7, 56-60.
[13]
Li, S.; Gao, J.; Chunsheng, G. Advances in glycolytic pathway-targeted therapy for malignant tumors. Pract. J. Cancer, 2012, 27, 536-537.
[14]
Wilson, J.E. Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function. J. Exp. Biol., 2003, 206(12), 2049-2057.
[http://dx.doi.org/10.1242/jeb.00241] [PMID: 12756287]
[15]
Golshani-Hebroni, S.G.; Bessman, S.P. Hexokinase binding to mitochondria: A basis for proliferative energy metabolism. J. Bioenerg. Biomembr., 1997, 29(4), 331-338.
[http://dx.doi.org/10.1023/A:1022442629543] [PMID: 9387093]
[16]
Aleshin, A.E.; Kirby, C.; Liu, X.; Bourenkov, G.P.; Bartunik, H.D.; Fromm, H.J.; Honzatko, R.B. Crystal structures of mutant monomeric hexokinase I reveal multiple ADP binding sites and conformational changes relevant to allosteric regulation. J. Mol. Biol., 2000, 296, 1001-1015.
[17]
Aleshin, A.E.; Zeng, C.; Bartunik, H.D.; Fromm, H.J.; Honzatko, R.B. Regulation of hexokinase I: Crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate; 11th Edited by I. A. Wilson. J. Mol. Biol., 1998, 282(2), 345-357.
[http://dx.doi.org/10.1006/jmbi.1998.2017] [PMID: 9735292]
[18]
Nawaz, M.H.; Ferreira, J.C.; Nedyalkova, L.; Zhu, H.; Carrasco-López, C.; Kirmizialtin, S.; Rabeh, W.M. The catalytic inactivation of the N-half of human hexokinase 2 and structural and biochemical characterization of its mitochondrial conformation. Biosci. Rep., 2018, 38(1), BSR20171666.
[http://dx.doi.org/10.1042/BSR20171666] [PMID: 29298880]
[19]
Quach, C.H.T.; Jung, K.H.; Lee, J.H.; Park, J.W.; Moon, S.H.; Cho, Y.S.; Choe, Y.S.; Lee, K.H. Mild alkalization acutely triggers the warburg effect by enhancing hexokinase activity via voltage-dependent anion channel binding. PLoS One, 2016, 11(8), e0159529.
[http://dx.doi.org/10.1371/journal.pone.0159529] [PMID: 27479079]
[20]
Kumar, D.P.; Tiwari, A.; Bhat, R. Effect of pH on the stability and structure of yeast hexokinase A. Acidic amino acid residues in the cleft region are critical for the opening and the closing of the structure. J. Biol. Chem., 2004, 279(31), 32093-32099.
[http://dx.doi.org/10.1074/jbc.M313449200] [PMID: 15145950]
[21]
Šimčíková, D.; Heneberg, P. Identification of alkaline pH optimum of human glucokinase because of ATP-mediated bias correction in outcomes of enzyme assays. Sci. Rep., 2019, 9(1), 11422.
[http://dx.doi.org/10.1038/s41598-019-47883-1] [PMID: 31388064]
[22]
Solheim, L.P.; Fromm, H.J. The pH kinetic studies of bovine brain hexokinase. Biochemistry, 1980, 19(26), 6074-6080.
[http://dx.doi.org/10.1021/bi00567a020] [PMID: 7470451]
[23]
Fan, Z.; Jiang, Y. Hexokinase-lI and Warburg effect. J. Clin. Pathol. Res., 2016, 36, 2053-2059.
[24]
DeWaal, D.; Nogueira, V.; Terry, A.R.; Patra, K.C.; Jeon, S.; Guzman, G.; Au, J.; Long, C.P.; Antoniewicz, M.R.; Hay, N. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat. Commun., 2018, 9, 1-14.
[25]
Dendelé, B.; Tekpli, X.; Sergent, O.; Dimanche-Boitrel, M.T.; Holme, J.A.; Huc, L.; Lagadic-Gossmann, D. Identification of the couple GSK3α/c-Myc as a new regulator of hexokinase II in benzo[a]pyrene-induced apoptosis. Toxicol. In Vitro, 2012, 26(1), 94-101.
[http://dx.doi.org/10.1016/j.tiv.2011.11.001] [PMID: 22100782]
[26]
You, Q.; Zhou, W.; Chen, Z. Role and mechanism of hexokinase 2 in erlotinib resistance in non-small cell lung cancer. J. Third Military Med. Univ., 2020, 42, 453-459.
[27]
Liu, Z. EGFR-P38 MAPK pathway upregulates PD-L1 via miR-675-5p and downregulates HL A-ABC via hexokinase 2 in hepatocellular carcinoma. Chin. J. Cancer, 2021, 40, 150-166.
[28]
Ma, X.; Chen, J.; Lu, S.; Yu, R.; Zhao, Y. Effects of silenced hexokinase 2 by small interfering RNA on proliferation, migration and invasion of SK-BR-3 human breast cancer cells. Huaxi Yaoxue Zazhi, 2021, 36, 19-22.
[29]
Lei, D.; Zhang, Y.R.; Chen, Q.; Li, L.; Cui, N. HK2 promotes migration and proliferation of human cervical cancer cell lines. Basic Clin. Med., 2020, 40, 1320-1327.
[30]
Feng, Q.; Liu, X.; Zhang, N.; Cui, N. HK2 promotes proliferation and migration of cervical cancer cells by up-regulating cyclin D1 and MMP7 expression through Wnt/β-catenin signaling pathway. J. Biol. Chem., 2020, 47, 649-654.
[31]
Li, S.F.; Song, Z.H.; Li, T.; Sun, J.; Fan, Y.M.; Liu, Y. Hexokinase 2 inhibits LPS-induced mitochondria-dependent apoptosis in human lung epithelial BEAS-2B cells. Chin. J. Pathophysiol., 2019, 35, 133-140.
[32]
Chen, Y.; Jiang, Y.; Yang, H.; Tang, Q.; Yuan, T.; Liang, B. Advances in the study of antitumor herbal components that regulate key enzymes of aerobic glycolytic pathway. Chin. J. Oncol. Prev. Treat., 2020, 12, 705-709.
[33]
Wu, G.; Chen, H. Berberine regulating the level of glycolysis in non-small cell lung cancer cells and inhibiting the occurrence of EMT in A549 cells. J. Clin. Pulmon. Med., 2020, 25, 1206-1211.
[34]
Li, J.; Liu, T.; Zhao, L.; Chen, W.; Hou, H.; Ye, Z.; Li, X. Ginsenoside 20(S)-Rg3 inhibits the Warburg effect through STAT3 pathways in ovarian cancer cells. Int. J. Oncol., 2015, 46(2), 775-781.
[http://dx.doi.org/10.3892/ijo.2014.2767] [PMID: 25405516]
[35]
Dai, W.; Wang, F.; Lu, J.; Xia, Y.; He, L.; Chen, K.; Li, J.; Li, S.; Liu, T.; Zheng, Y.; Wang, J.; Lu, W.; Zhou, Y.; Yin, Q.; Abudumijiti, H.; Chen, R.; Zhang, R.; Zhou, L.; Zhou, Z.; Zhu, R.; Yang, J.; Wang, C.; Zhang, H.; Zhou, Y.; Xu, L.; Guo, C. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget, 2015, 6(15), 13703-13717.
[http://dx.doi.org/10.18632/oncotarget.3800] [PMID: 25938543]
[36]
Li, H-N.; Nie, F-F.; Liu, W.; Dai, Q-S.; Lu, N.; Qi, Q.; Li, Z-Y.; You, Q-D.; Guo, Q-L. Apoptosis induction of oroxylin A in human cervical cancer HeLa cell line in vitro and in vivo. Toxicology, 2009, 257(1-2), 80-85.
[http://dx.doi.org/10.1016/j.tox.2008.12.011]
[37]
Xu, D.; Jin, J.; Yu, H.; Zhao, Z.; Ma, D.; Zhang, C.; Jiang, H. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2. J. Exp. Clin. Cancer Res., 2017, 36(1), 44.
[http://dx.doi.org/10.1186/s13046-017-0514-4] [PMID: 28320429]
[38]
Garcia, S.N.; Guedes, R.C.; Marques, M.M. Unlocking the potential of HK2 in cancer metabolism and therapeutics. Curr. Med. Chem., 2020, 26(41), 7285-7322.
[http://dx.doi.org/10.2174/0929867326666181213092652] [PMID: 30543165]
[39]
Sun, X.; Peng, Y.; Zhao, J.; Xie, Z.; Lei, X.; Tang, G. Discovery and development of tumor glycolysis rate-limiting enzyme inhibitors. Bioorg. Chem., 2021, 112, 104891.
[http://dx.doi.org/10.1016/j.bioorg.2021.104891] [PMID: 33940446]
[40]
Liu, B.; Yu, S. Retracted: Amentoflavone suppresses hepatocellular carcinoma by repressing hexokinase 2 expression through inhibiting JAK2/STAT3 signaling. Biomed. Pharmacother., 2018, 107, 243-253.
[http://dx.doi.org/10.1016/j.biopha.2018.07.177] [PMID: 30096628]
[41]
Bao, F.; Yang, K.; Wu, C.; Gao, S.; Wang, P.; Chen, L.; Li, H. New natural inhibitors of hexokinase 2 (HK2): Steroids from Ganoderma sinense. Fitoterapia, 2018, 125, 123-129.
[http://dx.doi.org/10.1016/j.fitote.2018.01.001] [PMID: 29305912]
[42]
Su, L.J.; Zhang, S.L.; Zhao, J.Q.; Chen, J.X.; Zhang, X.W. Ginsenoside CK regulates HIF-1ɑ-mediated glycolysis inhibition in human hepatocellular carcinoma cells proliferation mechanism. Lishizhen Med. Materia Medica Res., 2021, 32, 1623-1626.
[43]
Li, W.; Ma, X.; Li, N.; Liu, H.; Dong, Q.; Zhang, J.; Yang, C.; Liu, Y.; Liang, Q.; Zhang, S.; Xu, C.; Song, W.; Tan, S.; Rong, P.; Wang, W. Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway. Exp. Cell Res., 2016, 349(2), 320-327.
[http://dx.doi.org/10.1016/j.yexcr.2016.11.002] [PMID: 27829129]
[44]
Zhang, H.; Huang, S.; Cai, S. Advances in the use of hexokinase II as a target for the treatment of tumors. Huaxi Yaoxue Zazhi, 2011, 26, 288-290.
[45]
Oronsky, B.; Oronsky, N.; Fanger, G.; Parker, C.; Caroen, S.; Lybeck, M.; Scicinski, J. Follow the ATP: Tumor energy production: A perspective. Anticancer. Agents Med. Chem., 2014, 14(9), 1187-1198.
[http://dx.doi.org/10.2174/1871520614666140804224637] [PMID: 25102360]
[46]
Wang, H.W.; Zeng, H. Newest reaserch advance on targeting glycolysis pathways in acute myeloid leukemia-Review. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2020, 28(2), 690-694.
[PMID: 32319418]
[47]
Cheng, Y.; Diao, D.; Song, Y.; Dang, C. Current research on 2-deoxyglucose in anti-cancer treatment. Chin. J. Clin. Oncol., 2012, 39, 1325-1328.
[48]
Datema, R.; Schwarz, R.T. Formation of 2-deoxyglucose-containing lipid-linked oligosaccharides. Eur. J. Biochem., 1978, 90, 505-516.
[http://dx.doi.org/10.1111/j.1432-1033.1978.tb12630.x]
[49]
Spitz, D.R.; Simons, A.L.; Mattson, D.M.; Dornfeld, K. Glucose deprivation-induced metabolic oxidative stress and cancer therapy. J. Cancer Res. Ther., 2009, 5(9), 2.
[http://dx.doi.org/10.4103/0973-1482.55133] [PMID: 20009288]
[50]
Qin, J.Z.; Xin, H.; Nickoloff, B.J. 2-Deoxyglucose sensitizes melanoma cells to TRAIL-induced apoptosis which is reduced by mannose. Biochem. Biophys. Res. Commun., 2010, 401(2), 293-299.
[http://dx.doi.org/10.1016/j.bbrc.2010.09.054] [PMID: 20851102]
[51]
Lea, M.A.; Chacko, J.; Bolikal, S.; Hong, J.Y.; Chung, R.; Ortega, A. desbordes, C. Addition of 2-deoxyglucose enhances growth inhibition but reverses acidification in colon cancer cells treated with phenformin. Anticancer Res., 2011, 31(2), 421-426.
[PMID: 21378320]
[52]
Lin, H.; Zeng, J.; Xie, R.; Schulz, M.J.; Tedesco, R.; Qu, J.; Erhard, K.F.; Mack, J.F.; Raha, K.; Rendina, A.R.; Szewczuk, L.M.; Kratz, P.M.; Jurewicz, A.J.; Cecconie, T.; Martens, S.; McDevitt, P.J.; Martin, J.D.; Chen, S.B.; Jiang, Y.; Nickels, L.; Schwartz, B.J.; Smallwood, A.; Zhao, B.; Campobasso, N.; Qian, Y.; Briand, J.; Rominger, C.M.; Oleykowski, C.; Hardwicke, M.A.; Luengo, J.I. Discovery of a novel 2,6-disubstituted glucosamine series of potent and selective hexokinase 2 inhibitors. ACS Med. Chem. Lett., 2016, 7(3), 217-222.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00214] [PMID: 26985301]
[53]
Ihrlund, L.S.; Hernlund, E.; Khan, O.; Shoshan, M.C. 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Mol. Oncol., 2008, 2(1), 94-101.
[http://dx.doi.org/10.1016/j.molonc.2008.01.003] [PMID: 19383331]
[54]
Shoshan, M.C. 3-bromopyruvate: Targets and outcomes. J. Bioenerg. Biomembr., 2012, 44(1), 7-15.
[http://dx.doi.org/10.1007/s10863-012-9419-2] [PMID: 22298255]
[55]
Galina, A. Mitochondria: 3-bromopyruvate vs. mitochondria? A small molecule that attacks tumors by targeting their bioenergetic diversity. Int. J. Biochem. Cell Biol., 2014, 54, 266-271.
[http://dx.doi.org/10.1016/j.biocel.2014.05.013] [PMID: 24842108]
[56]
Porporato, P.E.; Dhup, S.; Dadhich, R.K.; Copetti, T.; Sonveaux, P. Anticancer targets in the glycolytic metabolism of tumors: A comprehensive review. Front. Pharmacol., 2011, 2, 49.
[http://dx.doi.org/10.3389/fphar.2011.00049] [PMID: 21904528]
[57]
Ganapathy-Kanniappan, S.; Vali, M.; Kunjithapatham, R.; Buijs, M.; Syed, L.H.; Rao, P.P.; Ota, S.; Kwak, B.K.; Loffroy, R.; Geschwind, J.F. 3-bromopyruvate: A new targeted antiglycolytic agent and a promise for cancer therapy. Curr. Pharm. Biotechnol., 2010, 11(5), 501-507.
[58]
Yan, J.W.; Zhong, J.; Wang, G.C.; Feng, F. Progress in research of targeting cancer glycolysis path way for anticancer therapy. Zhongguo Xin Yao Zazhi, 2014, 23, 550-556.
[59]
Cardaci, S.; Rizza, S.; Filomeni, G.; Bernardini, R.; Bertocchi, F.; Mattei, M.; Paci, M.; Rotilio, G.; Ciriolo, M.R. Glutamine deprivation enhances antitumor activity of 3-bromopyruvate through the stabilization of monocarboxylate transporter-1. Cancer Res., 2012, 72(17), 4526-4536.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1741] [PMID: 22773663]
[60]
Liu, Z.; Zhang, Y-Y.; Zhang, Q-W.; Zhao, S-R.; Wu, C-Z.; Cheng, X.; Jiang, C-C.; Jiang, Z-W.; Liu, H. 3-Bromopyruvate induces apoptosis in breast cancer cells by downregulating Mcl-1 through the PI3K/Akt signaling pathway. Anticancer Drugs, 2014, 25(4), 447-455.
[http://dx.doi.org/10.1097/CAD.0000000000000081]
[61]
Lis, P. Dyląg, M.; Niedźwiecka, K.; Ko, Y.; Pedersen, P.; Goffeau, A.; Ułaszewski, S. The HK2 dependent “Warburg Effect” and mitochondrial oxidative phosphorylation in cancer: Targets for effective therapy with 3-bromopyruvate. Molecules, 2016, 21(12), 1730.
[http://dx.doi.org/10.3390/molecules21121730] [PMID: 27983708]
[62]
Pierre, K.; Pellerin, L. Monocarboxylate transporters in the central nervous system: Distribution, regulation and function. J. Neurochem., 2005, 94(1), 1-14.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03168.x] [PMID: 15953344]
[63]
Madhok, B.M.; Yeluri, S.; Perry, S.L.; Hughes, T.A.; Jayne, D.G. Targeting glucose metabolism: An emerging concept for anticancer therapy. Am. J. Clin. Oncol., 2011, 34(6), 628-635.
[http://dx.doi.org/10.1097/COC.0b013e3181e84dec] [PMID: 20805739]
[64]
SchcolnikCabrera. A.; DominguezGomez, G.; DuenasGonzalez, A. A combination of inhibitors of glycolysis, glutaminolysis and de novo fatty acid synthesis decrease the expression of chemokines in human colon cancer cells. Oncol. Lett., 2020, 18, 6909-6916.
[65]
Qiao, J.; Xiuhua, C. Cancer cells’ warburg effect and developments on the anti-cancer agents. Progr. Pharm. Sci., 2008, 32, 145-152.
[66]
Calviño, E.; Estañ, M.C.; Simón, G.P.; Sancho, P.; Boyano-Adánez, M.C.; de Blas, E.; Bréard, J.; Aller, P. Increased apoptotic efficacy of lonidamine plus arsenic trioxide combination in human leukemia cells. Reactive oxygen species generation and defensive protein kinase (MEK/ERK, Akt/mTOR) modulation. Biochem. Pharmacol., 2011, 82(11), 1619-1629.
[http://dx.doi.org/10.1016/j.bcp.2011.08.017] [PMID: 21889928]
[67]
Nikkho, S.; Fernandes, P.; White, R.J.; Deng, C.C.Q.; Farber, H.W.; Corris, P.A. Clinical trial design in phase 2 and 3 trials for pulmonary hypertension. Pulm. Circ., 2020, 10(4), 1-10.
[http://dx.doi.org/10.1177/2045894020941491] [PMID: 33282181]
[68]
Davies, G.; Lobanova, L.; Dawicki, W.; Groot, G.; Gordon, J.R.; Bowen, M.; Harkness, T.; Arnason, T. Metformin inhibits the development, and promotes the resensitization, of treatment-resistant breast cancer. PLoS One, 2017, 12(12), e0187191.
[http://dx.doi.org/10.1371/journal.pone.0187191] [PMID: 29211738]
[69]
Alaswad, R.S.W.; Sm, E.; Hs, S.; Ad, T. Metformin targets glucose metabolism in triple negative breast cancer. J. Oncol. Translat. Res., 2018, 4(1), 1-6.
[http://dx.doi.org/10.4172/2476-2261.1000129]
[70]
Marini, C.; Salani, B.; Massollo, M.; Amaro, A.; Esposito, A.I.; Maria Orengo, A.; Capitanio, S.; Emionite, L.; Riondato, M.; Bottoni, G.; Massara, C.; Boccardo, S.; Fabbi, M.; Campi, C.; Ravera, S.; Angelini, G.; Morbelli, S.; Cilli, M.; Cordera, R.; Truini, M.; Maggi, D.; Pfeffer, U.; Sambuceti, G. Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle, 2013, 12(22), 3490-3499.
[http://dx.doi.org/10.4161/cc.26461] [PMID: 24240433]
[71]
Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From mechanisms of action to therapies. Cell Metab., 2014, 20(6), 953-966.
[http://dx.doi.org/10.1016/j.cmet.2014.09.018] [PMID: 25456737]
[72]
Lu, S.; Su, Y.; Hou, C.; Liu, X. Research progress of metformin on apoptosis. Fudan Univ. J. Med. Sci., 2021, 48, 841-845.
[73]
Sun, X.J.; Peng, Z.Y.; Chen, X.Y.; Tao, H.Y. Reactive oxygen species in regulation of hypoxia-inducible factor. Acad. J. Second Mil. Med. Univ., 2006, 27, 660-664.
[74]
Zou, F.; Xu, H. Effect of hypoxia-inducible factor 1 on glycolytic enzymes. J. Anhui Sports Sci., 2004, 25, 44-46.
[75]
Cui, L.L.; Wang, Y.; Guan, H.; Yuan, T.; Shen, G. Research progress on the antitumor mechanism of metformin. Xiandai Shipin Keji, 2021, 37, 357-363.
[76]
Liu, X.; Ji, W.; Li, W. Advances of the anti-tumor research of metformin. Shandong Yiyao, 2019, 59, 102-105.
[77]
Flora, Guerra Arbini, A.A.; Moro, L. Mitochondria and cancer chemoresistance. Biochim. Biophys. Acta Bioenerg., 2017, 1858, 686-699.
[78]
Goldin, N.; Arzoine, L.; Heyfets, A.; Israelson, A.; Zaslavsky, Z.; Bravman, T.; Bronner, V.; Notcovich, A.; Shoshan-Barmatz, V.; Flescher, E. Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene, 2008, 27(34), 4636-4643.
[http://dx.doi.org/10.1038/onc.2008.108] [PMID: 18408762]
[79]
Sucu, B.O.; Ipek, O.S.; Kurtulus, S.O.; Yazici, B.E.; Karakas, N.; Guzel, M. Synthesis of novel methyl jasmonate derivatives and evaluation of their biological activity in various cancer cell lines. Bioorg. Chem., 2019, 91, 103146.
[http://dx.doi.org/10.1016/j.bioorg.2019.103146] [PMID: 31377389]
[80]
Li, W.; Zheng, M.; Wu, S.; Gao, S.; Yang, M.; Li, Z.; Min, Q.; Sun, W.; Chen, L.; Xiang, G.; Li, H. Benserazide, a dopadecarboxylase inhibitor, suppresses tumor growth by targeting hexokinase 2. J. Exp. Clin. Cancer Res., 2017, 36(1), 58.
[http://dx.doi.org/10.1186/s13046-017-0530-4] [PMID: 28427443]
[81]
Liu, Y.; Li, M.; Zhang, Y.; Wu, C.; Yang, K.; Gao, S.; Zheng, M.; Li, X.; Li, H.; Chen, L. Structure based discovery of novel hexokinase 2 inhibitors. Bioorg. Chem., 2020, 96, 103609.
[http://dx.doi.org/10.1016/j.bioorg.2020.103609] [PMID: 32007722]
[82]
Zheng, M.; Wu, C.; Yang, K.; Yang, Y.; Liu, Y.; Gao, S.; Wang, Q.; Li, C.; Chen, L.; Li, H. Novel selective hexokinase 2 inhibitor Benitrobenrazide blocks cancer cells growth by targeting glycolysis. Pharmacol. Res., 2021, 164, 105367-105403.
[http://dx.doi.org/10.1016/j.phrs.2020.105367] [PMID: 33307221]
[83]
Zhang, H.; Yang, L.; Ling, J.; Czajkowsky, D.M.; Wang, J.F.; Zhang, X.W.; Zhou, Y.M.; Ge, F.; Yang, M.; Xiong, Q.; Guo, S.J.; Le, H.Y.; Wu, S.F.; Yan, W.; Liu, B.; Zhu, H.; Chen, Z.; Tao, S. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic. Proc. Natl. Acad. Sci. USA, 2015, 112(49), 15084-15089.
[http://dx.doi.org/10.1073/pnas.1521316112] [PMID: 26598702]
[84]
Heneberg, P. Redox regulation of hexokinases. Antioxid. Redox Signal., 2019, 30(3), 415-442.
[http://dx.doi.org/10.1089/ars.2017.7255] [PMID: 29742915]
[85]
Li, H.; Chen, L.; Tang, R. Compounds with hexokinase 2 inhibitory activity and uses. CN111410618A, 2020.
[86]
Liu, H.; Tan, S.; Yuan, M.; Liu, R.; Guo, J.; Peng, L.; Yao, X. Small molecule inhibitors of human-derived glucokinase 2 and their applications. CN112891342A, 2021.
[87]
Liu, J.; Shi, R.; Pan, P.; Lv, R.; Kang, Z.; Hou, T. A screening method for hexokinase 2 inhibitors and the use of small molecule compounds in the preparation of antitumor drugs. CN113109418A, 2021.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy