Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Mini-Review Article

Mini-Review on Analytical Methods Applied for Analysis and Characterization of Sericin

Author(s): Jovita Kanoujia*, Rudrakshi Dubey, Sumana Debgharia, Priyanjali Sisodia, Sabapathi Mohanalakshmi, Shvetank Bhatt, Poonam Parashar and Ankita Kishore

Volume 19, Issue 2, 2023

Published on: 05 December, 2022

Page: [119 - 129] Pages: 11

DOI: 10.2174/1573411019666221024150235

Price: $65

Abstract

Sericin is a serine-rich polydispersed glycoprotein found in Bombyx mori's cocoons. Sericin is extracted from cocoons as a protein, composed of amino acids like aspartic acid, glycine, tyrosine, serine, and glutamic acid with carboxyl, hydroxyl, and an amino group. Sericin has been explored for various pharmacological activities, such as antioxidant, anti-inflammatory, antiapoptotic, antiproliferative, antibacterial, anti-hypercholesteremia, and wound healing activity. Moreover, sericin has also been explored as a biopolymer for the preparation of nanoparticles, scaffolds, hydrogels, films, etc. This mini-review illustrates the reported methods for the characterization of extracted sericin and quantification in pharmaceutical formulations. The review covers analytical methods like UV-Visible Spectroscopy, Fouriertransform infrared spectroscopy, amino acid analysis, mass spectroscopy, and high-performance liquid chromatography with a brief explanation of every analytical method.

Keywords: Sericin, analytical method, spectroscopy, chromatography, FTIR, extraction.

Graphical Abstract
[1]
Shitole, M.; Dugam, S.; Tade, R.; Nangare, S. Pharmaceutical applications of silk sericin. Ann. Pharm. Fr., 2020, 78(6), 469-486.
[http://dx.doi.org/10.1016/j.pharma.2020.06.005] [PMID: 32569621]
[2]
Suryawanshi, R.; Kanoujia, J.; Parashar, P.; Saraf, S.A. Sericin: A versatile protein biopolymer with therapeutic significance. Curr. Pharm. Des., 2020, 26(42), 5414-5429.
[http://dx.doi.org/10.2174/1381612826666200612165253] [PMID: 32532189]
[3]
Lamboni, L.; Gauthier, M.; Yang, G.; Wang, Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol. Adv., 2015, 33(8), 1855-1867.
[http://dx.doi.org/10.1016/j.biotechadv.2015.10.014] [PMID: 26523781]
[4]
Kunz, R.I.; Brancalhão, R.M.C.; Ribeiro, L.F.C.; Natali, M.R.M. Silkworm sericin: Properties and biomedical applications. BioMed Res. Int., 2016, 2016, 1-19.
[http://dx.doi.org/10.1155/2016/8175701] [PMID: 27965981]
[5]
Wang, Y.; Cai, R.; Tao, G.; Wang, P.; Zuo, H.; Zhao, P.; Umar, A.; He, H. A novel AgNPs/Sericin/Agar film with enhanced mechanical property and antibacterial capability. Molecules, 2018, 23(7), 1821.
[http://dx.doi.org/10.3390/molecules23071821] [PMID: 30041405]
[6]
Wu, J.H.; Wang, Z.; Xu, S.Y. Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chem., 2007, 103(4), 1255-1262.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.042]
[7]
Takasu, Y.; Yamada, H.; Tsubouchi, K. Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem., 2002, 66(12), 2715-2718.
[http://dx.doi.org/10.1271/bbb.66.2715] [PMID: 12596874]
[8]
Freddi, G.; Mossotti, R.; Innocenti, R. Degumming of silk fabric with several proteases. J. Biotechnol., 2003, 106(1), 101-112.
[http://dx.doi.org/10.1016/j.jbiotec.2003.09.006] [PMID: 14636714]
[9]
Rocha, L.K.H.; Favaro, L.I.L.; Rios, A.C.; Silva, E.C.; Silva, W.F.; Stigliani, T.P.; Guilger, M.; Lima, R.; Oliveira, J.M., Jr; Aranha, N.; Tubino, M.; Vila, M.M.D.C.; Balcão, V.M. Sericin from Bombyx mori cocoons. Part I: Extraction and physicochemical-biological characterization for biopharmaceutical applications. Process Biochem., 2017, 61, 163-177.
[http://dx.doi.org/10.1016/j.procbio.2017.06.019]
[10]
Qin, H.; Zhang, J.; Yang, H.; Yao, S.; He, L.; Liang, H.; Wang, Y.; Chen, H.; Zhao, P.; Qin, G. Safety assessment of water-extract sericin from silkworm (Bombyx mori) cocoons using different model approaches. BioMed Res. Int., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/9689386] [PMID: 33204730]
[11]
Aramwit, P.; Kanokpanont, S.; Nakpheng, T.; Srichana, T. The effect of sericin from various extraction methods on cell viability and collagen production. Int. J. Mol. Sci., 2010, 11(5), 2200-2211.
[http://dx.doi.org/10.3390/ijms11052200] [PMID: 20559510]
[12]
Wu, M.H.; Yue, J.X.; Zhang, Y.Q. Ultrafiltration recovery of sericin from the alkaline waste of silk floss processing and controlled enzymatic hydrolysis. J. Clean. Prod., 2014, 76, 154-160.
[http://dx.doi.org/10.1016/j.jclepro.2014.03.068]
[13]
Yakul, K.; Takenaka, S.; Nakamura, K.; Techapun, C.; Leksawasdi, N.; Seesuriyachan, P.; Watanabe, M.; Chaiyaso, T. Characterization of thermostable alkaline protease from Bacillus halodurans SE5 and its application in degumming coupled with sericin hydrolysate production from yellow cocoon. Process Biochem., 2019, 78, 63-70.
[http://dx.doi.org/10.1016/j.procbio.2019.01.003]
[14]
Cao, T.T.; Zhang, Y.Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater. Sci. Eng. C, 2016, 61, 940-952.
[http://dx.doi.org/10.1016/j.msec.2015.12.082] [PMID: 26838924]
[15]
Wang, F.; Cao, T.T.; Zhang, Y.Q. Effect of silk protein surfactant on silk degumming and its properties. Mater. Sci. Eng. C, 2015, 55, 131-136.
[http://dx.doi.org/10.1016/j.msec.2015.05.041] [PMID: 26117747]
[16]
Mahmoodi, N.M.; Arami, M.; Mazaheri, F.; Rahimi, S. Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. J. Clean. Prod., 2010, 18(2), 146-151.
[http://dx.doi.org/10.1016/j.jclepro.2009.10.003]
[17]
Oh, H.; Lee, J.Y.; Kim, M.K.; Um, I.C.; Lee, K.H. Refining hot-water extracted silk sericin by ethanol-induced precipitation. Int. J. Biol. Macromol., 2011, 48(1), 32-37.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.09.008] [PMID: 20875446]
[18]
Castrillón Martínez, D.C.; Zuluaga, C.L.; Restrepo-Osorio, A.; Álvarez-López, C. Characterization of sericin obtained from cocoons and silk yarns. Procedia Eng., 2017, 200, 377-383.
[http://dx.doi.org/10.1016/j.proeng.2017.07.053]
[19]
Chen, F.; Porter, D.; Vollrath, F. Structure and physical properties of silkworm cocoons. J. R. Soc. Interface, 2012, 9(74), 2299-2308.
[http://dx.doi.org/10.1098/rsif.2011.0887] [PMID: 22552916]
[20]
Gallo, N.; Lunetti, P.; Bettini, S.; Barca, A.; Madaghiele, M.; Valli, L.; Capobianco, L.; Sannino, A.; Salvatore, L. Assessment of physico-chemical and biological properties of sericin-collagen substrates for PNS regeneration. Int. J. Polym. Mater., 2021, 70(6), 403-413.
[http://dx.doi.org/10.1080/00914037.2020.1725755]
[21]
Chollakup, R.; Uttayarat, P.; Chworos, A.; Smitthipong, W. Noncovalent sericin-chitosan scaffold: Physical properties and low cytotoxicity effect. Int. J. Mol. Sci., 2020, 21(3), 775.
[http://dx.doi.org/10.3390/ijms21030775] [PMID: 31991686]
[22]
Verma, J.; Kanoujia, J.; Parashar, P.; Tripathi, C.B.; Saraf, S.A. Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel. Drug Deliv. Transl. Res., 2017, 7(1), 77-88.
[http://dx.doi.org/10.1007/s13346-016-0322-y] [PMID: 27565984]
[23]
Kanoujia, J.; Singh, M.; Singh, P.; Saraf, S.A. Novel genipin crosslinked atorvastatin loaded sericin nanoparticles for their enhanced antihyperlipidemic activity. Mater. Sci. Eng. C, 2016, 69, 967-976.
[http://dx.doi.org/10.1016/j.msec.2016.08.011] [PMID: 27612792]
[24]
Nishida, A.; Yamada, M.; Kanazawa, T.; Takashima, Y.; Ouchi, K.; Okada, H. Sustained-release of protein from biodegradable sericin film, gel and sponge. Int. J. Pharm., 2011, 407(1-2), 44-52.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.006] [PMID: 21238562]
[25]
Aramwit, P.; Keongamaroon, O.; Siritientong, T.; Bang, N.; Supasyndh, O. Sericin cream reduces pruritus in hemodialysis patients: A randomized, double-blind, placebo-controlled experimental study. BMC Nephrol., 2012, 13(1), 119.
[http://dx.doi.org/10.1186/1471-2369-13-119] [PMID: 23006933]
[26]
Esposito, M.C.; Santos, A.L.A.; Bonfilio, R.; de Araújo, M.B. A critical review of analytical methods in pharmaceutical matrices for determination of corticosteroids. Crit. Rev. Anal. Chem., 2020, 50(2), 111-124.
[http://dx.doi.org/10.1080/10408347.2019.1581050] [PMID: 30869528]
[27]
Mäntele, W.; Deniz, E. UV-VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 173, 965-968.
[http://dx.doi.org/10.1016/j.saa.2016.09.037] [PMID: 27727137]
[28]
Gupta, D.; Agrawal, A.; Chaudhary, H.; Gulrajani, M.; Gupta, C. Cleaner process for extraction of sericin using infrared. J. Clean. Prod., 2013, 52, 488-494.
[http://dx.doi.org/10.1016/j.jclepro.2013.03.016]
[29]
Gulrajani, M.L.; Brahma, K.P.; Kumar, P.S.; Purwar, R. Application of silk sericin to polyester fabric. J. Appl. Polym. Sci., 2008, 109(1), 314-321.
[http://dx.doi.org/10.1002/app.28061]
[30]
Su, D.; Ding, S.; Shi, W.; Huang, X.; Jiang, L. Bombyx mori silk-based materials with implication in skin repair: Sericin versus regenerated silk fibroin. J. Biomater. Appl., 2019, 34(1), 36-46.
[http://dx.doi.org/10.1177/0885328219844978] [PMID: 31027446]
[31]
Salunkhe, N.H.; Jadhav, N.R. Preparation and evaluation of sericin extracted from sericulture waste water for pharmaceutical applications. J. Curr. Pharm. Res., 2018, 8(3), 2413-2425.
[http://dx.doi.org/10.33786/JCPR.2018.v08i03.004]
[32]
Berthomieu, C.; Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res., 2009, 101(2-3), 157-170.
[http://dx.doi.org/10.1007/s11120-009-9439-x] [PMID: 19513810]
[33]
Al Masud, M.A.; Shaikh, H.; Alam, M.S.; Karim, M.M.; Momin, M.A.; Islam, M.A.; Khan, G.M.A. Green synthesis of silk sericin-embedded silver nanoparticles and their antibacterial application against multidrug-resistant pathogens. J. Genet. Eng. Biotechnol., 2021, 19(1), 74.
[http://dx.doi.org/10.1186/s43141-021-00176-5] [PMID: 33999298]
[34]
Smith, B.J. SDS polyacrylamide gel electrophoresis of proteins. Methods Mol. Biol., 1984, 1, 41-55.
[PMID: 20512673]
[35]
Kielkopf, C.L.; Bauer, W.; Urbatsch, I.L. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins. Cold Spring Harb Protoc., 2021, 12
[http://dx.doi.org/10.1101/pdb.prot102228]
[36]
Moorthy, P.S. Isolation, purification and characterization of sericin protein from the discharge water of silk industry. Madras Agric. J., 2020, 374-378.
[37]
Gupta, D.; Agrawal, A.; Rangi, A. Extraction and characterization of silk sericin. Indian J. Fibre Text. Res., 2014, 39(4), 364-372.
[38]
Cestari, A.R.; Airoldi, C. A new elemental analysis method based on thermogravimetric data and applied to alkoxysilane immobilized on silicas. J. Therm. Anal., 1995, 44(1), 79-87.
[http://dx.doi.org/10.1007/BF02547136]
[39]
Dash, R.; Mukherjee, S.; Kundu, S.C. Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, Antheraea mylitta. Int. J. Biol. Macromol., 2006, 38(3-5), 255-258.
[http://dx.doi.org/10.1016/j.ijbiomac.2006.03.001] [PMID: 16620954]
[40]
Loof, D.; Hiller, M.; Oschkinat, H.; Koschek, K. Quantitative and qualitative analysis of surface modified cellulose utilizing TGA-MS. Materials (Basel), 2016, 9(6), 415.
[http://dx.doi.org/10.3390/ma9060415] [PMID: 28773537]
[41]
Damodaran, S.; Wood, T.D.; Nagarajan, P.; Rabin, R.A. Evaluating peptide mass fingerprinting-based protein identification. Genomics Proteomics Bioinformatics, 2007, 5(3-4), 152-157.
[http://dx.doi.org/10.1016/S1672-0229(08)60002-9] [PMID: 18267296]
[42]
Çapar, G.; Aygün, S.S. Characterization of sericin protein recovered from silk wastewaters. Turk Hij. Deney. Biyol. Derg., 2015, 72(3), 219-234.
[http://dx.doi.org/10.5505/TurkHijyen.2015.47113]
[43]
More, S.V.; Chavan, S.; Prabhune, A.A. Silk degumming and utilization of silk sericin by hydrolysis using alkaline protease from Beauveria Sp. (MTCC 5184): A green approach. J. Nat. Fibers, 2018, 15(3), 373-383.
[http://dx.doi.org/10.1080/15440478.2017.1330718]
[44]
Fan, J.I.N.B.O.; Zheng, L.H.; Wang, F.; Guo, H.Y.; Jiang, L.U.; Ren, F.Z. Enzymatic hydrolysis of silk sericin by proteases and antioxidant activities of the hydrolysates. J. Food Biochem., 2010, 34(2), 382-398.
[http://dx.doi.org/10.1111/j.1745-4514.2009.00286.x]
[45]
Akhtar, K.; Khan, S.A.; Khan, S.B.; Asiri, A.M. Scanning electron microscopy: Principle and applications in nanomaterials characterization. In: Handbook of Materials Characterization;; , 2018; pp. 113-145.
[46]
Wu, L.P.; Leng, X.J.; Sun, Y.; Ren, F.Z.; Nakai, S. Analysis of the effects of pH and salt on the conformation of the sericin particles by DLS and TEM measurements. Guangpuxue Yu Guangpu Fenxi, 2010, 30(5), 1391-1395.
[PMID: 20672640]
[47]
Padamwar, M.N.; Pawar, A.P.; Daithankar, A.V.; Mahadik, K.R. Silk sericin as a moisturizer: An in vivo study. J. Cosmet. Dermatol., 2005, 4(4), 250-257.
[http://dx.doi.org/10.1111/j.1473-2165.2005.00200.x] [PMID: 17168872]
[48]
Sparkes, J.; Holland, C. The rheological properties of native sericin. Acta Biomater., 2018, 69, 234-242.
[http://dx.doi.org/10.1016/j.actbio.2018.01.021] [PMID: 29408618]
[49]
Jo, Y.N.; Um, I.C. Effects of solvent on the solution properties, structural characteristics and properties of silk sericin. Int. J. Biol. Macromol., 2015, 78, 287-295.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.004] [PMID: 25869308]
[50]
Kambhampati, S.; Li, J.; Evans, B.S.; Allen, D.K. Accurate and efficient amino acid analysis for protein quantification using hydrophilic interaction chromatography coupled tandem mass spectrometry. Plant Methods, 2019, 15(1), 46.
[http://dx.doi.org/10.1186/s13007-019-0430-z] [PMID: 31110556]
[51]
Sothornvit, R.; Chollakup, R.; Suwanruji, P. Extracted sericin from silk waste for film formation. Songklanakarin J. Sci. Technol., 2010, 32, 17-22.
[52]
Zhang, Y.Q. Applications of natural silk protein sericin in biomaterials. Biotechnol. Adv., 2002, 20(2), 91-100.
[http://dx.doi.org/10.1016/S0734-9750(02)00003-4] [PMID: 14538058]
[53]
Diehl, B. Principles in NMR spectroscopy. In: NMR Spectroscopy in Pharmaceutical Analysis; Elsevier, 2008; pp. 1-41.
[54]
Cho, K.Y.; Moon, J.Y.; Lee, Y.W.; Lee, K.G.; Yeo, J.H.; Kweon, H.Y.; Kim, K.H.; Cho, C.S. Preparation of self-assembled silk sericin nanoparticles. Int. J. Biol. Macromol., 2003, 32(1-2), 36-42.
[http://dx.doi.org/10.1016/S0141-8130(03)00023-0] [PMID: 12719130]
[55]
Štěpánová, S.; Kašička, V. Applications of capillary electromigration methods for separation and analysis of proteins (2017–mid 2021) – A review. Anal. Chim. Acta, 2022, 1209, 339447.
[http://dx.doi.org/10.1016/j.aca.2022.339447] [PMID: 35569866]
[56]
Zhu, Z.; Lu, J.J.; Liu, S. Protein separation by capillary gel electrophoresis: A review. Anal. Chim. Acta, 2012, 709(709), 21-31.
[http://dx.doi.org/10.1016/j.aca.2011.10.022] [PMID: 22122927]
[57]
Kašička, V. Recent developments in capillary and microchip electroseparations of peptides (2019–mid 2021). Electrophoresis, 2022, 43(1-2), 82-108.
[http://dx.doi.org/10.1002/elps.202100243] [PMID: 34632606]
[58]
Dube, S.; Khumalo, M.T.; Torto, N.; Nyati, J.A. Characterization of amino acids in silk sericin protein fromGonometa rufobrunnae by MEKC with phenyl isothiocyanate derivatization. J. Sep. Sci., 2006, 29(9), 1245-1250.
[http://dx.doi.org/10.1002/jssc.200600045] [PMID: 16833082]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy