Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Effect of Fibroblast Growth Factor-21 Molecule on Coronary Collateral Development

Author(s): Halil Fedai* and Mustafa Begenc Tascanov

Volume 27, Issue 14, 2024

Published on: 04 March, 2024

Page: [2090 - 2095] Pages: 6

DOI: 10.2174/1386207326666221026151525

Abstract

Background: Collateral arteries provide an alternative source to the myocardium resulting from ischemia due to occlusive coronary artery disease and may help preserve myocardial function in the case of coronary artery disease (CAD). Although collateral development is so important, its pathophysiology has not been fully elucidated. Till now, no study has investigated the relationship between Fibroblast growth factor-21(FGF-21) and coronary collateral.

Objective: This study aims to investigate the pathophysiology of coronary collateral development.

Methods: In our study, which we planned as a case-control, 60 consecutive patients with ≥90 stenosis in at least one large coronary artery as a result of coronary angiography (CAG) and 30 patients with normal coronary angiography were included in the study cross-sectional. Demographic, echocardiographic and laboratory data were recorded. Coronary collateral circulation was evaluated using the Rentrop-Cohen method. FGF-21 levels were measured in all individuals.

Results: In the analysis, no significant difference was observed between the two groups in basic biochemical parameters other than HDL (p>0.05 for all). FGF-21 level was statistically significantly higher in the patient group compared to the control group (p: 0.003). Also, the FGF-21 level was found to be statistically significantly higher in the good collateral circulation group than the poor (p:0.006). Univariate and multivariate logistic regression analysis was performed to predict the presence of collateral. We found that FGF-21(p=0.006), and C-reactive protein (p=0.020) predicted the presence of collateral independently.

Conclusion: Collateral formation and cardiac prognosis are closely related. Our study is the first to investigate the relationship between collateral formation and FGF-21. Our study showed that the FGF-21 level is an independent predictor of collateral formation. In addition, there was a significant difference between bad and good collateral formation regarding FGF-21 levels.

Keywords: Fibroblast growth factor-21, coronary collateral, coronary artery disease, angiogenesis, coronary angiography, pathophysiology.

Graphical Abstract
[1]
Hennekens, C.H. Increasing burden of cardiovascular disease: current knowledge and future directions for research on risk factors. Circulation, 1998, 97(11), 1095-1102.
[http://dx.doi.org/10.1161/01.CIR.97.11.1095] [PMID: 9531257]
[2]
Kosmopoulos, M.; Drekolias, D.; Zavras, P.D.; Piperi, C.; Papavassiliou, A.G. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(3), 611-619.
[http://dx.doi.org/10.1016/j.bbadis.2019.01.006] [PMID: 30611860]
[3]
Schaper, W. Angiogenesis in the adult heart. Basic Res. Cardiol., 1991, 86(2), 51-56.
[PMID: 1719953]
[4]
Pitt, B. Interarterial coronary anastomoses. Occurrence in normal hearts and in certain pathologic conditions. Circulation, 1959, 20(5), 816-822.
[http://dx.doi.org/10.1161/01.CIR.20.5.816] [PMID: 14433299]
[5]
Seiler, C.; Stoller, M.; Pitt, B.; Meier, P. The human coronary collateral circulation: Development and clinical importance. Eur. Heart J., 2013, 34(34), 2674-2682.
[http://dx.doi.org/10.1093/eurheartj/eht195] [PMID: 23739241]
[6]
Seiler, C. The human coronary collateral circulation. Eur. J. Clin. Invest., 2011, 40(5), 465-476.
[7]
Matsunaga, T.; Warltier, D.C.; Weihrauch, D.W.; Moniz, M.; Tessmer, J.; Chilian, W.M. Ischemia-induced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide. Circulation, 2000, 102(25), 3098-3103.
[http://dx.doi.org/10.1161/01.CIR.102.25.3098] [PMID: 11120701]
[8]
Akboga, M.K.; Akyel, A.; Sahinarslan, A.; Demirtas, C.Y.; Yayla, C.; Boyaci, B.; Yalcin, R. Relationship between plasma apelin level and coronary collateral circulation. Atherosclerosis, 2014, 235(2), 289-294.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.04.029] [PMID: 24905139]
[9]
Yamada, H.; Kuro-o, M.; Hara, K.; Ueda, Y.; Kusaka, I.; Kakei, M.; Ishikawa, S. The urinary phosphate to serum fibroblast growth factor 23 ratio is a useful marker of atherosclerosis in early-stage chronic kidney disease. PLoS One, 2016, 11(8), e0160782.
[http://dx.doi.org/10.1371/journal.pone.0160782] [PMID: 27504998]
[10]
Joki, Y.; Ohashi, K.; Yuasa, D.; Shibata, R.; Ito, M.; Matsuo, K.; Kambara, T.; Uemura, Y.; Hayakawa, S.; Hiramatsu-Ito, M.; Kanemura, N.; Ogawa, H.; Daida, H.; Murohara, T.; Ouchi, N. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism. Biochem. Biophys. Res. Commun., 2015, 459(1), 124-130.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.081] [PMID: 25712519]
[11]
Liu, S.Q.; Roberts, D.; Kharitonenkov, A.; Zhang, B.; Hanson, S.M.; Li, Y.C.; Zhang, L.Q.; Wu, Y.H. Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue. Sci. Rep., 2013, 3(1), 2767.
[http://dx.doi.org/10.1038/srep02767] [PMID: 24067542]
[12]
Patel, V.; Adya, R.; Chen, J.; Ramanjaneya, M.; Bari, M.F.; Bhudia, S.K.; Hillhouse, E.W.; Tan, B.K.; Randeva, H.S. Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts. PLoS One, 2014, 9(2), e87102.
[http://dx.doi.org/10.1371/journal.pone.0087102] [PMID: 24498293]
[13]
Peter Rentrop, K.; Cohen, M.; Blanke, H.; Phillips, R.A. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J. Am. Coll. Cardiol., 1985, 5(3), 587-592.
[http://dx.doi.org/10.1016/S0735-1097(85)80380-6] [PMID: 3156171]
[14]
Meier, P.; Hemingway, H.; Lansky, A.J.; Knapp, G.; Pitt, B.; Seiler, C. The impact of the coronary collateral circulation on mortality: A meta-analysis. Eur. Heart J., 2012, 33(5), 614-621.
[http://dx.doi.org/10.1093/eurheartj/ehr308] [PMID: 21969521]
[15]
Regmi, M.; Siccardi, M.A. Coronary Artery Disease Prevention. In: StatPearls; StatPearls Publishing: Treasure Island, (FL), 2021.
[16]
Hansen, J.F. Coronary collateral circulation: Clinical significance and influence on survival in patients with coronary artery occlusion. Am. Heart J., 1989, 117(2), 290-295.
[http://dx.doi.org/10.1016/0002-8703(89)90771-0] [PMID: 2916404]
[17]
Levin, D.C. Pathways and functional significance of the coronary collateral circulation. Circulation, 1974, 50(4), 831-837.
[http://dx.doi.org/10.1161/01.CIR.50.4.831] [PMID: 4425386]
[18]
Cohen, M.; Sherman, W.; Rentrop, K.P.; Gorlin, R. Determinants of collateral filling observed during sudden controlled coronary artery occlusion in human subjects. J. Am. Coll. Cardiol., 1989, 13(2), 297-303.
[http://dx.doi.org/10.1016/0735-1097(89)90502-0] [PMID: 2521503]
[19]
Koerselman, J.; van der Graaf, Y.; de Jaegere, P.P.T.; Grobbee, D.E. Coronary Collaterals. Circulation, 2003, 107(19), 2507-2511.
[http://dx.doi.org/10.1161/01.CIR.0000065118.99409.5F] [PMID: 12756191]
[20]
Nelson, R.H. Hyperlipidemia as a risk factor for cardiovascular disease. Prim. Care, 2013, 40(1), 195-211.
[http://dx.doi.org/10.1016/j.pop.2012.11.003] [PMID: 23402469]
[21]
Pohl, T.; Seiler, C.; Billinger, M.; Herren, E.; Wustmann, K.; Mehta, H.; Windecker, S.; Eberli, F.R.; Meier, B. Frequency distribution of collateral flow and factors influencing collateral channel development. J. Am. Coll. Cardiol., 2001, 38(7), 1872-1878.
[http://dx.doi.org/10.1016/S0735-1097(01)01675-8] [PMID: 11738287]

© 2024 Bentham Science Publishers | Privacy Policy