Generic placeholder image

Current Psychiatry Research and Reviews

Editor-in-Chief

ISSN (Print): 2666-0822
ISSN (Online): 2666-0830

Mini-Review Article

Biomarkers For the Diagnosis of Depression: Recent Updates

Author(s): Mikhil Santosh Kore and Kedar S. Prabhavalkar*

Volume 19, Issue 3, 2023

Published on: 25 November, 2022

Page: [214 - 234] Pages: 21

DOI: 10.2174/2666082219666221114114738

Price: $65

Abstract

Depression, or major depressive disorder, is a mental illness that significantly affects psychosocial functioning and reduces the quality of one’s life. The annual incidence of depression throughout the globe is around 6%. The disorder should be diagnosed at a particular stage for the treatment to be designed. Biomarkers can help to do so with objective pieces of evidence. Various biomarkers like Imaging biomarkers, Molecular biomarkers, Transcriptomic biomarkers, Genetic biomarkers, Neuroendocrine, and Inflammatory biomarkers can be used to diagnose depression. The use of digital sensors has also been reported recently for the determination of depression. This review summarizes various biomarkers to diagnose depression. Further recent updates and related clinical trials are included.

Keywords: Biomarkers, depression, imaging biomarkers, transcriptomic, inflammatory biomarkers, neuroendocrine.

Graphical Abstract
[1]
Ribeiro Â, Ribeiro JP, Von Doellinger O. Depression and psychodynamic psychotherapy. Braz J Psychiatry 2018; 40(1): 105-9.
[2]
Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health 2013; 34(1): 119-38.
[http://dx.doi.org/10.1146/annurev-publhealth-031912-114409] [PMID: 23514317]
[3]
Bromet E, Andrade LH, Hwang I, et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 2011; 91: 1-16.
[http://dx.doi.org/10.1186/1741-7015-9-90]
[4]
Malhi GS, Mann JJ. Depression. Lancet 2018; 392(10161): 2299-312.
[http://dx.doi.org/10.1016/S0140-6736(18)31948-2] [PMID: 30396512]
[5]
Marcus M, Yasamy MT, van Ommeren M, Chisholm D. Depression, a global public health concern. WHO Dep Ment Heal Subst Abus. 2012; pp. 1-8.
[6]
Santomauro DF, Mantilla Herrera AM, Shadid J, et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021; 398(10312): 1700-12.
[http://dx.doi.org/10.1016/S0140-6736(21)02143-7] [PMID: 34634250]
[7]
Otte C, Gold SM, Penninx BW, et al. Major depressive disorder. Nat Rev Dis Prim 2016; 21: 1-20.
[http://dx.doi.org/10.1038/nrdp.2016.65]
[8]
Zhang FF, Peng W, Sweeney JA, Jia ZY, Gong QY. Brain structure alterations in depression: Psychoradiological evidence. CNS Neurosci Ther 2018; 24(11): 994-1003.
[http://dx.doi.org/10.1111/cns.12835] [PMID: 29508560]
[9]
UNEP, WHO, ILO, International Programme on Chemical Safety, Inter-Organization Programme for the Sound Management of Chemicals Biomarkers in risk assessment: validity and validation. Geneva: WHO 2001.
[10]
Mayeux R. Biomarkers: Potential uses and limitations. NeuroRx 2004; 1(2): 182-8.
[http://dx.doi.org/10.1602/neurorx.1.2.182] [PMID: 15717018]
[11]
Almeida FB, Barros HMT, Pinna G. Neurosteroids and neurotrophic factors: What is their promise as biomarkers for major depression and PTSD? Int J Mol Sci 2021; 22(4): 1758.
[http://dx.doi.org/10.3390/ijms22041758] [PMID: 33578758]
[12]
Gadad BS, Jha MK, Czysz A, et al. Peripheral biomarkers of major depression and antidepressant treatment response: Current knowledge and future outlooks. J Affect Disord 2018; 233: 3-14.
[http://dx.doi.org/10.1016/j.jad.2017.07.001] [PMID: 28709695]
[13]
Gururajan A, Clarke G, Dinan TG, Cryan JF. Molecular biomarkers of depression. Neurosci Biobehav Rev 2016; 64: 101-33.
[http://dx.doi.org/10.1016/j.neubiorev.2016.02.011] [PMID: 26906761]
[14]
Woods AG, Wormwood KL, Iosifescu DV, Murrough J, Darie CC. Protein biomarkers in major depressive disorder: An update. Adv Exp Med Biol 2019; 1140: 585-600.
[http://dx.doi.org/10.1007/978-3-030-15950-4_35] [PMID: 31347073]
[15]
Lai CH. Promising neuroimaging biomarkers in depression. Psychiatry Investig 2019; 16(9): 662-70.
[http://dx.doi.org/10.30773/pi.2019.07.25.2] [PMID: 31550875]
[16]
Frokjaer VG, Mortensen EL, Nielsen FÅ, et al. Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder. Biol Psychiatry 2008; 63(6): 569-76.
[http://dx.doi.org/10.1016/j.biopsych.2007.07.009] [PMID: 17884017]
[17]
Nye JA, Purselle D, Plisson C, et al. Decreased brainstem and putamen SERT binding potential in depressed suicide attempters using [11C]-zient PET imaging. Depress Anxiety 2013; 30(10): n/a.
[http://dx.doi.org/10.1002/da.22049] [PMID: 23526784]
[18]
Ananth MR, DeLorenzo C, Yang J, Mann JJ, Parsey RV. Decreased pretreatment amygdalae serotonin transporter binding in unipolar depression remitters: A prospective PET study. J Nucl Med 2018; 59(4): 665-70.
[http://dx.doi.org/10.2967/jnumed.117.189654] [PMID: 28935838]
[19]
Jha S, Chadda RK, Kumar N, Bal CS. Brain SPECT guided repetitive transcranial magnetic stimulation (rTMS) in treatment resistant major depressive disorder. Asian J Psychiatr 2016; 21: 1-6.
[http://dx.doi.org/10.1016/j.ajp.2016.02.003] [PMID: 27208445]
[20]
Nagafusa Y, Okamoto N, Sakamoto K, et al. Assessment of cerebral blood flow findings using 99mTc-ECD single-photon emission computed tomography in patients diagnosed with major depressive disorder. J Affect Disord 2012; 140(3): 296-9.
[http://dx.doi.org/10.1016/j.jad.2012.03.026] [PMID: 22682101]
[21]
Pu S, Nakagome K, Yamada T, et al. Suicidal ideation is associated with reduced prefrontal activation during a verbal fluency task in patients with major depressive disorder. J Affect Disord 2015; 181: 9-17.
[http://dx.doi.org/10.1016/j.jad.2015.04.010] [PMID: 25913539]
[22]
Gao L, Cai Y, Wang H, Wang G, Zhang Q, Yan X. Probing prefrontal cortex hemodynamic alterations during facial emotion recognition for major depression disorder through functional near-infrared spectroscopy. J Neural Eng 2019; 16(2): 026026.
[http://dx.doi.org/10.1088/1741-2552/ab0093] [PMID: 30669122]
[23]
Fitzgerald PJ, Watson BO. Gamma oscillations as a biomarker for major depression: an emerging topic. Transl Psychiatry 2018; 8(1): 177.
[http://dx.doi.org/10.1038/s41398-018-0239-y] [PMID: 30181587]
[24]
Pillai V, Kalmbach DA, Ciesla JA. A meta-analysis of electroencephalographic sleep in depression: evidence for genetic biomarkers. Biol Psychiatry 2011; 70(10): 912-9.
[http://dx.doi.org/10.1016/j.biopsych.2011.07.016] [PMID: 21937023]
[25]
Gabbay V, Liebes L, Katz Y, et al. The kynurenine pathway in adolescent depression: Preliminary findings from a proton MR spectroscopy study. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34(1): 37-44.
[http://dx.doi.org/10.1016/j.pnpbp.2009.09.015] [PMID: 19778568]
[26]
Shi XF, Forrest LN, Kuykendall MD, et al. Anterior cingulate cortex choline levels in female adolescents with unipolar versus bipolar depression: A potential new tool for diagnosis. J Affect Disord 2014; 167: 25-9.
[http://dx.doi.org/10.1016/j.jad.2014.05.051] [PMID: 25082110]
[27]
Stein JL, Medland SE, Vasquez AA, et al. Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet 2012; 44(5): 552-61.
[http://dx.doi.org/10.1038/ng.2250] [PMID: 22504417]
[28]
Boehringer A, Tost H, Haddad L, et al. Neural correlates of the cortisol awakening response in humans. Neuropsychopharmacology 2015; 40(9): 2278-85.
[http://dx.doi.org/10.1038/npp.2015.77] [PMID: 25781268]
[29]
Sheline YI, Price JL, Yan Z, Mintun MA. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci USA 2010; 107(24): 11020-5.
[http://dx.doi.org/10.1073/pnas.1000446107] [PMID: 20534464]
[30]
Zhu X, Wang X, Xiao J, et al. Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biol Psychiatry 2012; 71(7): 611-7.
[http://dx.doi.org/10.1016/j.biopsych.2011.10.035] [PMID: 22177602]
[31]
Castanheira L, Silva C, Cheniaux E, Telles-Correia D. Neuroimaging correlates of depression—implications to clinical practice. Front Psychiatry 2019; 10: 703.
[http://dx.doi.org/10.3389/fpsyt.2019.00703] [PMID: 31632306]
[32]
Sheline YI, Barch DM, Price JL, et al. The default mode network and self-referential processes in depression. Proc Natl Acad Sci USA 2009; 106(6): 1942-7.
[http://dx.doi.org/10.1073/pnas.0812686106] [PMID: 19171889]
[33]
Alberich-Bayarri A, Sourbron S, Golay X, et al. ESR statement on the validation of imaging biomarkers. Insights Imaging 2020; 11(1): 76.
[http://dx.doi.org/10.1186/s13244-020-00872-9] [PMID: 32500316]
[34]
Laterza OF, Hendrickson RC, Wagner JA. Molecular biomarkers. Drug Inf J 2007; 41(5): 573-85.
[http://dx.doi.org/10.1177/009286150704100504]
[35]
Lin R, Turecki G, Lin R, Turecki G. Noncoding RNAs in depression. Adv Exp Med Biol 2017; 978: 197-210.
[http://dx.doi.org/10.1007/978-3-319-53889-1_11] [PMID: 28523548]
[36]
Wan Y, Liu Y, Wang X, et al. Identification of differential microRNAs in cerebrospinal fluid and serum of patients with major depressive disorder. PLoS One 2015; 10(3): e0121975.
[http://dx.doi.org/10.1371/journal.pone.0121975] [PMID: 25763923]
[37]
Issler O, Chen A. Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci 2015; 16(4): 201-12.
[http://dx.doi.org/10.1038/nrn3879] [PMID: 25790865]
[38]
Smalheiser NR, Lugli G, Rizavi HS, Torvik VI, Turecki G, Dwivedi Y. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One 2012; 7(3): e33201.
[http://dx.doi.org/10.1371/journal.pone.0033201] [PMID: 22427989]
[39]
Li YJ, Xu M, Gao ZH, et al. Alterations of serum levels of BDNF-related miRNAs in patients with depression. PLoS One 2013; 8(5): e63648.
[http://dx.doi.org/10.1371/journal.pone.0063648] [PMID: 23704927]
[40]
Azevedo JA, Carter BS, Meng F, et al. The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression. J Psychiatr Res 2016; 82: 58-67.
[http://dx.doi.org/10.1016/j.jpsychires.2016.07.012] [PMID: 27468165]
[41]
Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS One 2014; 9(1): e86469.
[http://dx.doi.org/10.1371/journal.pone.0086469] [PMID: 24475125]
[42]
Mercer TR, Qureshi IA, Gokhan S, et al. Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci 2010; 111: 1-15.
[http://dx.doi.org/10.1186/1471-2202-11-14]
[43]
Liu Z, Li X, Sun N, et al. Microarray profiling and co-expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder. PLoS One 2014; 9(3): e93388.
[http://dx.doi.org/10.1371/journal.pone.0093388] [PMID: 24676134]
[44]
Cui X, Sun X, Niu W, et al. Long non-coding RNA: Potential diagnostic and therapeutic biomarker for major depressive disorder. Med Sci Monit 2016; 22: 5240-8.
[http://dx.doi.org/10.12659/MSM.899372] [PMID: 28039689]
[45]
Cui X, Niu W, Kong L, et al. Long noncoding RNA expression in peripheral blood mononuclear cells and suicide risk in Chinese patients with major depressive disorder. Brain Behav 2017; 7(6): e00711.
[http://dx.doi.org/10.1002/brb3.711] [PMID: 28638716]
[46]
Orna IYY. van der Z, Aarthi R, et al Sex-specific role for the long non-coding RNA LINC00473 in depression. Neuron 2020; 106(6): 912-926.e5.
[47]
Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther 2018; 187: 31-44.
[http://dx.doi.org/10.1016/j.pharmthera.2018.01.010] [PMID: 29406246]
[48]
Cui X, Niu W, Kong L, et al. hsa_circRNA_103636: Potential novel diagnostic and therapeutic biomarker in Major depressive disorder. Biomarkers Med 2016; 10(9): 943-52.
[http://dx.doi.org/10.2217/bmm-2016-0130] [PMID: 27404501]
[49]
Shi Y, Song R, Wang Z, et al. Potential clinical value of circular RNAs as peripheral biomarkers for the diagnosis and treatment of major depressive disorder. EBioMedicine 2021; 66: 103337.
[http://dx.doi.org/10.1016/j.ebiom.2021.103337]
[50]
Zhang Y, Du L, Bai Y, Han B, He C, et al. CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry 2020; 25(6): 1175-90.
[51]
Shi Y, Wang Q, Song R, Kong Y, Zhang Z. Non-coding RNAs in depression: Promising diagnostic and therapeutic biomarkers. EBioMedicine 2021; 71: 103569.
[http://dx.doi.org/10.1016/j.ebiom.2021.103569] [PMID: 34521053]
[52]
Nemeroff CB, Owens MJ. The role of serotonin in the pathophysiology of depression: As important as ever. Clin Chem 2009; 55(8): 1578-9.
[http://dx.doi.org/10.1373/clinchem.2009.123752] [PMID: 19498050]
[53]
Maddock RJ, Buonocore MH. MR spectroscopic studies of the brain in psychiatric disorders. Curr Top Behav Neurosci 2011; 11: 199-251.
[http://dx.doi.org/10.1007/7854_2011_197] [PMID: 22294088]
[54]
Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 2007; 64(3): 327-37.
[http://dx.doi.org/10.1001/archpsyc.64.3.327] [PMID: 17339521]
[55]
Castrén E, Rantamäki T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Dev Neurobiol 2010; 70(5): 289-97.
[http://dx.doi.org/10.1002/dneu.20758] [PMID: 20186711]
[56]
Hamon M, Blier P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45: 54-63.
[http://dx.doi.org/10.1016/j.pnpbp.2013.04.009] [PMID: 23602950]
[57]
Pytka K, Dziubina A, Młyniec K, et al. The role of glutamatergic, GABA-ergic, and cholinergic receptors in depression and antidepressant-like effect. Pharmacol Rep 2016; 68(2): 443-50.
[http://dx.doi.org/10.1016/j.pharep.2015.10.006] [PMID: 26922551]
[58]
Liu Y, Zhao J, Guo W. Emotional roles of mono-aminergic neurotransmitters in major depressive disorder and anxiety disorders. Front Psychol 2018; 9: 2201.
[http://dx.doi.org/10.3389/fpsyg.2018.02201] [PMID: 30524332]
[59]
Coppen A. The biochemistry of affective disorders. Br J Psychiatry 1967; 113(504): 1237-64.
[http://dx.doi.org/10.1192/bjp.113.504.1237] [PMID: 4169954]
[60]
Hogenelst K, Schoevers RA, Kema IP, Sweep FCGJ. Empathic accuracy and oxytocin after tryptophan depletion in adults at risk for depression. Psychopharmacol 2015; 2331: 111-20.
[http://dx.doi.org/10.1007/s00213-015-4093-9]
[61]
Parsey RV, Olvet DM, Oquendo MA, Huang Y, Ogden RT, Mann JJ. Higher 5-HT1A receptor binding potential during a major depressive episode predicts poor treatment response: Preliminary data from a naturalistic study. Neuropsychopharmacol 2006; 318: 1745-9.
[http://dx.doi.org/10.1038/sj.npp.1300992]
[62]
Goddard AW, Ball SG, Martinez J, et al. Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress Anxiety 2010; 27(4): 339-50.
[http://dx.doi.org/10.1002/da.20642] [PMID: 19960531]
[63]
Klimek V, Stockmeier C, Overholser J, et al. Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J Neurosci 1997; 17(21): 8451-8.
[http://dx.doi.org/10.1523/JNEUROSCI.17-21-08451.1997] [PMID: 9334417]
[64]
Escribá PV, Ozaita A, García-Sevilla JA. Increased mRNA expression of α2A-adrenoceptors, serotonin receptors and µ-opioid receptors in the brains of suicide victims. Neuropsychopharmacol 2004; 298: 1512-21.
[http://dx.doi.org/10.1038/sj.npp.1300459]
[65]
Zahodne LB, Marsiske M, Okun MS, Bowers D. Components of depression in Parkinson disease. J Geriatr Psychiatry Neurol 2012; 25(3): 131-7.
[http://dx.doi.org/10.1177/0891988712455236] [PMID: 22859701]
[66]
Cooper JA, Arulpragasam AR, Treadway MT. Anhedonia in depression: biological mechanisms and computational models. Curr Opin Behav Sci 2018; 22: 128-35.
[http://dx.doi.org/10.1016/j.cobeha.2018.01.024] [PMID: 29503842]
[67]
Eckstrand KL, Forbes EE, Bertocci MA, et al. Anhedonia reduction and the association between left ventral striatal reward response and 6-month improvement in life satisfaction among young adults. JAMA Psychiatry 2019; 76(9): 958-65.
[http://dx.doi.org/10.1001/jamapsychiatry.2019.0864] [PMID: 31066876]
[68]
Belujon P, Grace AA. Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 2017; 20(12): 1036-46.
[http://dx.doi.org/10.1093/ijnp/pyx056] [PMID: 29106542]
[69]
Hewitt SA, Wamsteeker JI, Kurz EU, Bains JS. Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat Neurosci 2009; 124: 438-43.
[http://dx.doi.org/10.1038/nn.2274]
[70]
Fogaça MV, Duman RS. Cortical GABAergic dysfunction in stress and depression: New insights for therapeutic interventions. Front Cell Neurosci 2019; 13: 87.
[http://dx.doi.org/10.3389/fncel.2019.00087] [PMID: 30914923]
[71]
Dulawa SC, Janowsky DS. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol Psychiatry 2019; 24(5): 694-709.
[http://dx.doi.org/10.1038/s41380-018-0219-x] [PMID: 30120418]
[72]
Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci 2020; 21(20): 7777.
[http://dx.doi.org/10.3390/ijms21207777] [PMID: 33096634]
[73]
Dwivedi Y. Brain-derived neurotrophic factor: Role in depression and suicide. Neuropsychiatr Dis Treat 2009; 5: 433-49.
[http://dx.doi.org/10.2147/NDT.S5700] [PMID: 19721723]
[74]
D’Addario C, Dell’Osso B, Galimberti D, et al. Epigenetic modulation of BDNF gene in patients with major depressive disorder. Biol Psychiatry 2013; 73(2): e6-7.
[http://dx.doi.org/10.1016/j.biopsych.2012.07.009] [PMID: 22901293]
[75]
Clark-Raymond A, Halaris A. VEGF and depression: A comprehensive assessment of clinical data. J Psychiatr Res 2013; 47(8): 1080-7.
[http://dx.doi.org/10.1016/j.jpsychires.2013.04.008] [PMID: 23684549]
[76]
Ichi IJ, Ichi US, Yamauchi K, et al. Gene expression and association analysis of vascular endothelial growth factor in major depressive disorder. G Prog Neuro-Psychopharmacology Biol Psychiatry 2007; 31: 658-63.
[http://dx.doi.org/10.1016/j.pnpbp.2006.12.011]
[77]
Takebayashi M, Hashimoto R, Hisaoka K, Tsuchioka M, Kunugi H. Plasma levels of vascular endothelial growth factor and fibroblast growth factor 2 in patients with major depressive disorders. J Neural Transm (Vienna) 2010; 117(9): 1119-22.
[http://dx.doi.org/10.1007/s00702-010-0452-1] [PMID: 20690032]
[78]
Turner CA, Watson SJ, Akil H. The fibroblast growth factor family: neuromodulation of affective behavior. Neuron 2012; 76(1): 160-74.
[http://dx.doi.org/10.1016/j.neuron.2012.08.037] [PMID: 23040813]
[79]
Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull 2006; 70(3): 221-7.
[http://dx.doi.org/10.1016/j.brainresbull.2006.04.008] [PMID: 16861106]
[80]
Bernard R, Kerman IA, Thompson RC, et al. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 2010; 166: 634-46.
[http://dx.doi.org/10.1038/mp.2010.44]
[81]
Evans SJ, Choudary PV, Neal CR, et al. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci USA 2004; 101(43): 15506-11.
[http://dx.doi.org/10.1073/pnas.0406788101] [PMID: 15483108]
[82]
Malberg JE, Monteggia LM. VGF, a new player in antidepressant action? Sci Signal 2008; 1(18): pe19.
[http://dx.doi.org/10.1126/stke.118pe19] [PMID: 18460680]
[83]
Mullins N, Lewis CM. Genetics of depression: Progress at last. Curr Psychiatry Rep 2017; 19(8): 43.
[http://dx.doi.org/10.1007/s11920-017-0803-9] [PMID: 28608123]
[84]
Lohoff FW. Overview of the genetics of major depressive disorder. Curr Psychiatry Reports 2010; 126: 539-46.
[http://dx.doi.org/10.1007/s11920-010-0150-6]
[85]
Manji H, Kato T, Di Prospero NA, et al. Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 2012; 13(5): 293-307.
[http://dx.doi.org/10.1038/nrn3229] [PMID: 22510887]
[86]
Anglin RE, Garside SL, Tarnopolsky MA, Mazurek MF, Rosebush PI. The psychiatric manifestations of mitochondrial disorders: a case and review of the literature. J Clin Psychiatry 2012; 73(4): 506-12.
[http://dx.doi.org/10.4088/JCP.11r07237] [PMID: 22579150]
[87]
Clay Montier LL, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics 2009; 36(3): 125-31.
[http://dx.doi.org/10.1016/S1673-8527(08)60099-5] [PMID: 19302968]
[88]
Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion 2020; 53: 214-23.
[http://dx.doi.org/10.1016/j.mito.2020.06.004] [PMID: 32544465]
[89]
Gururajan A, Cryan JF, Dinan TG. Molecular biomarkers in depression: Toward personalized psychiatric treatment. Pers Psychiatry 2020; pp. 319-38.
[http://dx.doi.org/10.1016/B978-0-12-813176-3.00026-2]
[90]
de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19(18): 2100-10.
[http://dx.doi.org/10.1101/gad.1346005] [PMID: 16166375]
[91]
Wang X, Sundquist K, Hedelius A, Palmér K, Memon AA, Sundquist J. Leukocyte telomere length and depression, anxiety and stress and adjustment disorders in primary health care patients. BMC Psychiatry 2017; 17(1): 148.
[http://dx.doi.org/10.1186/s12888-017-1308-0] [PMID: 28438147]
[92]
Lindqvist D, Epel ES, Mellon SH, et al. Psychiatric disorders and leukocyte telomere length: Underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev 2015; 55: 333-64.
[http://dx.doi.org/10.1016/j.neubiorev.2015.05.007] [PMID: 25999120]
[93]
Verhoeven JE, Révész D, Epel ES, Lin J, Wolkowitz OM, Penninx BWJH. Major depressive disorder and accelerated cellular aging: results from a large psychiatric cohort study. Mol Psychiatry 2013; 198: 895-901.
[http://dx.doi.org/10.1038/mp.2013.151]
[94]
Fischer S, Strawbridge R, Vives AH, Cleare AJ. Cortisol as a predictor of psychological therapy response in depressive disorders: Systematic review and meta-analysis. Br J Psychiatry 2017; 210(2): 105-9.
[http://dx.doi.org/10.1192/bjp.bp.115.180653] [PMID: 27908897]
[95]
Joffe RT, Pearce EN, Hennessey JV, Ryan JJ, Stern RA. Subclinical hypothyroidism, mood, and cognition in older adults: a review. Int J Geriatr Psychiatry 2013; 28(2): 111-8.
[http://dx.doi.org/10.1002/gps.3796] [PMID: 22410877]
[96]
Duval F, Mokrani MC, Erb A, et al. Chronobiological hypothalamic–pituitary–thyroid axis status and antidepressant outcome in major depression. Psychoneuroendocrinology 2015; 59: 71-80.
[http://dx.doi.org/10.1016/j.psyneuen.2015.05.005] [PMID: 26036452]
[97]
Maes M. Major depression and activation of the inflammatory response system. Adv Exp Med Biol 1999; 461: 25-46.
[http://dx.doi.org/10.1007/978-0-585-37970-8_2] [PMID: 10442165]
[98]
Kim YK, Na KS, Shin KH, Jung HY, Choi SH, Kim JB. Cytokine imbalance in the pathophysiology of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31(5): 1044-53.
[http://dx.doi.org/10.1016/j.pnpbp.2007.03.004] [PMID: 17433516]
[99]
Dinan TG. Inflammatory markers in depression. Curr Opin Psychiatry 2009; 22(1): 32-6.
[http://dx.doi.org/10.1097/YCO.0b013e328315a561] [PMID: 19122532]
[100]
Maes M, Yirmyia R, Noraberg J, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 2009; 24(1): 27-53.
[http://dx.doi.org/10.1007/s11011-008-9118-1] [PMID: 19085093]
[101]
Köhler CA, Freitas TH, Maes M, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand 2017; 135(5): 373-87.
[http://dx.doi.org/10.1111/acps.12698] [PMID: 28122130]
[102]
Hepgul N, Cattaneo A, Zunszain PA, Pariante CM. Depression pathogenesis and treatment: what can we learn from blood mRNA expression? BMC Med 2013; 11(1): 28.
[http://dx.doi.org/10.1186/1741-7015-11-28] [PMID: 23384232]
[103]
Catena-Dell’Osso M, Rotella F, Dell’Osso A, Fagiolini A, Marazziti D. Inflammation, serotonin and major depression. Curr Drug Targets 2013; 14(5): 571-7.
[http://dx.doi.org/10.2174/13894501113149990154] [PMID: 23531160]
[104]
Stewart JG, Mazurka R, Bond L, Wynne-Edwards KE, Harkness KL. Rumination and impaired cortisol recovery following a social stressor in adolescent depression. J Abnorm Child Psychol 2013; 41(7): 1015-26.
[http://dx.doi.org/10.1007/s10802-013-9740-1] [PMID: 23553496]
[105]
Suzuki K, Iwata Y, Matsuzaki H, et al. Reduced expression of apolipoprotein E receptor type 2 in peripheral blood lymphocytes from patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34(6): 1007-10.
[http://dx.doi.org/10.1016/j.pnpbp.2010.05.014] [PMID: 20493228]
[106]
Gałecki P, Bobińska K, Zajączkowska M, Su K-P, Maes M, Gałecki P. Impact of oxidative/nitrosative stress and inflammation on cognitive functions in patients with recurrent depressive disorders. Med Sci Monit 2014; 20: 110-5.
[http://dx.doi.org/10.12659/MSM.889853] [PMID: 24457625]
[107]
Gałecki P, Gałecka E, Maes M, et al. The expression of genes encoding for COX-2, MPO, iNOS, and sPLA2-IIA in patients with recurrent depressive disorder. J Affect Disord 2012; 138(3): 360-6.
[http://dx.doi.org/10.1016/j.jad.2012.01.016] [PMID: 22331023]
[108]
Gałecki P, Talarowska M. Inflammatory theory of depression. Psychiatr Pol 2018; 52(3): 437-47.
[http://dx.doi.org/10.12740/PP/76863] [PMID: 30218560]
[109]
Ganança L, Galfalvy HC, Cisneros-Trujillo S, et al. Relationships between inflammatory markers and suicide risk status in major depression. J Psychiatr Res 2021; 134: 192-9.
[http://dx.doi.org/10.1016/j.jpsychires.2020.12.029] [PMID: 33388702]
[110]
Hayakawa K, Nishitani K, Tanaka S. Kynurenine, 3-OH-kynurenine, and anthranilate are nutrient metabolites that alter H3K4 trimethylation and H2AS40 O-GlcNAcylation at hypothalamus-related loci. Sci Rep 2019; 9(1): 19768.
[http://dx.doi.org/10.1038/s41598-019-56341-x] [PMID: 31875008]
[111]
Brown J. Montgomery. Metabolic biomarkers for predicting cardiovascular disease. Vasc Health Risk Manag 2013; 9: 37-45.
[http://dx.doi.org/10.2147/VHRM.S30378] [PMID: 23386789]
[112]
Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K. Systematic review of metabolic syndrome biomarkers: A panel for early detection, management, and risk stratification in the west Virginian population. Int J Med Sci 2016; 13(1): 25-38.
[http://dx.doi.org/10.7150/ijms.13800] [PMID: 26816492]
[113]
Lu XY. The leptin hypothesis of depression: A potential link between mood disorders and obesity? Curr Opin Pharmacol 2007; 7(6): 648-52.
[http://dx.doi.org/10.1016/j.coph.2007.10.010] [PMID: 18032111]
[114]
Wittekind DA, Kluge M. Ghrelin in psychiatric disorders-A review. Psychoneuroendocrinology 2015; 52: 176-94.
[http://dx.doi.org/10.1016/j.psyneuen.2014.11.013] [PMID: 25459900]
[115]
Kan C, Silva N, Golden SH, et al. A systematic review and meta-analysis of the association between depression and insulin resistance. Diabetes Care 2013; 36(2): 480-9.
[http://dx.doi.org/10.2337/dc12-1442] [PMID: 23349152]
[116]
Lustman PJ, Anderson RJ, Freedland KE, de Groot M, Carney RM, Clouse RE. Depression and poor glycemic control: A meta-analytic review of the literature. Diabetes Care 2000; 23(7): 934-42.
[http://dx.doi.org/10.2337/diacare.23.7.934] [PMID: 10895843]
[117]
Sverdlov O, Curcic J, Hannesdottir K, et al. A study of novel exploratory tools, digital technologies, and central nervous system biomarkers to characterize unipolar depression. Front Psychiatry 2021; 12: 640741.
[http://dx.doi.org/10.3389/fpsyt.2021.640741] [PMID: 34025472]
[118]
Jacobson NC, Weingarden H, Wilhelm S. Digital biomarkers of mood disorders and symptom change. Npj Digit Med 2019; 21: 1-3.
[http://dx.doi.org/10.1038/s41746-019-0078-0]
[119]
Bott NT, Lange A, Rentz D, Buffalo E, Clopton P, Zola S. Web camera based eye tracking to assess visual memory on a visual paired comparison task. Front Neurosci 2017; 11: 370.
[http://dx.doi.org/10.3389/fnins.2017.00370] [PMID: 28701915]
[120]
Groeneveld GJ, Hay JL, Van Gerven JM. Measuring blood–brain barrier penetration using the NeuroCart, a CNS test battery. Drug Discov Today Technol 2016; 20: 27-34.
[http://dx.doi.org/10.1016/j.ddtec.2016.07.004] [PMID: 27986220]
[121]
Stern Y, Reches A, Geva AB. Brain network activation analysis utilizing spatiotemporal features for event related potentials classification. Front Comput Neurosci 2016; 10: 137.
[http://dx.doi.org/10.3389/fncom.2016.00137] [PMID: 28066224]
[122]
Penton-Voak IS, Munafò MR, Looi CY. Biased facial-emotion perception in mental health disorders: A possible target for psychological intervention? Current Direct Psychol Sci 2017; 26(3): 294-301.
[123]
Cormack F, McCue M, Taptiklis N, et al. Wearable technology for high-frequency cognitive and mood assessment in major depressive disorder: Longitudinalobservational study. JMIR Ment Heal 2019; 6(11): E12814.
[http://dx.doi.org/10.2196/12814]
[124]
Jongs N, Jagesar R, van Haren NEM, et al. A framework for assessing neuropsychiatric phenotypes by using smartphone-based location data. Transl Psychiatry 2020; 101: 1-10.
[http://dx.doi.org/10.1038/s41398-020-00893-4]
[125]
Williamson JR, Quatieri TF, Helfer BS, Ciccarelli G, Mehta DD. Vocal and facial biomarkers of depression based on motor incoordination and timing. In: AVEC ’14: Proceedings of the 4th International Workshop on Audio/Visual Emotion Challenge.; November 2014; 65-72.
[http://dx.doi.org/10.1145/2661806.2661809]
[126]
Schmidt HD, Shelton RC, Duman RS. Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 2011; 36(12): 2375-94.
[http://dx.doi.org/10.1038/npp.2011.151] [PMID: 21814182]
[127]
Grieve SM, Korgaonkar MS, Koslow SH, Gordon E, Williams LM. Widespread reductions in gray matter volume in depression. Neuroimage Clin 2013; 3: 332-9.
[http://dx.doi.org/10.1016/j.nicl.2013.08.016] [PMID: 24273717]
[128]
Ousdal OT, Argyelan M, Narr KL, et al. Brain changes induced by electroconvulsive therapy are broadly distributed. Biol Psychiatry 2020; 87(5): 451-61.
[http://dx.doi.org/10.1016/j.biopsych.2019.07.010] [PMID: 31561859]
[129]
Moriguchi S, Takamiya A, Noda Y, et al. Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatry 2018; 247: 952-64.
[http://dx.doi.org/10.1038/s41380-018-0252-9]
[130]
Njau S, Joshi SH, Espinoza R, et al. Neurochemical correlates of rapid treatment response to electroconvulsive therapy in patients with major depression. J Psychiatry Neurosci 2017; 42(1): 6-16.
[http://dx.doi.org/10.1503/jpn.150177] [PMID: 27327561]
[131]
Levine J, Panchalingam K, Rapoport A, Gershon S, McClure RJ, Pettegrew JW. Increased cerebrospinal fluid glutamine levels in depressed patients. Biol Psychiatry 2000; 47(7): 586-93.
[http://dx.doi.org/10.1016/S0006-3223(99)00284-X] [PMID: 10745050]
[132]
Sagud M, Nikolac Perkovic M, Vuksan-Cusa B, et al. A prospective, longitudinal study of platelet serotonin and plasma brain-derived neurotrophic factor concentrations in major depression: effects of vortioxetine treatment. Psychopharmacology (Berl) 2016; 233(17): 3259-67.
[http://dx.doi.org/10.1007/s00213-016-4364-0] [PMID: 27356518]
[133]
Sen S, Duman R, Sanacora G. Serum BDNF, Depression and anti-depressant medications: Meta-Analyses and implications. Biol Psychiatry 2008; 64: 527.
[http://dx.doi.org/10.1016/j.biopsych.2008.05.005] [PMID: 18571629]
[134]
Pasco JA, Jacka FN, Williams LJ, et al. Leptin in depressed women: Cross-sectional and longitudinal data from an epidemiologic study. J Affect Disord 2008; 107(1-3): 221-5.
[http://dx.doi.org/10.1016/j.jad.2007.07.024] [PMID: 17727958]
[135]
Westling S, Ahrén B, Träskman-Bendz L, Westrin Å. Low CSF leptin in female suicide attempters with major depression. J Affect Disord 2004; 81(1): 41-8.
[http://dx.doi.org/10.1016/j.jad.2003.07.002] [PMID: 15183598]
[136]
Rouach V, Bloch M, Rosenberg N, et al. The acute ghrelin response to a psychological stress challenge does not predict the post-stress urge to eat. Psychoneuroendocrinology 2007; 32(6): 693-702.
[http://dx.doi.org/10.1016/j.psyneuen.2007.04.010] [PMID: 17560728]
[137]
Ozsoy S, Besirli A, Abdulrezzak U, Basturk M. Serum ghrelin and leptin levels in patients with depression and the effects of treatment. Psychiatry Investig 2014; 11(2): 167-72.
[http://dx.doi.org/10.4306/pi.2014.11.2.167] [PMID: 24843372]
[138]
Barim AO, Aydin S, Colak R, Dag E, Deniz O. Sahin İ. Ghrelin, paraoxonase and arylesterase levels in depressive patients before and after citalopram treatment. Clin Biochem 2009; 42(10-11): 1076-81.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.02.020] [PMID: 19272368]
[139]
Himmerich H, Patsalos O, Lichtblau N, Ibrahim MAA, Dalton B. Cytokine research in depression: Principles, challenges, and open questions. Front Psychiatry 2019; 10: 30.
[http://dx.doi.org/10.3389/fpsyt.2019.00030] [PMID: 30792669]
[140]
Köhler CA, Freitas TH, Stubbs B, et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: Systematic review and meta-analysis. Mol Neurobiol 2017; 555: 4195-206.
[http://dx.doi.org/10.1007/s12035-017-0632-1]
[141]
Lamers F, Vogelzangs N, Merikangas KR, de Jonge P, Beekman ATF, Penninx BWJH. Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry 2013; 18(6): 692-9.
[http://dx.doi.org/10.1038/mp.2012.144] [PMID: 23089630]
[142]
Schüle C, Baghai T, Goy J, Bidlingmaier M, Strasburger C, Laakmann G. The influence of mirtazapine on anterior pituitary hormone secretion in healthy male subjects. Psychopharmacol 2002; 1631: 95-101.
[http://dx.doi.org/10.1007/s00213-002-1148-5]
[143]
Chang CC, Jou SH, Lin TT, Lai TJ, Liu CS. Mitochondria DNA change and oxidative damage in clinically stable patients with major depressive disorder. PLoS One 2015; 10(5): e0125855.
[http://dx.doi.org/10.1371/journal.pone.0125855] [PMID: 25946463]
[144]
Herbet M. Szumełda I, Piątkowska-Chmiel I, Gawrońska-Grzywacz M, Dudka J. Beneficial effects of combined administration of fluoxetine and mitochondria-targeted antioxidant at in behavioural and molecular studies in mice model of depression. Behav Brain Res 2021; 405: 113185.
[http://dx.doi.org/10.1016/j.bbr.2021.113185] [PMID: 33617903]
[145]
Adzic M, Brkic Z, Bulajic S, Mitic M, Radojcic MB. Antidepressant action on mitochondrial dysfunction in psychiatric disorders. Drug Dev Res 2016; 77(7): 400-6.
[http://dx.doi.org/10.1002/ddr.21332] [PMID: 27539538]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy