Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Scoping Review

Effects of Piper sarmentosum on Bone Health and Fracture Healing: A Scoping Review

Author(s): Sophia Ogechi Ekeuku, Kok-Yong Chin* and Elvy Suhana Mohd Ramli

Volume 23, Issue 7, 2023

Published on: 07 February, 2023

Page: [908 - 916] Pages: 9

DOI: 10.2174/1871530323666221130152737

Price: $65

Abstract

Background: Piper sarmentosum (PS) is a traditional herb used by Southeast Asian communities to treat various illnesses. Recent pharmacological studies have discovered that PS possesses antioxidant and anti-inflammatory activities. Since oxidative stress and inflammation are two important processes driving the pathogenesis of bone loss, PS may have potential therapeutic effects against osteoporosis.

Objective: This review systematically summarised the therapeutic effects of PS on preventing osteoporosis and promoting fracture healing.

Methods: A systematic literature search was performed in November 2021 using 4 electronic databases and the search string "Piper sarmentosum" AND (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes).

Results: Nine unique articles were identified from the literature. The efficacy of PS has been studied in animal models of osteoporosis induced by ovariectomy and glucocorticoids, as well as bone fracture models. PS prevented deterioration of bone histomorphometric indices, improved fracture healing and restored the biomechanical properties of healed bone in ovariectomised rats. PS also prevented osteoblast/osteocyte apoptosis, increased bone formation and mineralisation and subsequently improved trabecular bone microstructures and strength of rats with osteoporosis induced by glucocorticoids. Apart from its antioxidant and anti-inflammatory activity, PS also suppressed circulating and skeletal expression of corticosterone and skeletal expression of 11β hydroxysteroid dehydrogenase type 1 but increased the enzyme activity in the glucocorticoid osteoporosis model. This review also identified several research gaps about the skeletal effects of PS and suggested future studies to bridge these gaps.

Conclusion: PS may be of therapeutic benefit to bone health. However, further research is required to validate this claim.

Keywords: Postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, oxidative stress, bone fragility, fracture healing, Piper sarmentosum.

Graphical Abstract
[1]
Watts, N.B.; Camacho, P.M.; Lewiecki, E.M.; Petak, S.M. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr. Pract., 2021, 27(4), 379-380.
[http://dx.doi.org/10.1016/j.eprac.2021.02.001] [PMID: 33577971]
[2]
Salari, N.; Ghasemi, H.; Mohammadi, L.; Behzadi, M.; Rabieenia, E.; Shohaimi, S.; Mohammadi, M. The global prevalence of osteoporosis in the world: A comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res., 2021, 16(1), 609.
[http://dx.doi.org/10.1186/s13018-021-02772-0] [PMID: 34657598]
[3]
Matzkin, E.G.; DeMaio, M.; Charles, J.F.; Franklin, C.C. Diagnosis and treatment of osteoporosis. J. Am. Acad. Orthop. Surg., 2019, 27(20), e902-e912.
[http://dx.doi.org/10.5435/JAAOS-D-18-00600] [PMID: 31021891]
[4]
Briot, K.; Roux, C. Glucocorticoid-induced osteoporosis. RMD Open, 2015, 1(1), e000014.
[http://dx.doi.org/10.1136/rmdopen-2014-000014] [PMID: 26509049]
[5]
Lorentzon, M.; Johansson, H.; Harvey, N.C.; Liu, E.; Vandenput, L.; McCloskey, E.V.; Kanis, J.A. Osteoporosis and fractures in women: The burden of disease. Climacteric, 2022, 25(1), 4-10.
[http://dx.doi.org/10.1080/13697137.2021.1951206] [PMID: 34319208]
[6]
Gorter, E.A.; Reinders, C.R.; Krijnen, P.; Appelman-Dijkstra, N.M.; Schipper, I.B. The effect of osteoporosis and its treatment on fracture healing a systematic review of animal and clinical studies. Bone Rep., 2021, 15, 101117.
[http://dx.doi.org/10.1016/j.bonr.2021.101117] [PMID: 34458509]
[7]
Kenkre, J.S.; Bassett, J.H.D. The bone remodelling cycle. Ann. Clin. Biochem., 2018, 55(3), 308-327.
[http://dx.doi.org/10.1177/0004563218759371] [PMID: 29368538]
[8]
Bourgonje, M.F.; Bourgonje, A.R.; Abdulle, A.E.; Kieneker, L.M.; la Bastide-van Gemert, S.; Gansevoort, R.T.; Bakker, S.J.L.; Mulder, D.J.; Pasch, A.; Saleh, J.; Gordijn, S.J.; van Goor, H. Systemic oxidative stress, aging and the risk of cardiovascular events in the general female population. Front. Cardiovasc. Med., 2021, 8, 630543.
[http://dx.doi.org/10.3389/fcvm.2021.630543] [PMID: 33634173]
[9]
Montoya-Estrada, A.; Velázquez-Yescas, K.G.; Veruete-Bedolla, D.B.; Ruiz-Herrera, J.D.; Villarreal-Barranca, A.; Romo-Yañez, J.; Ortiz-Luna, G.F.; Arellano-Eguiluz, A.; Solis-Paredes, M.; Flores-Pliego, A.; Espejel-Nuñez, A.; Estrada-Gutierrez, G.; Reyes-Muñoz, E. Parameters of oxidative stress in reproductive and postmenopausal mexican women. Int. J. Environ. Res. Public Health, 2020, 17(5), 1492.
[http://dx.doi.org/10.3390/ijerph17051492] [PMID: 32110899]
[10]
Tang, X.; Ma, S.; Li, Y.; Sun, Y.; Zhang, K.; Zhou, Q.; Yu, R. Evaluating the activity of sodium butyrate to prevent osteoporosis in rats by promoting osteal GSK-3β/Nrf2 signaling and mitochondrial function. J. Agric. Food Chem., 2020, 68(24), 6588-6603.
[http://dx.doi.org/10.1021/acs.jafc.0c01820] [PMID: 32459091]
[11]
Prideaux, M.; Kitase, Y.; Kimble, M.; O’Connell, T.M.; Bonewald, L.F. Taurine, an osteocyte metabolite, protects against oxidative stress-induced cell death and decreases inhibitors of the Wnt/β-catenin signaling pathway. Bone, 2020, 137, 115374.
[http://dx.doi.org/10.1016/j.bone.2020.115374] [PMID: 32330695]
[12]
Chen, X.; Wang, C.; Qiu, H.; Yuan, Y.; Chen, K.; Cao, Z.; Xiang Tan, R.; Tickner, J.; Xu, J.; Zou, J. Asperpyrone A attenuates RANKL‐induced osteoclast formation through inhibiting NFATc1, Ca 2+ signalling and oxidative stress. J. Cell. Mol. Med., 2019, 23(12), 8269-8279.
[http://dx.doi.org/10.1111/jcmm.14700] [PMID: 31612613]
[13]
Mohamad, N.V.; Ima-Nirwana, S.; Chin, K.Y. Are oxidative stress and inflammation mediators of bone loss due to estrogen deficiency? A review of current evidence. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(9), 1478-1487.
[http://dx.doi.org/10.2174/1871530320666200604160614] [PMID: 32496996]
[14]
Epsley, S.; Tadros, S.; Farid, A.; Kargilis, D.; Mehta, S.; Rajapakse, C.S. The effect of inflammation on bone. Front. Physiol., 2021, 11, 511799.
[http://dx.doi.org/10.3389/fphys.2020.511799] [PMID: 33584321]
[15]
Tu, K.N.; Lie, J.D.; Wan, C.K.V.; Cameron, M.; Austel, A.G.; Nguyen, J.K.; Van, K.; Hyun, D. Osteoporosis: A review of treatment options. P&T, 2018, 43(2), 92-104.
[PMID: 29386866]
[16]
Bandeira, L.; Lewiecki, E.M.; Bilezikian, J.P. Romosozumab for the treatment of osteoporosis. Expert Opin. Biol. Ther., 2017, 17(2), 255-263.
[http://dx.doi.org/10.1080/14712598.2017.1280455] [PMID: 28064540]
[17]
Bodenner, D.; Redman, C.; Riggs, A. Teriparatide in the management of osteoporosis. Clin. Interv. Aging, 2007, 2(4), 499-507.
[PMID: 18225450]
[18]
Black, D.M.; Rosen, C.J. Postmenopausal Osteoporosis. N. Engl. J. Med., 2016, 374(3), 254-262.
[http://dx.doi.org/10.1056/NEJMcp1513724] [PMID: 26789873]
[19]
Shanks, G.; Sharma, D.; Mishra, V. Prevention and treatment of osteoporosis in women. Obstetrics, Gynaecol. Reprod. Med., 2019, 29(7), 201-206.
[http://dx.doi.org/10.1016/j.ogrm.2019.04.001]
[20]
Sharon, S.E.; Chitra, V.C. Medicinal plants for the treatment of postmenopausl Osteoporosis. Biomed. Pharmacol. J., 2019, 12(3), 1561-1576.
[http://dx.doi.org/10.13005/bpj/1787]
[21]
Hashim Fauzy, F.; Mohd Zainudin, M.; Ismawi, H.R.; Elshami, T.F.T. Piper sarmentosum leaves aqueous extract attenuates vascular endothelial dysfunction in spontaneously hypertensive rats. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/7198592]
[22]
Aslam, M.S.; Ahmad, M.S.; Ahmad, M.A.; Akhlaq, M. An updated review on phytochemical and pharmacological propeties of Piper sarmentosum. Curr. Trends Biotechnol. Pharm., 2017, 11(4), 345-356.
[23]
Amran, A.A.; Zakaria, Z.; Othman, F.; Das, S.; Al-Mekhlafi, H.M.; Nordin, N.A.M.M. Changes in the vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and c-reactive protein following administration of aqueous extract of Piper sarmentosum on experimental rabbits fed with cholesterol diet. Lipids Health Dis., 2011, 10(1), 2.
[http://dx.doi.org/10.1186/1476-511X-10-2] [PMID: 21214952]
[24]
Chanwitheesuk, A.; Teerawutgulrag, A.; Rakariyatham, N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem., 2005, 92(3), 491-497.
[http://dx.doi.org/10.1016/j.foodchem.2004.07.035]
[25]
Ugusman, A.; Zakaria, Z.; Hui, C.K.; Nordin, N.A.M.M.; Mahdy, Z.A. Flavonoids of Piper sarmentosum and its cytoprotective effects against oxidative stress. EXCLI J., 2012, 11, 705-714.
[PMID: 27847456]
[26]
Hafizah, A.H.; Zaiton, Z.; Zulkhairi, A.; Mohd Ilham, A.; Nor Anita, M.M.N.; Zaleha, A.M. Piper sarmentosum as an antioxidant on oxidative stress in human umbilical vein endothelial cells induced by hydrogen peroxide. J. Zhejiang Univ. Sci. B, 2010, 11(5), 357-365.
[http://dx.doi.org/10.1631/jzus.B0900397] [PMID: 20443214]
[27]
Mohd Zainudin, M.; Zakaria, Z.; Megat Mohd Nordin, N.A. The use of Piper sarmentosum leaves aqueous extract (Kadukmy™) as antihypertensive agent in spontaneous hypertensive rats. BMC Complement. Altern. Med., 2015, 15(1), 54.
[http://dx.doi.org/10.1186/s12906-015-0565-z] [PMID: 25887182]
[28]
Yeo, E.T.Y.; Wong, K.W.L.; See, M.L.; Wong, K.Y.; Gan, S.Y.; Chan, E.W.L. Piper sarmentosum Roxb. confers neuroprotection on beta-amyloid (Aβ)-induced microglia-mediated neuroinflammation and attenuates tau hyperphosphorylation in SH-SY5Y cells. J. Ethnopharmacol., 2018, 217, 187-194.
[http://dx.doi.org/10.1016/j.jep.2018.02.025] [PMID: 29462698]
[29]
Lee, K.H.; Padzil, A.M.; Syahida, A.; Abdullah, N.; Zuhainis, S.W.; Maziah, M. Evaluation of anti-inflammatory, antioxidant and antinociceptive activities of six Malaysian medicinal plants. J. Med. Plants Res., 2011, 5(23), 5555-5563.
[30]
Amran, A.A.; Zakaria, Z.; Othman, F.; Das, S.; Raj, S.; Nordin, N.A.M.M. Aqueous extract of Piper sarmentosum decreases atherosclerotic lesions in high cholesterolemic experimental rabbits. Lipids Health Dis., 2010, 9(1), 44.
[http://dx.doi.org/10.1186/1476-511X-9-44] [PMID: 20433693]
[31]
Zakaria, Z.A.; Patahuddin, H.; Mohamad, A.S.; Israf, D.A.; Sulaiman, M.R. In vivo anti-nociceptive and anti-inflammatory activities of the aqueous extract of the leaves of Piper sarmentosum. J. Ethnopharmacol., 2010, 128(1), 42-48.
[http://dx.doi.org/10.1016/j.jep.2009.12.021] [PMID: 20035852]
[32]
Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; Hempel, S.; Akl, E.A.; Chang, C.; McGowan, J.; Stewart, L.; Hartling, L.; Aldcroft, A.; Wilson, M.G.; Garritty, C.; Lewin, S.; Godfrey, C.M.; Macdonald, M.T.; Langlois, E.V.; Soares-Weiser, K.; Moriarty, J.; Clifford, T.; Tunçalp, Ö.; Straus, S.E. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med., 2018, 169(7), 467-473.
[http://dx.doi.org/10.7326/M18-0850] [PMID: 30178033]
[33]
Estai, M.A.; Suhaimi, F.H.; Das, S.; Fadzilah, F.M.; Majedah Idrus Alhabshi, S.; Shuid, A.N.; Soelaiman, I.N. Piper sarmentosum enhances fracture healing in ovariectomized osteoporotic rats: A radiological study. Clinics, 2011, 66(5), 865-872.
[http://dx.doi.org/10.1590/S1807-59322011000500025] [PMID: 21789393]
[34]
Estai, M.A.; Soelaiman, I.N.; Shuid, A.N.; Das, S.; Ali, A.M.; Suhaimi, F.H. Histological changes in the fracture callus following the administration of water extract of Piper sarmentosum (daun kadok) in estrogen-deficient rats. Iran. J. Med. Sci., 2011, 36(4), 281-288.
[PMID: 23115413]
[35]
Estai, M.A.; Suhaimi, F.; Shuid, A.N.; Das, S.; Abdullah, S.; Soelaiman, I.N. Biomechanical evaluation of fracture healing following administration of Piper sarmentosum in ovariectomised rats. AFRICAN J Pharm Pharmacol., 2012, 6(3), 148-156.
[36]
Suhana Mohd Ramli, E.; Nirwana Soelaiman, I.; Othman, F.; Ahmad, F.; Nazrun Shuib, A.; Mohamed, N.; Muhammad, N.; Hj Suhaimi, F. The effects of piper sarmentosum water extract on the expression and activity of 11β-hydroxysteroid dehydrogenase type 1 in the bones with excessive glucocorticoids. Iran. J. Med. Sci., 2012, 37(1), 39-46.
[PMID: 23115429]
[37]
Mohamad Asri, S.; Mohd Ramli, E.; Soelaiman, I.; Mat Noh, M.; Abdul Rashid, A.; Suhaimi, F. Piper sarmentosum effects on 11β-hydroxysteroid dehydrogenase type 1 enzyme in serum and bone in rat model of glucocorticoid-induced osteoporosis. Molecules, 2016, 21(11), 1523.
[http://dx.doi.org/10.3390/molecules21111523] [PMID: 27854305]
[38]
Asri, S.F.; Mohd Ramli, E.S.; Nirwana, I.; Alfakry, M.; Hamid, A.; Farihah, H. Relationship of osteoblast and osteoclast-related mRNA expression with the use of piper sarmentosum water extract in the treatment of glucocorticoid-induced Osteoporosis. Int J Basic Appl Sci., 2016, 4, 18-32.
[39]
Nirwana, S. Piper sarmentosum improves bone structure and biomechanical strength of rats given excess glucocorticoid. Br. J. Pharm. Res., 2012, 2(3), 168-187.
[http://dx.doi.org/10.9734/BJPR/2012/1435]
[40]
Suhana, M.R.; Farihah, H.S.; Faizah, O.; Nazrun, S.A.; Norazlina, M.; Norliza, M.; Nirwana, S.I. Piper sarmentosum prevents glucocorticoid-induced osteoporotic bone resorption by increasing 11β-hydroxysteroid dehydrogenase type 1 activity. Clin. Ter., 2011, 162(4), 313-318.
[PMID: 21912818]
[41]
Mohamad Asri, S.F.; Soelaiman, I.N.; Mohd Moklas, M.A.; Mohd Nor, N.H.; Mohamad Zainal, N.H.; Mohd Ramli, E.S. The role of Piper sarmentosum aqueous extract as a bone protective agent, a histomorphometric study. Int. J. Mol. Sci., 2020, 21(20), 7715.
[http://dx.doi.org/10.3390/ijms21207715] [PMID: 33086468]
[42]
Mohamad, S.; Shuid, A.N.; Mohamed, N.; Fadzilah, F.M.; Mokhtar, S.A.; Abdullah, S.; Othman, F.; Suhaimi, F.; Muhammad, N.; Soelaiman, I.N. The effects of alpha-tocopherol supplementation on fracture healing in a postmenopausal osteoporotic rat model. Clinics, 2012, 67(9), 1077-1085.
[http://dx.doi.org/10.6061/clinics/2012(09)16] [PMID: 23018307]
[43]
Qin, L.; Genant, H.K.; Griffith, J.F.; Leung, K.S. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials: Techniques and applications; Springer, 2007, pp. 1-700.
[44]
Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R.U. Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. J. Musculoskelet. Neuronal Interact., 2017, 17(3), 114-139.
[PMID: 28860414]
[45]
Iolascon, G.; Frizzi, L.; Di Pietro, G.; Capaldo, A.; Luciano, F.; Gimigliano, F. Bone quality and bone strength: Benefits of the bone-forming approach. Clin. Cases Miner. Bone Metab., 2014, 11(1), 20-24.
[http://dx.doi.org/10.11138/ccmbm/2014.11.1.020] [PMID: 25002875]
[46]
Vandewalle, J.; Luypaert, A.; De Bosscher, K.; Libert, C. Therapeutic mechanisms of glucocorticoids. Trends Endocrinol. Metab., 2018, 29(1), 42-54.
[http://dx.doi.org/10.1016/j.tem.2017.10.010] [PMID: 29162310]
[47]
Compston, J. Glucocorticoid-induced osteoporosis: An update. Endocrine, 2018, 61(1), 7-16.
[http://dx.doi.org/10.1007/s12020-018-1588-2] [PMID: 29691807]
[48]
Chotiyarnwong, P.; McCloskey, E.V. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat. Rev. Endocrinol., 2020, 16(8), 437-447.
[http://dx.doi.org/10.1038/s41574-020-0341-0] [PMID: 32286516]
[49]
Fan, Z.Q.; Bai, S.C.; Xu, Q.; Li, Z.J.; Cui, W.H.; Li, H.; Li, X.H.; Zhang, H.F. Oxidative stress induced osteocyte apoptosis in steroid-induced femoral head necrosis. Orthop. Surg., 2021, 13(7), 2145-2152.
[http://dx.doi.org/10.1111/os.13127] [PMID: 34559465]
[50]
Almeida, M.; Han, L.; Ambrogini, E.; Weinstein, R.S.; Manolagas, S.C. Glucocorticoids and tumor necrosis factor α-increase oxidative stress and suppress Wnt protein signaling in osteoblasts. J. Biol. Chem., 2011, 286(52), 44326-44335.
[http://dx.doi.org/10.1074/jbc.M111.283481] [PMID: 22030390]
[51]
Sato, A.Y.; Tu, X.; McAndrews, K.A.; Plotkin, L.I.; Bellido, T. Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against Endoplasmic Reticulum (ER) stress in vitro and in vivo in female mice. Bone, 2015, 73, 60-68.
[http://dx.doi.org/10.1016/j.bone.2014.12.012] [PMID: 25532480]
[52]
Zhang, S.; Wang, X.; Li, G.; Chong, Y.; Zhang, J.; Guo, X. Osteoclast regulation of osteoblasts via RANK-RANKL reverse signal transduction in vitro. Mol. Med. Rep., 2017, 16(4), 3994-4000.
[http://dx.doi.org/10.3892/mmr.2017.7039]
[53]
Thompson, W.R.; Rubin, C.T.; Rubin, J. Mechanical regulation of signaling pathways in bone. Gene, 2012, 503(2), 179-193.
[http://dx.doi.org/10.1016/j.gene.2012.04.076] [PMID: 22575727]
[54]
Wang, M. Inhibitors of 11β-hydroxysteroid dehydrogenase type 1 in antidiabetic therapy. Handb. Exp. Pharmacol., 2011, 203, 127-146.
[http://dx.doi.org/10.1007/978-3-642-17214-4_6]
[55]
Yuan, X.; Li, H.; Bai, H.; Su, Z.; Xiang, Q.; Wang, C.; Zhao, B.; Zhang, Y.; Zhang, Q.; Chu, Y.; Huang, Y. Synthesis of novel curcumin analogues for inhibition of 11β-hydroxysteroid dehydrogenase type 1 with anti-diabetic properties. Eur. J. Med. Chem., 2014, 77, 223-230.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.012] [PMID: 24642565]
[56]
Hollis, G.; Huber, R. 11β-Hydroxysteroid dehydrogenase type 1 inhibition in type 2 diabetes mellitus. Diabetes Obes. Metab., 2011, 13(1), 1-6.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01305.x] [PMID: 21114597]
[57]
Ng, J.S.; Chin, K.Y. Potential mechanisms linking psychological stress to bone health. Int. J. Med. Sci., 2021, 18(3), 604-614.
[http://dx.doi.org/10.7150/ijms.50680] [PMID: 33437195]
[58]
Peungvicha, P.; Thirawarapan, S.S.; Temsiririrkkul, R.; Watanabe, H.; Kumar Prasain, J.; Kadota, S. Hypoglycemic effect of the water extract of Piper sarmentosum in rats. J. Ethnopharmacol., 1998, 60(1), 27-32.
[http://dx.doi.org/10.1016/S0378-8741(97)00127-X] [PMID: 9533429]
[59]
Mohd Zainudin, M.; Zakaria, Z.; Megat Mohd Nordin, N.A.; Othman, F. Does oral ingestion of Piper sarmentosum cause toxicity in experimental animals? Evid. Based Complement. Alternat. Med., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/705950] [PMID: 24228062]
[60]
Ridtitid, W.; Ruangsang, P.; Reanmongkol, W.; Wongnawa, M. Studies of the anti-inflammatory and antipyretic activities of the methanolic extract of Piper sarmentosum Roxb. leaves in rats. Songklanakarin J. Sci. Technol., 2007, 29(6), 1519-1526.
[61]
Hussain, K.; Ismail, Z.; Sadikun, A.; Ibrahim, P. Standardization and in vivo antioxidant activity of ethanol extracts of fruit and leaf of Piper sarmentosum. Planta Med., 2010, 76(5), 418-425.
[http://dx.doi.org/10.1055/s-0029-1186279] [PMID: 19862670]
[62]
Hussain, K.; Ismail, Z.; Sadikun, A.; Ibrahim, P. Bioactive markers based pharmacokinetic evaluation of extracts of a traditional medicinal plant, Piper sarmentosum. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-8.
[http://dx.doi.org/10.1093/ecam/nep143] [PMID: 19770264]
[63]
Ekeuku, S.O.; Nur Azlina, M.F.; Chin, K.Y. Effects of piper sarmentosum on metabolic syndrome and its related complications: A review of preclinical evidence. Appl. Sci., 2021, 11(21), 9860.
[http://dx.doi.org/10.3390/app11219860]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy