Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Role of Genetics and Synergistic Effect of Targeting Common Genetic Mutations in Acute Lymphoblastic Leukemia (ALL)

Author(s): Niloofar Pilehvari, Maryam Katoueezadeh, Gholamhossein Hassanshahi, Seyedeh Atekeh Torabizadeh* and Seyed Mohammad Torabizadeh

Volume 23, Issue 14, 2023

Published on: 29 December, 2022

Page: [1435 - 1450] Pages: 16

DOI: 10.2174/1389557523666221207155909

Price: $65

Abstract

Increasing concern regarding non-treatment and relapse in Acute Lymphoblastic Leukemia (ALL) among children and adults has attracted the attention of researchers to investigate the genetic factors of ALL and discover new treatments with a better prognosis. Nevertheless, the survival rate in children is more than in adults; therefore, it is necessary to find new potential molecular targets with better therapeutic results. Genomic analysis has enabled the detection of different genetic defects that are serious for driving leukemogenesis. The study of genetic translocation provides a better understanding of the function of genes involved in disease progression. This paper presents an overview of the main genetic translocations and dysregulations in the signaling pathways of ALL. We also report the inhibitors of these main translocations and evaluate the synergistic effect of chemical inhibitors and gamma-ray irradiation on ALL.

Keywords: Acute lymphoblastic leukemia, signaling pathways, genetic translocation, genetic mutations, gamma-ray irradiation, leukemogenesis.

Graphical Abstract
[1]
Karimabad, M.N.; Mahmoodi, M.; Jafarzadeh, A.; Darekordi, A.; Hajizadeh, M.R.; Hassanshahi, G. Molecular targets, anti-cancer properties and potency of synthetic indole-3-carbinol derivatives. Mini Rev. Med. Chem., 2019, 19(7), 540-554.
[http://dx.doi.org/10.2174/1389557518666181116120145] [PMID: 30444199]
[2]
Moosavi, S.R.; Khorramdelazad, H.; Amin, M.; Fatahpoor, S.; Moogooei, M.; Karimabad, M.N.; Paghale, M.J.; Vakilian, A.; Hassanshahi, G. The SDF-1 3'A genetic variation is correlated with elevated intra-tumor tissue and circulating concentration of CXCL12 in glial tumors: A study on Iranian anaplastic astrocytoma and glioblastoma multiforme patients. J. Mol. Neurosci., 2013, 50(2), 298-304.
[http://dx.doi.org/10.1007/s12031-013-9954-2] [PMID: 23335032]
[3]
Karimabad, M.N.; Mahmoodi, M.; Jafarzadeh, A.; Darehkordi, A.; Hajizadeh, M.R.; Khorramdelazad, H.; Sayadi, A.R.; Rahmani, F.; Has-sanshahi, G. Evaluating of OCT-4 and NANOG was differentially regulated by a new derivative indole in leukemia cell line. Immunol. Lett., 2017, 190, 7-14.
[http://dx.doi.org/10.1016/j.imlet.2017.06.012] [PMID: 28690187]
[4]
Sheikhrezaei, Z.; Heydari, P.; Farsinezhad, A.; Fatemi, A.; Khanamani Falahati-Pour, S.; Darakhshan, S.; Noroozi Karimabad, M.; Darekordi, A.; Khorramdelazad, H.; Hassanshahi, G. A new indole derivative decreased SALL4 gene expression in acute promyelocytic leukemia cell line (NB4). Iran. Biomed. J., 2018, 22(2), 99-106.
[PMID: 28800701]
[5]
Akbarpoor, V.; Karimabad, M.N.; Mahmoodi, M.; Mirzaei, M.R. The saffron effects on expression pattern of critical self-renewal genes in adenocarcinoma tumor cell line (AGS). Gene Rep., 2020, 19, 100629.
[http://dx.doi.org/10.1016/j.genrep.2020.100629]
[6]
Simioni, C.; Bergamini, F.; Ferioli, M.; Rimondi, E.; Caruso, L.; Neri, L.M. New biomarkers and therapeutic strategies in acute lympho-blastic leukemias: Recent advances. Hematol. Oncol., 2020, 38(1), 22-33.
[http://dx.doi.org/10.1002/hon.2678] [PMID: 31487068]
[7]
Barsan, V.; Ramakrishna, S.; Davis, K.L. Immunotherapy for the treatment of acute lymphoblastic leukemia. Curr. Oncol. Rep., 2020, 22(2), 11.
[http://dx.doi.org/10.1007/s11912-020-0875-2] [PMID: 31997022]
[8]
Zia, S.; Shahid, R. Mutagenic players in ALL progression and their associated signaling pathways. Cancer Genet., 2019, 233-234, 7-20.
[http://dx.doi.org/10.1016/j.cancergen.2019.02.002] [PMID: 31109597]
[9]
Mullighan, C.G.; Goorha, S.; Radtke, I.; Miller, C.B.; Coustan-Smith, E.; Dalton, J.D.; Girtman, K.; Mathew, S.; Ma, J.; Pounds, S.B.; Su, X.; Pui, C.H.; Relling, M.V.; Evans, W.E.; Shurtleff, S.A.; Downing, J.R. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature, 2007, 446(7137), 758-764.
[http://dx.doi.org/10.1038/nature05690] [PMID: 17344859]
[10]
Vairy, S.; Tran, T.H. IKZF1 alterations in acute lymphoblastic leukemia: The good, the bad and the ugly. Blood Rev., 2020, 44, 100677.
[http://dx.doi.org/10.1016/j.blre.2020.100677] [PMID: 32245541]
[11]
Bottardi, S.; Mavoungou, L.; Pak, H.; Daou, S.; Bourgoin, V.; Lakehal, Y.A.; Affar, E.B.; Milot, E. The IKAROS interaction with a com-plex including chromatin remodeling and transcription elongation activities is required for hematopoiesis. PLoS Genet., 2014, 10(12), e1004827.
[http://dx.doi.org/10.1371/journal.pgen.1004827] [PMID: 25474253]
[12]
Liang, Z.; Brown, K.E.; Carroll, T.; Taylor, B.; Vidal, I.F.; Hendrich, B.; Rueda, D.; Fisher, A.G.; Merkenschlager, M. A high-resolution map of transcriptional repression. eLife, 2017, 6, e22767.
[http://dx.doi.org/10.7554/eLife.22767] [PMID: 28318487]
[13]
O’Neill, D.W.; Schoetz, S.S.; Lopez, R.A.; Castle, M.; Rabinowitz, L.; Shor, E.; Krawchuk, D.; Goll, M.G.; Renz, M.; Seelig, H.P.; Han, S.; Seong, R.H.; Park, S.D.; Agalioti, T.; Munshi, N.; Thanos, D.; Erdjument-Bromage, H.; Tempst, P.; Bank, A. An ikaroscontaining chromatin-remodeling complex in adult-type erythroid cells. Mol. Cell. Biol., 2000, 20(20), 7572-7582.
[http://dx.doi.org/10.1128/MCB.20.20.7572-7582.2000] [PMID: 11003653]
[14]
Marke, R.; van Leeuwen, F.N.; Scheijen, B. The many faces of IKZF1 in B-cell precursor acute lymphoblastic leukemia. Haematologica, 2018, 103(4), 565-574.
[http://dx.doi.org/10.3324/haematol.2017.185603] [PMID: 29519871]
[15]
Oravecz, A.; Apostolov, A.; Polak, K.; Jost, B.; Le Gras, S.; Chan, S.; Kastner, P. Ikaros mediates gene silencing in T cells through Poly-comb repressive complex 2. Nat. Commun., 2015, 6(1), 8823.
[http://dx.doi.org/10.1038/ncomms9823] [PMID: 26549758]
[16]
Popescu, M.; Gurel, Z.; Ronni, T.; Song, C.; Hung, K.Y.; Payne, K.J.; Dovat, S. Ikaros stability and pericentromeric localization are regula-ted by protein phosphatase 1. J. Biol. Chem., 2009, 284(20), 13869-13880.
[http://dx.doi.org/10.1074/jbc.M900209200] [PMID: 19282287]
[17]
Schwickert, T.A.; Tagoh, H.; Gültekin, S.; Dakic, A.; Axelsson, E.; Minnich, M.; Ebert, A.; Werner, B.; Roth, M.; Cimmino, L.; Dickins, R.A.; Zuber, J.; Jaritz, M.; Busslinger, M. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat. Immunol., 2014, 15(3), 283-293.
[http://dx.doi.org/10.1038/ni.2828] [PMID: 24509509]
[18]
Scheijen, B.; Boer, J.M.; Marke, R.; Tijchon, E.; van Ingen Schenau, D.; Waanders, E.; van Emst, L.; van der Meer, L.T.; Pieters, R.; Es-cherich, G.; Horstmann, M.A.; Sonneveld, E.; Venn, N.; Sutton, R.; Dalla-Pozza, L.; Kuiper, R.P.; Hoogerbrugge, P.M.; den Boer, M.L.; van Leeuwen, F.N. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients. Haematologica, 2017, 102(3), 541-551.
[http://dx.doi.org/10.3324/haematol.2016.153023] [PMID: 27979924]
[19]
Okuyama, K.; Strid, T.; Kuruvilla, J.; Somasundaram, R.; Cristobal, S.; Smith, E.; Prasad, M.; Fioretos, T.; Lilljebjörn, H.; Soneji, S.; Lang, S.; Ungerbäck, J.; Sigvardsson, M. PAX5 is part of a functional transcription factor network targeted in lymphoid leukemia. PLoS Genet., 2019, 15(8), e1008280.
[http://dx.doi.org/10.1371/journal.pgen.1008280] [PMID: 31381561]
[20]
Bastian, L.; Schroeder, M.P.; Eckert, C.; Schlee, C.; Tanchez, J.O.; Kämpf, S.; Wagner, D.L.; Schulze, V.; Isaakidis, K.; Lázaro-Navarro, J.; Hänzelmann, S.; James, A.R.; Ekici, A.; Burmeister, T.; Schwartz, S.; Schrappe, M.; Horstmann, M.; Vosberg, S.; Krebs, S.; Blum, H.; He-cht, J.; Greif, P.A.; Rieger, M.A.; Brüggemann, M.; Gökbuget, N.; Neumann, M.; Baldus, C.D. PAX5 biallelic genomic alterations define a novel subgroup of B-cell precursor acute lymphoblastic leukemia. Leukemia, 2019, 33(8), 1895-1909.
[http://dx.doi.org/10.1038/s41375-019-0430-z] [PMID: 30842609]
[21]
Tijchon, E.; Havinga, J.; van Leeuwen, F.N.; Scheijen, B. Blineage transcription factors and cooperating gene lesions required for leu-kemia development. Leukemia, 2013, 27(3), 541-552.
[http://dx.doi.org/10.1038/leu.2012.293] [PMID: 23047478]
[22]
Smeenk, L.; Fischer, M.; Jurado, S.; Jaritz, M.; Azaryan, A.; Werner, B.; Roth, M.; Zuber, J.; Stanulla, M.; Boer, M.L.; Mullighan, C.G.; Strehl, S.; Busslinger, M. Molecular role of the PAX 5‐ ETV 6 oncoprotein in promoting B‐cell acute lymphoblastic leukemia. EMBO J., 2017, 36(6), 718-735.
[http://dx.doi.org/10.15252/embj.201695495] [PMID: 28219927]
[23]
Sun, C.; Chang, L.; Zhu, X. Pathogenesis of ETV6/RUNX1 -positive childhood acute lymphoblastic leukemia and mechanisms underlying its relapse. Oncotarget, 2017, 8(21), 35445-35459.
[http://dx.doi.org/10.18632/oncotarget.16367] [PMID: 28418909]
[24]
Zhang, H.; Wang, H.; Qian, X.; Gao, S.; Xia, J.; Liu, J.; Cheng, Y.; Man, J.; Zhai, X. Genetic mutational analysis of pediatric acute lymphoblastic leukemia from a single center in China using exon sequencing. BMC Cancer, 2020, 20(1), 211.
[http://dx.doi.org/10.1186/s12885-020-6709-7] [PMID: 32164600]
[25]
Lindqvist, C.M.; Lundmark, A.; Nordlund, J.; Freyhult, E.; Ekman, D.; Almlöf, J.C.; Raine, A.; Övernäs, E.; Abrahamsson, J.; Frost, B.M.; Grandér, D.; Heyman, M.; Palle, J.; Forestier, E.; Lönnerholm, G.; Berglund, E.C.; Syvänen, A.C. Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes. Oncotarget, 2016, 7(39), 64071-64088.
[http://dx.doi.org/10.18632/oncotarget.11773] [PMID: 27590521]
[26]
Litzow, M.R.; Ferrando, A.A. How I treat T-cell acute lymphoblastic leukemia in adults. Blood, 2015, 126(7), 833-841.
[http://dx.doi.org/10.1182/blood-2014-10-551895] [PMID: 25966987]
[27]
Ferrando, A. Can one target T-cell ALL? Best Pract. Res. Clin. Haematol., 2018, 31(4), 361-366.
[http://dx.doi.org/10.1016/j.beha.2018.10.001] [PMID: 30466748]
[28]
Trinquand, A.; Tanguy-Schmidt, A.; Ben Abdelali, R.; Lambert, J.; Beldjord, K.; Lengliné, E.; De Gunzburg, N.; Payet-Bornet, D.; Lhermit-te, L.; Mossafa, H.; Lhéritier, V.; Bond, J.; Huguet, F.; Buzyn, A.; Leguay, T.; Cahn, J.Y.; Thomas, X.; Chalandon, Y.; Delannoy, A.; Bonmati, C.; Maury, S.; Nadel, B.; Macintyre, E.; Ifrah, N.; Dombret, H.; Asnafi, V. Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: A group for research in adult acute lymphoblastic leukemia study. J. Clin. Oncol., 2013, 31(34), 4333-4342.
[http://dx.doi.org/10.1200/JCO.2012.48.5292] [PMID: 24166518]
[29]
Kumar, V.; Palermo, R.; Talora, C.; Campese, A.F.; Checquolo, S.; Bellavia, D.; Tottone, L.; Testa, G.; Miele, E.; Indraccolo, S.; Amadori, A.; Ferretti, E.; Gulino, A.; Vacca, A.; Screpanti, I. Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia, 2014, 28(12), 2324-2335.
[http://dx.doi.org/10.1038/leu.2014.133] [PMID: 24727676]
[30]
Zuurbier, L.; Homminga, I.; Calvert, V.; Winkel, M.L.; Buijs-Gladdines, J.G.C A M.; Kooi, C.; Smits, W.K.; Sonneveld, E.; Veerman, A.J.P.; Kamps, W.A.; Horstmann, M.; Petricoin, E.F., III; Pieters, R.; Meijerink, J.P.P. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia, 2010, 24(12), 2014-2022.
[http://dx.doi.org/10.1038/leu.2010.204] [PMID: 20861909]
[31]
Mansouri, S.; Khansarinejad, B.; Mosayebi, G.; Eghbali, A.; Mondanizadeh, M. Alteration in expression of miR-32 and FBXW7 tumor suppressor in plasma samples of patients with T-cell acute lymphoblastic leukemia. Cancer Manag. Res., 2020, 12, 1253-1259.
[http://dx.doi.org/10.2147/CMAR.S238470] [PMID: 32110099]
[32]
Lai, E.C. Two decades of miRNA biology: Lessons and challenges. RNA, 2015, 21(4), 675-677.
[http://dx.doi.org/10.1261/rna.051193.115] [PMID: 25780186]
[33]
Lee, Y.S.; Dutta, A. MicroRNAs in cancer. Annu. Rev. Pathol., 2009, 4(1), 199-227.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092222] [PMID: 18817506]
[34]
Shu, Y.; Wang, Y.; Lv, W.Q.; Peng, D.Y.; Li, J.; Zhang, H.; Jiang, G.J.; Yang, B.J.; Liu, S.; Zhang, J.; Chen, Y.H.; Tang, S.; Wan, K.X.; Yuan, J.T.; Guo, W.; Fu, G.; Qi, X.K.; Liu, Z.D.; Liu, H.Y.; Yang, C.; Zhang, L.H.; Liu, F.J.; Yu, J.; Zhang, P.H.; Qu, B.; Zhao, H.; He, T.C.; Zou, L. ARRB1-promoted NOTCH1 degradation is suppressed by OncomiR miR-223 in T-cell acute lymphoblastic leukemia. Cancer Res., 2020, 80(5), 988-998.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1471] [PMID: 31822496]
[35]
Daniel, R.; Melão, A.; van Boxtel, R.; Santos, C.; Silva, A.; Silva, M.C.; Cardoso, B.A.; Coffer, P.J.; Barata, J. IL-7 activates a STAT5/PIM1 axis to promote T-cell acute lymphoblastic leukemia proliferation and viability in a Bcl-2-independent manner. Blood, 2018, 132(S1), 914-914.
[http://dx.doi.org/10.1182/blood-2018-99-113778]
[36]
Ribeiro, D.; Melão, A.; van Boxtel, R.; Santos, C.I.; Silva, A.; Silva, M.C.; Cardoso, B.A.; Coffer, P.J.; Barata, J.T. STAT5 is essential for IL-7–mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. Blood Adv., 2018, 2(17), 2199-2213.
[http://dx.doi.org/10.1182/bloodadvances.2018021063] [PMID: 30185437]
[37]
Belver, L.; Ferrando, A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat. Rev. Cancer, 2016, 16(8), 494-507.
[http://dx.doi.org/10.1038/nrc.2016.63] [PMID: 27451956]
[38]
Sawai, C.M.; Freund, J.; Oh, P.; Ndiaye-Lobry, D.; Bretz, J.C.; Strikoudis, A.; Genesca, L.; Trimarchi, T.; Kelliher, M.A.; Clark, M.; Sou-lier, J.; Chen-Kiang, S.; Aifantis, I. Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia. Cancer Cell, 2012, 22(4), 452-465.
[http://dx.doi.org/10.1016/j.ccr.2012.09.016] [PMID: 23079656]
[39]
Van Vlierberghe, P.; Ambesi-Impiombato, A.; De Keersmaecker, K.; Hadler, M.; Paietta, E.; Tallman, M.S.; Rowe, J.M.; Forne, C.; Rue, M.; Ferrando, A.A. Prognostic relevance of integrated genetic profiling in adult T-cell acute lymphoblastic leukemia. Blood, 2013, 122(1), 74-82.
[http://dx.doi.org/10.1182/blood-2013-03-491092] [PMID: 23687089]
[40]
Herranz, D.; Ferrando, A.A. Targeting NOTCH1 in T-ALL: Starving the dragon. Cell Cycle, 2016, 15(4), 483-484.
[http://dx.doi.org/10.1080/15384101.2015.1128191] [PMID: 26864725]
[41]
Degryse, S.; de Bock, C.E.; Demeyer, S.; Govaerts, I.; Bornschein, S.; Verbeke, D.; Jacobs, K.; Binos, S.; Skerrett-Byrne, D.A.; Murray, H.C.; Verrills, N.M.; Van Vlierberghe, P.; Cools, J.; Dun, M.D. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia, 2018, 32(3), 788-800.
[http://dx.doi.org/10.1038/leu.2017.276] [PMID: 28852199]
[42]
Churchman, M.L.; Qian, M.; Te Kronnie, G.; Zhang, R.; Yang, W.; Zhang, H.; Lana, T.; Tedrick, P.; Baskin, R.; Verbist, K. Germline gene-tic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell, 2018, 33(5), 937-948.
[43]
Stanulla, M.; Cavé, H.; Moorman, A.V. IKZF1 deletions in pediatric acute lymphoblastic leukemia: Still a poor prognostic marker? Blood, 2020, 135(4), 252-260.
[http://dx.doi.org/10.1182/blood.2019000813] [PMID: 31821407]
[44]
Churchman, M.L.; Mullighan, C.G. Ikaros: Exploiting and targeting the hematopoietic stem cell niche in B-progenitor acute lymphoblastic leukemia. Exp. Hematol., 2017, 46, 1-8.
[http://dx.doi.org/10.1016/j.exphem.2016.11.002] [PMID: 27865806]
[45]
Kinoshita, S.; Ri, M.; Kanamori, T.; Aoki, S.; Yoshida, T.; Narita, T.; Totani, H.; Ito, A.; Kusumoto, S.; Ishida, T.; Komatsu, H.; Iida, S. Potent antitumor effect of combination therapy with sub-optimal doses of Akt inhibitors and pomalidomide plus dexamethasone in multi-ple myeloma. Oncol. Lett., 2018, 15(6), 9450-9456.
[http://dx.doi.org/10.3892/ol.2018.8501] [PMID: 29928335]
[46]
Chen, L.; Zhou, D.; Liu, Z.; Huang, X.; Liu, Q.; Kang, Y.; Chen, Z.; Guo, Y.; Zhu, H.; Sun, C. Combination of gemcitabine and erlotinib inhibits recurrent pancreatic cancer growth in mice via the JAK-STAT pathway. Oncol. Rep., 2018, 39(3), 1081-1089.
[http://dx.doi.org/10.3892/or.2018.6198] [PMID: 29328487]
[47]
Groner, B.; von Manstein, V. Jak Stat signaling and cancer: Opportunities, benefits and side effects of targeted inhibition. Mol. Cell. Endocrinol., 2017, 451, 1-14.
[http://dx.doi.org/10.1016/j.mce.2017.05.033] [PMID: 28576744]
[48]
Girardi, T.; Vicente, C.; Cools, J.; De Keersmaecker, K. The genetics and molecular biology of T-ALL. Blood, 2017, 129(9), 1113-1123.
[http://dx.doi.org/10.1182/blood-2016-10-706465] [PMID: 28115373]
[49]
Konoplev, S.; Lu, X.; Konopleva, M.; Jain, N.; Ouyang, J.; Goswami, M.; Roberts, K.G.; Valentine, M.; Mullighan, C.G.; Bueso-Ramos, C.; Zweidler-McKay, P.A.; Jorgensen, J.L.; Wang, S.A. CRLF2-positive B-cell acute lymphoblastic leukemia in adult patients: A single-institution experience. Am. J. Clin. Pathol., 2017, 147(4), 357-363.
[http://dx.doi.org/10.1093/ajcp/aqx005] [PMID: 28340183]
[50]
Harrison, C.J. Targeting signaling pathways in acute lymphoblastic leukemia: New insights. Hematology, 2013, 2013(1), 118-125.
[http://dx.doi.org/10.1182/asheducation-2013.1.118] [PMID: 24319172]
[51]
Maude, S.L.; Tasian, S.K.; Vincent, T.; Hall, J.W.; Sheen, C.; Roberts, K.G.; Seif, A.E.; Barrett, D.M.; Chen, I.M.; Collins, J.R.; Mullighan, C.G.; Hunger, S.P.; Harvey, R.C.; Willman, C.L.; Fridman, J.S.; Loh, M.L.; Grupp, S.A.; Teachey, D.T. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2012, 120(17), 3510-3518.
[http://dx.doi.org/10.1182/blood-2012-03-415448] [PMID: 22955920]
[52]
Zhang, Q.; Shi, C.; Han, L.; Jain, N.; Roberts, K.G.; Ma, H.; Cai, T.; Cavazos, A.; Tabe, Y.; Jacamo, R.O.; Mu, H.; Zhao, Y.; Wang, J.; Wu, S.C.; Cao, F.; Zeng, Z.; Zhou, J.; Mi, Y.; Jabbour, E.J.; Levine, R.; Tasian, S.K.; Mullighan, C.G.; Weinstock, D.M.; Fruman, D.A.; Kono-pleva, M. Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia. Oncotarget, 2018, 9(8), 8027-8041.
[http://dx.doi.org/10.18632/oncotarget.24261] [PMID: 29487712]
[53]
Mendes, A.; Fahrenkrog, B. NUP214 in leukemia: It’s more than transport. Cells, 2019, 8(1), 76.
[http://dx.doi.org/10.3390/cells8010076] [PMID: 30669574]
[54]
Bempt, M.V.; Demeyer, S.; Broux, M.; De Bie, J.; Bornschein, S.; Mentens, N.; Vandepoel, R.; Geerdens, E.; Radaelli, E.; Bornhauser, B.C. Cooperative enhancer activation by TLX1 and STAT5 drives development of NUP214-ABL1/TLX1-positive T cell acute lymphoblastic leukemia. Cancer Cell, 2018, 34(2), 271-285.
[55]
Chen, Y.; Zhang, L.; Huang, J.; Hong, X.; Zhao, J.; Wang, Z.; Zhang, K. Dasatinib and chemotherapy in a patient with early T cell precur-sor acute lymphoblastic leukemia and NUP214 ABL1 fusion: A case report. Exp. Ther. Med., 2017, 14(5), 3979-3984.
[http://dx.doi.org/10.3892/etm.2017.5046] [PMID: 29067094]
[56]
Clarke, S.; O’Reilly, J.; Romeo, G.; Cooney, J. NUP214-ABL1 positive T-cell acute lymphoblastic leukemia patient shows an initial favorable response to imatinib therapy post relapse. Leuk. Res., 2011, 35(7), e131-e133.
[http://dx.doi.org/10.1016/j.leukres.2011.03.025] [PMID: 21489623]
[57]
Deenik, W.; Beverloo, H.B.; van der Poel-van de Luytgaarde, S.C.P A M.; Wattel, M.M.; van Esser, J.W.J.; Valk, P.J.M.; Cornelissen, J.J. Rapid complete cytogenetic remission after upfront dasatinib monotherapy in a patient with a NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. Leukemia, 2009, 23(3), 627-629.
[http://dx.doi.org/10.1038/leu.2008.318] [PMID: 18987655]
[58]
Graux, C.; Cools, J.; Melotte, C.; Quentmeier, H.; Ferrando, A.; Levine, R.; Vermeesch, J.R.; Stul, M.; Dutta, B.; Boeckx, N.; Bosly, A.; Heimann, P.; Uyttebroeck, A.; Mentens, N.; Somers, R.; MacLeod, R.A.F.; Drexler, H.G.; Look, A.T.; Gilliland, D.G.; Michaux, L.; Vandenberghe, P.; Wlodarska, I.; Marynen, P.; Hagemeijer, A. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat. Genet., 2004, 36(10), 1084-1089.
[http://dx.doi.org/10.1038/ng1425] [PMID: 15361874]
[59]
Quintás-Cardama, A.; Tong, W.; Manshouri, T.; Vega, F.; Lennon, P.A.; Cools, J.; Gilliland, D.G.; Lee, F.; Cortes, J.; Kantarjian, H.; Gar-cia-Manero, G. Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies. Leukemia, 2008, 22(6), 1117-1124.
[http://dx.doi.org/10.1038/leu.2008.80] [PMID: 18401417]
[60]
Naqvi, K.; Ravandi, F. FLT3 inhibitor quizartinib (AC220). Leuk. Lymphoma, 2019, 60(8), 1866-1876.
[http://dx.doi.org/10.1080/10428194.2019.1602263] [PMID: 30997851]
[61]
Levis, M.; Small, D. FLT3 tyrosine kinase inhibitors. Int. J. Hematol., 2005, 82(2), 100-107.
[http://dx.doi.org/10.1532/IJH97.05079] [PMID: 16146839]
[62]
Tse, K-F.; Novelli, E.; Civin, C.I.; Bohmer, F.D.; Small, D. Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibi-tor. Leukemia, 2001, 15(7), 1001-1010.
[http://dx.doi.org/10.1038/sj.leu.2402199] [PMID: 11455967]
[63]
Stam, R.W.; den Boer, M.L.; Schneider, P.; Nollau, P.; Horstmann, M.; Beverloo, H.B.; van der Voort, E.; Valsecchi, M.G.; de Lorenzo, P.; Sallan, S.E.; Armstrong, S.A.; Pieters, R. Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood, 2005, 106(7), 2484-2490.
[http://dx.doi.org/10.1182/blood-2004-09-3667] [PMID: 15956279]
[64]
Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; de Giorgis, T.; Kiess, W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol., 2015, 11(9), 535-546.
[http://dx.doi.org/10.1038/nrendo.2015.117] [PMID: 26215259]
[65]
Vander Heiden, M.G. Targeting cancer metabolism: A therapeutic window opens. Nat. Rev. Drug Discov., 2011, 10(9), 671-684.
[http://dx.doi.org/10.1038/nrd3504] [PMID: 21878982]
[66]
Somers, K.; Evans, K.; Cheung, L.; Karsa, M.; Pritchard, T.; Kosciolek, A.; Bongers, A.; El-Ayoubi, A.; Forgham, H.; Middlemiss, S.; Mayoh, C.; Jones, L.; Gupta, M.; Kees, U.R.; Chernova, O.; Korotchkina, L.; Gudkov, A.V.; Erickson, S.W.; Teicher, B.; Smith, M.A.; Norris, M.D.; Haber, M.; Lock, R.B.; Henderson, M.J. Effective targeting of NAMPT in patient-derived xenograft models of high-risk pediatric acute lymphoblastic leukemia. Leukemia, 2020, 34(6), 1524-1539.
[http://dx.doi.org/10.1038/s41375-019-0683-6] [PMID: 31848452]
[67]
De Smedt, R.; Morscio, J.; Reunes, L.; Roels, J.; Bardelli, V.; Lintermans, B.; Van Loocke, W.; Almeida, A.; Cheung, L.C.; Kotecha, R.S.; Mansour, M.R.; Uyttebroeck, A.; Vandenberghe, P.; La Starza, R.; Mecucci, C.; Lammens, T.; Van Roy, N.; De Moerloose, B.; Barata, J.T.; Taghon, T.; Goossens, S.; Van Vlierberghe, P. Targeting cytokine- and therapy-induced PIM1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma. Blood, 2020, 135(19), 1685-1695.
[http://dx.doi.org/10.1182/blood.2019003880] [PMID: 32315407]
[68]
Stalnecker, C.A.; Der, C.J. RAS, wanted dead or alive: Advances in targeting RAS mutant cancers. Sci. Signal., 2020, 13(624), eaay6013.
[http://dx.doi.org/10.1126/scisignal.aay6013] [PMID: 32209699]
[69]
Ostrem, J.M.; Peters, U.; Sos, M.L.; Wells, J.A.; Shokat, K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 2013, 503(7477), 548-551.
[http://dx.doi.org/10.1038/nature12796] [PMID: 24256730]
[70]
Scheffzek, K.; Ahmadian, M.R.; Kabsch, W.; Wiesmüller, L.; Lautwein, A.; Schmitz, F.; Wittinghofer, A. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science, 1997, 277(5324), 333-339.
[http://dx.doi.org/10.1126/science.277.5324.333] [PMID: 9219684]
[71]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[72]
Fakih, M.; O’Neil, B.; Price, T.J.; Falchook, G.S.; Desai, J.; Kuo, J.; Govindan, R.; Rasmussen, E.; Morrow, P.K.H.; Ngang, J. Phase 1 study evaluating the safety, tolerability, pharmacokinetics (PK), and efficacy of AMG 510, a novel small molecule KRASG12C inhibitor, in advanced solid tumors. Clin. Oncol., 2019.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.3003]
[73]
Jerchel, I.S.; Hoogkamer, A.Q.; Ariës, I.M.; Steeghs, E.M.P.; Boer, J.M.; Besselink, N.J.M.; Boeree, A.; van de Ven, C.; de Groot-Kruseman, H.A.; De Haas, V.; Horstmann, M.A.; Escherich, G.; Stam, R.W.; Zwaan, C.M.; Cuppen, E.; Koudijs, M.J.; Pieters, R.; Den Boer, M.L. RAS pathway mutations as predictive biomarker for treatment adaptation in pediatric B-cell precursor acute lymphoblastic leukemia. Blood, 2016, 128(22), 4087.
[http://dx.doi.org/10.1182/blood.V128.22.4087.4087]
[74]
Knight, T.; Irving, J.A.E. Ras/Raf/MEK/ERK pathway activation in childhood acute lymphoblastic leukemia and its therapeutic targeting. Front. Oncol., 2014, 4, 160.
[http://dx.doi.org/10.3389/fonc.2014.00160] [PMID: 25009801]
[75]
Imoto, N.; Hayakawa, F.; Kurahashi, S.; Morishita, T.; Kojima, Y.; Yasuda, T.; Sugimoto, K.; Tsuzuki, S.; Naoe, T.; Kiyoi, H. B cell linker protein (BLNK) is a selective target of repression by PAX5-PML protein in the differentiation block that leads to the development of acute lymphoblastic leukemia. J. Biol. Chem., 2016, 291(9), 4723-4731.
[http://dx.doi.org/10.1074/jbc.M115.637835] [PMID: 26703467]
[76]
Isidro-Hernández, M.; Mayado, A.; Casado-García, A.; Martínez-Cano, J.; Palmi, C.; Fazio, G.; Orfao, A.; Ribera, J.; Ribera, J.M.; Zamora, L.; Raboso-Gallego, J.; Blanco, O.; Alonso-López, D.; De Las Rivas, J.; Jiménez, R.; García Criado, F.J.; García Cenador, M.B.; Ramírez-Orellana, M.; Cazzaniga, G.; Cobaleda, C.; Vicente-Dueñas, C.; Sánchez-García, I. Inhibition of inflammatory signaling in Pax5 mutant cells mitigates B-cell leukemogenesis. Sci. Rep., 2020, 10(1), 19189.
[http://dx.doi.org/10.1038/s41598-020-76206-y] [PMID: 33154497]
[77]
Paganin, M.; Ferrando, A. Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia. Blood Rev., 2011, 25(2), 83-90.
[http://dx.doi.org/10.1016/j.blre.2010.09.004] [PMID: 20965628]
[78]
Knoechel, B.; Roderick, J.E.; Williamson, K.E.; Zhu, J.; Lohr, J.G.; Cotton, M.J.; Gillespie, S.M.; Fernandez, D.; Ku, M.; Wang, H.; Piccio-ni, F.; Silver, S.J.; Jain, M.; Pearson, D.; Kluk, M.J.; Ott, C.J.; Shultz, L.D.; Brehm, M.A.; Greiner, D.L.; Gutierrez, A.; Stegmaier, K.; Kung, A.L.; Root, D.E.; Bradner, J.E.; Aster, J.C.; Kelliher, M.A.; Bernstein, B.E. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat. Genet., 2014, 46(4), 364-370.
[http://dx.doi.org/10.1038/ng.2913] [PMID: 24584072]
[79]
De Keersmaecker, K.; Lahortiga, I.; Mentens, N.; Folens, C.; Van Neste, L.; Bekaert, S.; Vandenberghe, P.; Odero, M.D.; Marynen, P.; Cools, J. In vitro validation of -secretase inhibitors alone or in combination with other anti-cancer drugs for the treatment of T-cell acute lymphoblastic leukemia. Haematologica, 2008, 93(4), 533-542.
[http://dx.doi.org/10.3324/haematol.11894] [PMID: 18322257]
[80]
Shochat, C.; Tal, N.; Bandapalli, O.R.; Palmi, C.; Ganmore, I.; te Kronnie, G.; Cario, G.; Cazzaniga, G.; Kulozik, A.E.; Stanulla, M.; Sch-rappe, M.; Biondi, A.; Basso, G.; Bercovich, D.; Muckenthaler, M.U.; Izraeli, S. Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias. J. Exp. Med., 2011, 208(5), 901-908.
[http://dx.doi.org/10.1084/jem.20110580] [PMID: 21536738]
[81]
van Bodegom, D.; Zhong, J.; Kopp, N.; Dutta, C.; Kim, M.S.; Bird, L.; Weigert, O.; Tyner, J.; Pandey, A.; Yoda, A.; Weinstock, D.M. Dif-ferences in signaling through the B-cell leukemia oncoprotein CRLF2 in response to TSLP and through mutant JAK2. Blood, 2012, 120(14), 2853-2863.
[http://dx.doi.org/10.1182/blood-2012-02-413252] [PMID: 22915648]
[82]
Lacronique, V.; Boureux, A.; Della Valle, V.; Poirel, H.; Quang, C.T.; Mauchauffé, M.; Berthou, C.; Lessard, M.; Berger, R.; Ghysdael, J.; Bernard, O.A.A. TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science, 1997, 278(5341), 1309-1312.
[http://dx.doi.org/10.1126/science.278.5341.1309] [PMID: 9360930]
[83]
Klein, F.; Feldhahn, N.; Herzog, S.; Sprangers, M.; Mooster, J.L.; Jumaa, H.; Müschen, M. BCR–ABL1 induces aberrant splicing of IKAROS and lineage infidelity in pre-B lymphoblastic leukemia cells. Oncogene, 2006, 25(7), 1118-1124.
[http://dx.doi.org/10.1038/sj.onc.1209133] [PMID: 16205638]
[84]
Mullighan, C.G.; Su, X.; Zhang, J.; Radtke, I.; Phillips, L.A.A.; Miller, C.B.; Ma, J.; Liu, W.; Cheng, C.; Schulman, B.A.; Harvey, R.C.; Chen, I.M.; Clifford, R.J.; Carroll, W.L.; Reaman, G.; Bowman, W.P.; Devidas, M.; Gerhard, D.S.; Yang, W.; Relling, M.V.; Shurtleff, S.A.; Campana, D.; Borowitz, M.J.; Pui, C.H.; Smith, M.; Hunger, S.P.; Willman, C.L.; Downing, J.R. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med., 2009, 360(5), 470-480.
[http://dx.doi.org/10.1056/NEJMoa0808253] [PMID: 19129520]
[85]
Zhang, J.; Mullighan, C.G.; Harvey, R.C.; Wu, G.; Chen, X.; Edmonson, M.; Buetow, K.H.; Carroll, W.L.; Chen, I.M.; Devidas, M.; Ger-hard, D.S.; Loh, M.L.; Reaman, G.H.; Relling, M.V.; Camitta, B.M.; Bowman, W.P.; Smith, M.A.; Willman, C.L.; Downing, J.R.; Hunger, S.P. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: A report from the Children’s Oncology Group. Blood, 2011, 118(11), 3080-3087.
[http://dx.doi.org/10.1182/blood-2011-03-341412] [PMID: 21680795]
[86]
Ellisen, L.W.; Bird, J.; West, D.C.; Soreng, A.L.; Reynolds, T.C.; Smith, S.D.; Sklar, J. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 1991, 66(4), 649-661.
[http://dx.doi.org/10.1016/0092-8674(91)90111-B] [PMID: 1831692]
[87]
Malyukova, A.; Dohda, T.; von der Lehr, N.; Akhondi, S.; Corcoran, M.; Heyman, M.; Spruck, C.; Grandér, D.; Lendahl, U.; Sangfelt, O. The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res., 2007, 67(12), 5611-5616.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4381] [PMID: 17575125]
[88]
Pfeifer, H.; Wassmann, B.; Pavlova, A.; Wunderle, L.; Oldenburg, J.; Binckebanck, A.; Lange, T.; Hochhaus, A.; Wystub, S.; Brück, P.; Hoelzer, D.; Ottmann, O.G. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood, 2007, 110(2), 727-734.
[http://dx.doi.org/10.1182/blood-2006-11-052373] [PMID: 17405907]
[89]
Kano, Y.; Sakamoto, S.; Kasahara, T.; Akutsu, M.; Inoue, Y.; Miura, Y. Effects of amsacrine in combination with other anticancer agents in human acute lymphoblastic leukemia cells in culture. Leuk. Res., 1991, 15(11), 1059-1066.
[http://dx.doi.org/10.1016/0145-2126(91)90112-7] [PMID: 1961009]
[90]
Sengupta, T.K.; Leclerc, G.M.; Hsieh-Kinser, T.T.; Leclerc, G.J.; Singh, I.; Barredo, J.C. Cytotoxic effect of 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: Implication for targeted therapy. Mol. Cancer, 2007, 6(1), 46.
[http://dx.doi.org/10.1186/1476-4598-6-46] [PMID: 17623090]
[91]
Groselj, B.; Sharma, N.L.; Hamdy, F.C.; Kerr, M.; Kiltie, A.E. Histone deacetylase inhibitors as radiosensitisers: Effects on DNA damage signalling and repair. Br. J. Cancer, 2013, 108(4), 748-754.
[http://dx.doi.org/10.1038/bjc.2013.21] [PMID: 23361058]
[92]
Felix, C.A. Leukemias related to treatment with DNA topoisomerase II inhibitors. Med. Pediatr. Oncol., 2001, 36(5), 525-535.
[93]
Huang, M.; Zhang, H.; Liu, T.; Tian, D.; Gu, L.; Zhou, M. Triptolide inhibits MDM2 and induces apoptosis in acute lymphoblastic leu-kemia cells through a p53-independent pathway. Mol. Cancer Ther., 2013, 12(2), 184-194.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0425] [PMID: 23243057]
[94]
Kaveh, K.; Takahashi, Y.; Farrar, M.A.; Storme, G.; Guido, M.; Piepenburg, J.; Penning, J.; Foo, J.; Leder, K.Z.; Hui, S.K. Combination therapeutics of Nilotinib and radiation in acute lymphoblastic leukemia as an effective method against drug-resistance. PLOS Comput. Biol., 2017, 13(7), e1005482.
[http://dx.doi.org/10.1371/journal.pcbi.1005482] [PMID: 28683103]
[95]
Opydo-Chanek, M.; Rak, A.; Cierniak, A.; Mazur, L. Combination of ABT-737 and resveratrol enhances DNA damage and apoptosis in human T-cell acute lymphoblastic leukemia MOLT-4 cells. Toxicol. In Vitro, 2017, 42, 38-46.
[http://dx.doi.org/10.1016/j.tiv.2017.03.013] [PMID: 28366708]
[96]
Okabe, S.; Tauchi, T.; Ohyashiki, K. Efficacy of MK-0457 and in combination with vorinostat against Philadelphia chromosome positive acute lymphoblastic leukemia cells. Ann. Hematol., 2010, 89(11), 1081-1087.
[http://dx.doi.org/10.1007/s00277-010-0998-x] [PMID: 20563869]
[97]
Zhang, Q-L.; Wang, L.; Zhang, Y-W.; Jiang, X-X.; Yang, F.; Wu, W-L.; Janin, A.; Chen, Z.; Shen, Z-X.; Chen, S-J.; Zhao, W-L. The pro-teasome inhibitor bortezomib interacts synergistically with the histone deacetylase inhibitor suberoylanilide hydroxamic acid to induce T-leukemia/lymphoma cells apoptosis. Leukemia, 2009, 23(8), 1507-1514.
[http://dx.doi.org/10.1038/leu.2009.41] [PMID: 19282831]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy