Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

Patented Keratinolytic Enzymes for Industrial Application: An Overview

Author(s): Shestakova Anna*, Lyamina Veronika, Timorshina Svetlana and Osmolovskiy Alexander

Volume 17, Issue 4, 2023

Published on: 27 December, 2022

Page: [346 - 363] Pages: 18

DOI: 10.2174/1872208317666221212122656

Price: $65

Abstract

Proteases that perform keratin hydrolysis (keratinases) have great potential in biotechnology. After investigation, the next step to an industrial application is protecting intellectual property by patenting. There are many fields of discovered keratinase implementation dictated by features of the molecule and its producer. This article provides an overview of existing patents on keratinases. Among the patents found using terms related to 'keratinase', only those that contain data on the structure and features of the enzyme to provide a sufficient overview of the current situation are covered. It includes information on publication timelines of patents, as well as their origin; features of cultivation process and producers, such as fermentation type and pathogenicity; and features of enzymes, such as their classes, pH, and temperature optima. This article summarizes information about proprietary keratinases and reflects trends and dependencies in their production and application development. It is also the first review of existing patents on keratinases, which emphasizes the uniqueness and novelty of this article.

Keywords: Keratinolytic, protease, keratinase, patented keratinase, keratin, biotechnology.

Graphical Abstract
[1]
Proteases Market - Growth, Trends, Covid-19 Impact, And Forecast (2022 - 2027). Available from: https://www. mordorintelligence.com/industry-reports/proteases-market
[2]
Wang H, Cai C, Gan L, Wang S, Tian Y. Expression and characterization of surfactnt-stable calcium-dependent protease: a potential additive for laundry detergents. Appl Biochem Microbiol 2021; 57(4): 481-92.
[http://dx.doi.org/10.1134/S0003683821040165]
[3]
El-Ghonemy DH, Ali TH. Effective bioconversion of feather-waste keratin by thermo-surfactant stable alkaline keratinase produced from Aspergillus sp. DHE7 with promising biotechnological application in detergent formulations. Biocatal Agric Biotechnol 2021; 35: 102052.
[http://dx.doi.org/10.1016/j.bcab.2021.102052]
[4]
Cerreti M, Liburdi K, Benucci I, Emiliani Spinelli S, Lombardelli C, Esti M. Optimization of pectinase and protease clarification treatment of pomegranate juice. Lebensm Wiss Technol 2017; 82: 58-65.
[http://dx.doi.org/10.1016/j.lwt.2017.04.022]
[5]
dos Santos Aguilar JG, Sato HH. Microbial proteases: Production and application in obtaining protein hydrolysates. Food Res Int 2018; 103: 253-62.
[http://dx.doi.org/10.1016/j.foodres.2017.10.044] [PMID: 29389613]
[6]
Dong L, Qi S, Jia J, Zhang Y, Hu Y. Enantioselective resolution of (±)-1-phenylethyl acetate using the immobilized extracellular proteases from deep-sea Bacillus sp DL-1. Biocatal Biotransformation 2021; pp. 1-17.
[7]
Rawlings ND. Twenty-five years of nomenclature and classification of proteolytic enzymes. Biochim Biophys Acta Proteins Proteomics 2020; 1868(2): 140345.
[http://dx.doi.org/10.1016/j.bbapap.2019.140345] [PMID: 31838087]
[8]
Qiu J, Wilkens C, Barrett K, Meyer AS. Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnol Adv 2020; 44: 107607.
[http://dx.doi.org/10.1016/j.biotechadv.2020.107607] [PMID: 32768519]
[9]
Alibardi L. Immunohistochemical detection of sulfhydryl oxidase in chick skin appendages and feathers suggests that the enzyme contributes to maturation of the corneous material. Zoomorphology 2020; 139(4): 501-11.
[http://dx.doi.org/10.1007/s00435-020-00498-x]
[10]
Feroz S, Muhammad N, Ratnayake J, Dias G. Keratin - based materials for biomedical applications. Bioact Mater 2020; 5(3): 496-509.
[http://dx.doi.org/10.1016/j.bioactmat.2020.04.007] [PMID: 32322760]
[11]
Nnolim NE, Nwodo UU. Microbial keratinase and the bio-economy: A three-decade meta-analysis of research exploit. AMB Express 2021; 11(1): 12.
[http://dx.doi.org/10.1186/s13568-020-01155-8] [PMID: 33411032]
[12]
Nickerson WJ, Noval JJ. Process of treating keratinaceous material and a keratinase produced thereby. US2988487, 1961.
[13]
Vidmar B, Vodovnik M. Microbial keratinases: Enzymes with promising biotechnological 4 applications. Food Technol Biotechnol 2018; 56(3): 312-28.
[http://dx.doi.org/10.17113/ftb.56.03.18.5658] [PMID: 30510475]
[14]
Ye JP, Gong JS, Su C, et al. Fabrication and characterization of high molecular keratin based nanofibrous membranes for wound healing. Colloids Surf B Biointerfaces 2020; 194: 111158.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111158] [PMID: 32540765]
[15]
Ranjit E, Hamlet S, George R, Sharma A, Love RM. Biofunctional approaches of wool-based keratin for tissue engineering. J Sci Adv Mater Devices 2022; 7(1): 100398.
[http://dx.doi.org/10.1016/j.jsamd.2021.10.001]
[16]
Alshehri WA, Khalel A, Elbanna K, Ahmad I, Abulreesh HH. Bio-plastic Films Production from Feather Waste Degradation by Keratinolytic Bacteria Bacillus cereus. J Pure Appl Microbiol 2021; 15(2): 681-8.
[http://dx.doi.org/10.22207/JPAM.15.2.17]
[17]
Kaewsalud T, Yakul K, Jantanasakulwong K, Tapingkae W, Watanabe M, Chaiyaso T. Biochemical characterization and application of thermostable-alkaline keratinase from Bacillus halodurans SW-X to Valorize Chicken Feather Wastes. Waste Biomass Valoriz 2021; 12(7): 3951-64.
[http://dx.doi.org/10.1007/s12649-020-01287-9]
[18]
Kita DA, Routien JB. Process of producing keratinase. US3173847, 1965.
[19]
Arnaut F, Verte F, Vekemans N. Method and composition for the prevention or retarding of staling and its effect during the baking process of bakery products. US20160374355A1, 2016.
[20]
Jingsong S, Jingsong G, Liyan T, Zhenghong X, Heng L, Chang S. Novel metal ion-tolerant keratinase and application thereof. CN108060170B, 2020.
[21]
Heberlein W. Reinigungsmittel enthaltend Keratinase. DE102016214383A1, 2018.
[22]
Haihui Y, Jingsong S, Zhenghong X, et al. The method and its application of gold nanoparticle preparation are carried out using keratinase. CN109456958A, 2019.
[23]
Jagadeesan Y, Meenakshisundaram S, Saravanan V, Balaiah A. Sustainable production, biochemical and molecular characterization of thermo-and-solvent stable alkaline serine keratinase from novel Bacillus pumilus AR57 for promising poultry solid waste management. Int J Biol Macromol 2020; 163: 135-46.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.219] [PMID: 32615225]
[24]
Nnolim NE, Ntozonke N, Okoh AI, Nwodo UU. Exoproduction and characterization of a detergent-stable alkaline keratinase from Arthrobacter sp. KFS-1. Biochimie 2020; 177: 53-62.
[http://dx.doi.org/10.1016/j.biochi.2020.08.005] [PMID: 32835736]
[25]
Nam GW, Lee DW, Lee HS, et al. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch Microbiol 2002; 178(6): 538-47.
[http://dx.doi.org/10.1007/s00203-002-0489-0] [PMID: 12420177]
[26]
Paul T, Das A, Mandal A, et al. An efficient cloth cleaning properties of a crude keratinase combined with detergent: Towards industrial viewpoint. J Clean Prod 2014; 66: 672-84.
[http://dx.doi.org/10.1016/j.jclepro.2013.10.054]
[27]
Gupta PL, Rajput M, Oza T, Trivedi U, Sanghvi G. Eminence of microbial products in cosmetic industry. Nat Prod Bioprospect 2019; 9(4): 267-78.
[http://dx.doi.org/10.1007/s13659-019-0215-0] [PMID: 31214881]
[28]
Paul T, Das A, Mandal A, et al. Biochemical and structural characterization of a detergent stable alkaline serine keratinase from Paenibacillus Woosongensis TKB2: A potential additive for laundry detergent. Waste Biomass Valoriz 2014; 5(4): 563-74.
[http://dx.doi.org/10.1007/s12649-013-9265-4]
[29]
Sanghvi G, Patel H, Vaishnav D, et al. A novel alkaline keratinase from Bacillus subtilis DP1 with potential utility in cosmetic formulation. Int J Biol Macromol 2016; 87: 256-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.067] [PMID: 26940376]
[30]
Li X, Zhang S, Zhang Q, et al. Characterization and application of a novel halotolerant protease with no collagenase activity for cleaner dehairing of goatskin. Process Biochem 2022; 113: 203-15.
[http://dx.doi.org/10.1016/j.procbio.2022.01.006]
[31]
Sundararajan S, Kannan CN, Chittibabu S. Alkaline protease from Bacillus cereus VITSN04: Potential application as a dehairing agent. J Biosci Bioeng 2011; 111(2): 128-33.
[http://dx.doi.org/10.1016/j.jbiosc.2010.09.009] [PMID: 20937566]
[32]
Venkatachalam M, Rathinam A, Rao JR, Krishnan C. Bioconversion of animal hair waste using salt- and sulphide-tolerant Bacillus sp. KLP1 and depilation using keratinase. Int J Environ Sci Technol 2021; 19(7): 6389-98.
[33]
Fang Z, Yong YC, Zhang J, Du G, Chen J. Keratinolytic protease: A green biocatalyst for leather industry. Appl Microbiol Biotechnol 2017; 101(21): 7771-9.
[http://dx.doi.org/10.1007/s00253-017-8484-1] [PMID: 28924866]
[34]
Abdel-Fattah AM, El-Gamal MS, Ismail SA, Emran MA, Hashem AM. Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1. J Genet Eng Biotechnol 2018; 16(2): 311-8.
[http://dx.doi.org/10.1016/j.jgeb.2018.05.005] [PMID: 30733740]
[35]
Haq I, Akram F, Jabbar Z. Keratinolytic enzyme-mediated biodegradation of recalcitrant poultry feathers waste by newly isolated Bacillus sp. NKSP-7 under submerged fermentation. Folia Microbiol 2020; 65(5): 823-34.
[http://dx.doi.org/10.1007/s12223-020-00793-6] [PMID: 32415568]
[36]
Osmolovskiy AA, Baranova NA, Kreier VG, Kurakov AV, Egorov NS. Solid-state and membrane-surface liquid cultures of micromycetes: Specific features of their development and enzyme production (a Review). Appl Biochem Microbiol 2014; 50(3): 219-27.
[http://dx.doi.org/10.1134/S0003683814030107]
[37]
Wang L, Yang ST. Solid State Fermentation and Its Applications. In: Yang ST, Ed. Bioprocessing for value-added products from renewable resources. Amsterdam: Elsevier 2005; pp. 465-89.
[38]
Osmolovskiy AA, Popova EA, Kreyer VG, Baranova NA, Egorov NS. Vermiculite as a new carrier for extracellular protease production by Aspergillus spp. under solid-state fermentation. Biotechnol Rep 2021; 29: e00576.
[http://dx.doi.org/10.1016/j.btre.2020.e00576] [PMID: 33392004]
[39]
Ibarruri J, Cebrián M, Hernández I. Valorisation of fruit and vegetable discards by fungal submerged and solid-state fermentation for alternative feed ingredients production. J Environ Manage 2021; 281: 111901.
[http://dx.doi.org/10.1016/j.jenvman.2020.111901] [PMID: 33434763]
[40]
Gowthaman MK, Krishna C, Moo-Young M. Fungal solid state fermentation — an overview. In: Khachatourians GG, Arora DK, Eds. Applied mycology and biotechnology. Elsevier 2001; pp. 305-52.
[41]
Abbas. Identification local isolates of Trichophyton mentagrophytes and detection of keratinase gene using PCR technique. Iraqi J Agric Sci 2020; 51(6): 1534-42.
[http://dx.doi.org/10.36103/ijas.v51i6.1181]
[42]
Kumar AG, Swarnalatha S, Gayathri S, Nagesh N, Sekaran G. Characterization of an alkaline active-thiol forming extracellular serine keratinase by the newly isolated Bacillus pumilus. J Appl Microbiol 2008; 104(2): 411-9.
[PMID: 17922821]
[43]
Bohacz J. Biodegradation of feather waste keratin by a keratinolytic soil fungus of the genus Chrysosporium and statistical optimization of feather mass loss. World J Microbiol Biotechnol 2017; 33(1): 13.
[http://dx.doi.org/10.1007/s11274-016-2177-2] [PMID: 27885567]
[44]
Kim JD. Purification and characterization of a keratinase from a feather-degrading fungus, Aspergillus flavus strain K-03. Mycobiology 2007; 35(4): 219-25.
[http://dx.doi.org/10.4489/MYCO.2007.35.4.219] [PMID: 24015101]
[45]
Bohacz J, Możejko M, Kitowski I. Arthroderma tuberculatum and Arthroderma multifidum isolated from soils in rook (Corvus frugilegus) colonies as producers of keratinolytic enzymes and mineral forms of N and S. Int J Environ Res Public Health 2020; 17(24): 9162.
[http://dx.doi.org/10.3390/ijerph17249162] [PMID: 33302453]
[46]
Zhao G, Ding LL, Pan ZH, Kong DH, Hadiatullah H, Fan ZC. Proteinase and glycoside hydrolase production is enhanced in solid-state fermentation by manipulating the carbon and nitrogen fluxes in Aspergillus oryzae. Food Chem 2019; 271: 606-13.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.199] [PMID: 30236722]
[47]
Nurkhasanah U, Suharti S. Preliminary study on keratinase fermentation by Bacillus sp. MD24 under solid state fermentation. IOP Conf Ser Earth Environ Sci 2019; 276(1): 012016.
[http://dx.doi.org/10.1088/1755-1315/276/1/012016]
[48]
Nickerson WJ, Noval JJ. Process of treating natural keratinaceous material and a keratinase produced thereby. US2988487A, 1959.
[49]
Zherebtsov NA, Nasonova LV. Method of obtaining keratinaze SU1565888A1, 1990.
[50]
Shin Jason CH, Williams CM. Purified Bacillus licheniformis PWD-1 keratinase. US5171682A, 1992.
[51]
Baneyx F. Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 1999; 10(5): 411-21.
[http://dx.doi.org/10.1016/S0958-1669(99)00003-8] [PMID: 10508629]
[52]
Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: Advances and challenges. Front Microbiol 2014; 5: 172.
[http://dx.doi.org/10.3389/fmicb.2014.00172] [PMID: 24860555]
[53]
Miao CC, Han LL, Lu YB, Feng H. Construction of a high-expression system in Bacillus through transcriptomic profiling and promoter engineering. Microorganisms 2020; 8(7): 1030.
[http://dx.doi.org/10.3390/microorganisms8071030] [PMID: 32664655]
[54]
Brandelli A, Daroit DJ, Riffel A. Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 2010; 85(6): 1735-50.
[http://dx.doi.org/10.1007/s00253-009-2398-5] [PMID: 20039036]
[55]
Aktayeva S, Baltin K, Kiribayeva A, et al. Isolation of Bacillus sp. A5.3 strain with keratinolytic activity. Biology (Basel) 2022; 11(2): 244.
[http://dx.doi.org/10.3390/biology11020244] [PMID: 35205110]
[56]
Huang MM, Zhong C, Liu C, Ren G, Chen R, Ye J. Keratinase-producing Pseudomonas beteli and application thereof. CN105861374A, 2016.
[57]
Wang K, Guo Q, Qian J, et al. Bacillus licheniformis strain capable of producing keratinase in high yield and application thereof. CN110747128A, 2020.
[58]
Sangali S, Brandelli A. Isolation and characterization of a novel feather-degrading bacterial strain. Appl Biochem Biotechnol 2000; 87(1): 17-24.
[http://dx.doi.org/10.1385/ABAB:87:1:17] [PMID: 10850670]
[59]
Barman NC, Zohora FT, Das KC, et al. Production, partial optimization and characterization of keratinase enzyme by Arthrobacter sp. NFH5 isolated from soil samples. AMB Express 2017; 7(1): 181.
[http://dx.doi.org/10.1186/s13568-017-0462-6] [PMID: 28936604]
[60]
Nnolim NE, Udenigwe CC, Okoh AI, Nwodo UU. Microbial keratinase: Next generation green catalyst and prospective applications. Front Microbiol 2020; 11: 580164.
[http://dx.doi.org/10.3389/fmicb.2020.580164] [PMID: 33391200]
[61]
Bokveld A, Nnolim NE, Nwodo UU. Chryseobacterium aquifrigidense FANN1 produced detergent-stable metallokeratinase and amino acids through the abasement of chicken feathers. Front Bioeng Biotechnol 2021; 9: 720176.
[http://dx.doi.org/10.3389/fbioe.2021.720176] [PMID: 34422784]
[62]
Moriyama Y, Shimizu Y, Mansei S. Keratinase and production method thereof. JP4137526B2, 2008.
[63]
Heberlein W, Stehr R. Waschmittel enthaltend Keratinase. DE102016214382A1, 2018.
[64]
Azeredo LAI, Lima MB, Coelho RRR, Freire DMG. Thermophilic protease production by Streptomyces sp. 594 in submerged and solid-state fermentations using feather meal. J Appl Microbiol 2006; 100(4): 641-7.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02791.x] [PMID: 16553718]
[65]
Esawy MA. Isolation and partial characterization of extracellular keratinase from a novel mesophilic Streptomyces albus AZA. Res J Agric Biol Sci 2007; 3(6): 808-17.
[66]
Meng Y, Tang Y, Zhang X, Wang J, Zhou Z. Molecular identification of keratinase dgokera from Deinococcus gobiensis for feather degradation. Appl Sci 2022; 12(1): 464.
[http://dx.doi.org/10.3390/app12010464]
[67]
Ebeling W, Hennrich N, Klockow M, Metz H, Orth HD, Lang H. Proteinase K from Tritirachium album Limber. Eur J Biochem 1974; 47(1): 91-7.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03671.x] [PMID: 4373242]
[68]
Hassan MA, Abol-Fotouh D, Omer AM, Tamer TM, Abbas E. Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: A review. Int J Biol Macromol 2020; 154: 567-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.116] [PMID: 32194110]
[69]
Sharma R, Devi S. Versatility and commercial status of microbial keratinases: A review. Rev Environ Sci Biotechnol 2018; 17(1): 19-45.
[http://dx.doi.org/10.1007/s11157-017-9454-x]
[70]
Lange LM, Busk PK, Yuhong HM. Composition and method for degradation of keratinaceous materials. WO2015158719A1, 2015.
[71]
Shi J, Gong J, Zhang R, et al. A kind of gibberella keratinase and its and methods for using them that ferments. Patent: CN105505793B, 2019.
[72]
Li M, Du Y. Aspergillus oryzae keratinase gene and expression vector and application thereof. CN112175977A, 2021.
[73]
Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV. Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem 2002; 38(5): 715-21.
[http://dx.doi.org/10.1016/S0032-9592(02)00194-2]
[74]
Mojsov KD. Chapter 16 Aspergillus Enzymes for Food Industries. In: Gupta VK, Ed. New and future developments in microbial biotechnology and bioengineering. Amsterdam: Elsevier 2016; pp. 215-22.
[http://dx.doi.org/10.1016/B978-0-444-63505-1.00033-6]
[75]
Osmolovskiy AA, Orekhova AV, Conti E, Kreyer VG, Baranova NA, Egorov NS. Production and stability of the proteinase complex from Aspergillus ochraceus L-1 with fibrinolytic and anticoagulant activity. Moscow Univ Biol Sci Bull 2020; 75(3): 130-5.
[http://dx.doi.org/10.3103/S0096392520030074]
[76]
Watanabe K, Sasaki A, Sukeno A, et al. Keratinase and production method thereof. Patent: JP5699261B2, 2015.
[77]
Luo C, Li Y, Zhong K, Liang X. Keratinase, and coding gene and application thereof. CN103074318A, 2013.
[78]
Sakamoto T, Katsura H. Preparation of keratinase. JPS5519065A, 1980.
[79]
Zhu Y, Tramper J. Koji - where East meets West in fermentation. Biotechnol Adv 2013; 31(8): 1448-57.
[http://dx.doi.org/10.1016/j.biotechadv.2013.07.001] [PMID: 23850857]
[80]
Chancharoonpong C, Hsieh PC, Sheu SC. Enzyme Production and Growth of Aspergillus oryzae S. on Soybean Koji Fermentation. APCBEE Procedia 2012; 2: 57-61.
[http://dx.doi.org/10.1016/j.apcbee.2012.06.011]
[81]
Kitano H, Kataoka K, Furukawa K, Hara S. Specific expression and temperature-dependent expression of the acid protease-encoding gene (pepA) in Aspergillus oryzae in solid-state culture (Rice-Koji). J Biosci Bioeng 2002; 93(6): 563-7.
[http://dx.doi.org/10.1016/S1389-1723(02)80238-9] [PMID: 16233250]
[82]
Cao J, Zhang C, Hao L. Solid fermentation prepn process and application of keratinase. CN1417328A, 2003.
[83]
Shi J, Zhang D, Wang Y, Li H, Qian J, Xu Z. Method for producing keratinase by induced fermentation of Aspergillus usaanii for originally producing acidic proteinase. CN103146587A, 2013.
[84]
Monod M, Capoccia S, Léchenne B, Zaugg C, Holdom M, Jousson O. Secreted proteases from pathogenic fungi. Int J Med Microbiol 2002; 292(5-6): 405-19.
[http://dx.doi.org/10.1078/1438-4221-00223] [PMID: 12452286]
[85]
Mamo J, Assefa F. The role of microbial aspartic protease enzyme in food and beverage industries. J Food Qual 2018; 2018: 1-15.
[http://dx.doi.org/10.1155/2018/7957269]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy