Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Adhesion Molecules as Prognostic Biomarkers in Coronary Artery Disease

Author(s): Marios Sagris*, Panagiotis Theofilis, Alexios S. Antonopoulos, Evangelos Oikonomou, Spiros Simantiris, Spyridon Papaioannou, Constantinos Tsioufis and Dimitris Tousoulis

Volume 23, Issue 6, 2023

Published on: 02 February, 2023

Page: [481 - 490] Pages: 10

DOI: 10.2174/1568026623666230104125104

Price: $65

Abstract

Atherosclerosis is a progressive disease, culminating in the production of atherosclerotic plaques in arteries through intricate pathophysiological processes. The progression of this disorder is based on the effect of triggering factors -mainly hyperlipidemia, diabetes mellitus, arterial hypertension, and smoking- on the endothelium. Coronary artery disease (CAD) is an atherosclerotic disease with a higher prevalence among individuals. Pro- and anti-inflammatory cytokines are the main contributors to atherosclerotic plaque formation. CAD and its manifestations multifactorial affect patients’ quality of life, burdening the global healthcare system. Recently, the role of adhesion molecules in CAD progression has been recognized. Physicians delve into the pathophysiologic basis of CAD progression, focusing on the effect of adhesion molecules. They are proteins that mediate cell-cell and cell-extracellular matrix interaction and adhesion, driving the formation of atherosclerotic plaques. Several studies have assessed their role in atherosclerotic disease in small cohorts and in experimental animal models as well. Furthermore, several agents, such as nanoparticles, have been introduced modifying the main atherosclerotic risk factors as well as targeting the endothelial inflammatory response and atherosclerotic plaque stabilization. In this review, we discuss the role of adhesion molecules in atherosclerosis and CAD progression, as well as the potential to be used as targeting moieties for individualized treatment.

Keywords: Adhesion molecules, Atherosclerosis, Coronary artery disease, Cytokines, Depressive disorders, Nanoparticles.

« Previous
Graphical Abstract
[1]
Bauersachs, R.; Zeymer, U.; Brière, J.B.; Marre, C.; Bowrin, K.; Huelsebeck, M. Burden of coronary artery disease and peripheral artery disease: a literature review. Cardiovasc. Ther., 2019, 20198295054
[http://dx.doi.org/10.1155/2019/8295054] [PMID: 32099582]
[2]
Zaninotto, P.; Sacker, A.; Breeze, E.; McMunn, A.; Steptoe, A. Gender-specific changes in well-being in older people with coronary heart disease: evidence from the English Longitudinal Study of Ageing. Aging Ment. Health, 2016, 20(4), 432-440.
[http://dx.doi.org/10.1080/13607863.2015.1020410] [PMID: 25774880]
[3]
Chang, L.M. Wei L, Xie L, Zhu G, Dela Cruz CS, Sharma L. Epidemiologic and Clinical Characteristics of Novel Coronavirus Infections Involving 13 Patients Outside Wuhan; JAMA: China, 2020.
[4]
Schaftenaar, F.; Frodermann, V.; Kuiper, J.; Lutgens, E. Atherosclerosis. Curr. Opin. Lipidol., 2016, 27(3), 209-215.
[http://dx.doi.org/10.1097/MOL.0000000000000302] [PMID: 27031276]
[5]
Sagris, M.; Vardas, E.P.; Theofilis, P.; Antonopoulos, A.S.; Oikonomou, E.; Tousoulis, D. Atrial fibrillation: pathogenesis, predisposing factors, and genetics. Int. J. Mol. Sci., 2021, 23(1), 6.
[http://dx.doi.org/10.3390/ijms23010006] [PMID: 35008432]
[6]
Tsao, P.S.; Niebauer, J.; Buitrago, R.; Lin, P.S.; Wang, B.; Cooke, J.P.; Ida Chen, Y.; Reaven, G.M. Interaction of diabetes and hypertension on determinants of endothelial adhesiveness. Arterioscler. Thromb. Vasc. Biol., 1998, 18(6), 947-953.
[http://dx.doi.org/10.1161/01.ATV.18.6.947] [PMID: 9633936]
[7]
Peschel, T.; Niebauer, J. Role of pro-atherogenic adhesion molecules and inflammatory cytokines in patients with coronary artery disease and diabetes mellitus type 2. Cytometry, 2003, 53B(1), 78-85.
[http://dx.doi.org/10.1002/cyto.b.10026] [PMID: 12717696]
[8]
Brott, T.G.; Hobson, R.W., II; Howard, G.; Roubin, G.S.; Clark, W.M.; Brooks, W.; Mackey, A.; Hill, M.D.; Leimgruber, P.P.; Sheffet, A.J.; Howard, V.J.; Moore, W.S.; Voeks, J.H.; Hopkins, L.N.; Cutlip, D.E.; Cohen, D.J.; Popma, J.J.; Ferguson, R.D.; Cohen, S.N.; Blackshear, J.L.; Silver, F.L.; Mohr, J.P.; Lal, B.K.; Meschia, J.F.; Investigators, C. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N. Engl. J. Med., 2010, 363(1), 11-23.
[http://dx.doi.org/10.1056/NEJMoa0912321] [PMID: 20505173]
[9]
Lusis, A.J. Atherosclerosis. Nature, 2000, 407(6801), 233-241.
[http://dx.doi.org/10.1038/35025203] [PMID: 11001066]
[10]
Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Lazaros, G.; Theofilis, A.; Papastamos, C.; Papaioannou, S.; Siasos, G.; Tsioufis, K.; Tousoulis, D. Extracellular matrix remodeling biomarkers in coronary artery disease. Curr. Top. Med. Chem., 2022, 23.
[http://dx.doi.org/10.2174/1568026623666221024091758] [PMID: 36284400]
[11]
Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell, 1994, 76(2), 301-314.
[http://dx.doi.org/10.1016/0092-8674(94)90337-9] [PMID: 7507411]
[12]
Butcher, E.C. Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell, 1991, 67(6), 1033-1036.
[http://dx.doi.org/10.1016/0092-8674(91)90279-8] [PMID: 1760836]
[13]
Ley, K.; Laudanna, C.; Cybulsky, M.I.; Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol., 2007, 7(9), 678-689.
[http://dx.doi.org/10.1038/nri2156] [PMID: 17717539]
[14]
Sagris, M.; Theofilis, P.; Antonopoulos, A.S.; Oikonomou, E.; Tsioufis, K.; Tousoulis, D. Genetic Predisposition and Inflammatory Inhibitors in COVID-19: Where Do We Stand? Biomedicines, 2022, 10(2), 242.
[http://dx.doi.org/10.3390/biomedicines10020242] [PMID: 35203452]
[15]
Sagris, M.; Theofilis, P.; Antonopoulos, A.S.; Tsioufis, C.; Oikonomou, E.; Antoniades, C.; Crea, F.; Kaski, J.C.; Tousoulis, D. Inflammatory mechanisms in COVID-19 and atherosclerosis: current pharmaceutical perspectives. Int. J. Mol. Sci., 2021, 22(12), 6607.
[http://dx.doi.org/10.3390/ijms22126607] [PMID: 34205487]
[16]
Hidalgo, A.; Peired, A.J.; Wild, M.K.; Vestweber, D.; Frenette, P.S. Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44. Immunity, 2007, 26(4), 477-489.
[http://dx.doi.org/10.1016/j.immuni.2007.03.011] [PMID: 17442598]
[17]
Zarbock, A.; Lowell, C.A.; Ley, K. Spleen tyrosine kinase Syk is necessary for E-selectin-induced alpha(L)beta(2) integrin-mediated rolling on intercellular adhesion molecule-1. Immunity, 2007, 26(6), 773-783.
[http://dx.doi.org/10.1016/j.immuni.2007.04.011] [PMID: 17543554]
[18]
Zhu, Y.; Xian, X.; Wang, Z.; Bi, Y.; Chen, Q.; Han, X.; Tang, D.; Chen, R. Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules, 2018, 8(3), 80.
[http://dx.doi.org/10.3390/biom8030080] [PMID: 30142970]
[19]
McEver, R.P. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc. Res., 2015, 107(3), 331-339.
[http://dx.doi.org/10.1093/cvr/cvv154] [PMID: 25994174]
[20]
Galkina, E.; Ley, K. Vascular adhesion molecules in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2007, 27(11), 2292-2301.
[http://dx.doi.org/10.1161/ATVBAHA.107.149179] [PMID: 17673705]
[21]
Ley, K. Functions of selectins. Results Probl. Cell Differ., 2001, 33, 177-200.
[http://dx.doi.org/10.1007/978-3-540-46410-5_10] [PMID: 11190674]
[22]
Eriksson, E.E.; Xie, X.; Werr, J.; Thoren, P.; Lindbom, L. Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J. Exp. Med., 2001, 194(2), 205-218.
[http://dx.doi.org/10.1084/jem.194.2.205] [PMID: 11457895]
[23]
Kunkel, E.J.; Chomas, J.E.; Ley, K. Role of primary and secondary capture for leukocyte accumulation in vivo. Circ. Res., 1998, 82(1), 30-38.
[http://dx.doi.org/10.1161/01.RES.82.1.30] [PMID: 9440702]
[24]
Johnson-Tidey, R.R.; McGregor, J.L.; Taylor, P.R.; Poston, R.N. Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques. Coexpression with intercellular adhesion molecule-1. Am. J. Pathol., 1994, 144(5), 952-961.
[PMID: 7513951]
[25]
Paez, A.; Méndez-Cruz, A.R.; Varela, E.; Rodriguez, E.; Guevara, J.; Flores-Romo, L.; Montaño, L.F.; Massó, F.A. HUVECs from newborns with a strong family history of myocardial infarction overexpress adhesion molecules and react abnormally to stimulating agents. Clin. Exp. Immunol., 2005, 141(3), 449-458.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02858.x] [PMID: 16045734]
[26]
Dong, Z.M.; Brown, A.A.; Wagner, D.D. Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation, 2000, 101(19), 2290-2295.
[http://dx.doi.org/10.1161/01.CIR.101.19.2290] [PMID: 10811597]
[27]
Johnson, R.C.; Chapman, S.M.; Dong, Z.M.; Ordovas, J.M.; Mayadas, T.N.; Herz, J.; Hynes, R.O.; Schaefer, E.J.; Wagner, D.D. Absence of P-selectin delays fatty streak formation in mice. J. Clin. Invest., 1997, 99(5), 1037-1043.
[http://dx.doi.org/10.1172/JCI119231] [PMID: 9062362]
[28]
Burger, P.C.; Wagner, D.D. Platelet P-selectin facilitates atherosclerotic lesion development. Blood, 2003, 101(7), 2661-2666.
[http://dx.doi.org/10.1182/blood-2002-07-2209] [PMID: 12480714]
[29]
Theofilis, P.; Sagris, M.; Antonopoulos, A.S.; Oikonomou, E.; Tsioufis, C.; Tousoulis, D. Inflammatory mediators of platelet activation: focus on atherosclerosis and COVID-19. Int. J. Mol. Sci., 2021, 22(20), 11170.
[http://dx.doi.org/10.3390/ijms222011170] [PMID: 34681830]
[30]
Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Tsioufis, K.; Tousoulis, D. Factors associated with platelet activation-recent pharmaceutical approaches. Int. J. Mol. Sci., 2022, 23(6), 3301.
[http://dx.doi.org/10.3390/ijms23063301] [PMID: 35328719]
[31]
Huo, Y.; Schober, A.; Forlow, S.B.; Smith, D.F.; Hyman, M.C.; Jung, S.; Littman, D.R.; Weber, C.; Ley, K. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med., 2003, 9(1), 61-67.
[http://dx.doi.org/10.1038/nm810] [PMID: 12483207]
[32]
Manka, D.; Forlow, S.B.; Sanders, J.M.; Hurwitz, D.; Bennett, D.K.; Green, S.A.; Ley, K.; Sarembock, I.J. Critical role of platelet P-selectin in the response to arterial injury in apolipoprotein-E-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2004, 24(6), 1124-1129.
[http://dx.doi.org/10.1161/01.ATV.0000127619.04687.f4] [PMID: 15072990]
[33]
Stocker, C.J.; Sugars, K.L.; Harari, O.A.; Landis, R.C.; Morley, B.J.; Haskard, D.O. TNF-alpha, IL-4, and IFN-gamma regulate differential expression of P- and E-selectin expression by porcine aortic endothelial cells. J. Immunol., 2000, 164(6), 3309-3315.
[http://dx.doi.org/10.4049/jimmunol.164.6.3309] [PMID: 10706724]
[34]
Yu, G.; Rux, A.H.; Ma, P.; Bdeir, K.; Sachais, B.S. Endothelial expression of E-selectin is induced by the platelet-specific chemokine platelet factor 4 through LRP in an NF-κB-dependent manner. Blood, 2005, 105(9), 3545-3551.
[http://dx.doi.org/10.1182/blood-2004-07-2617] [PMID: 15591119]
[35]
Collins, R.G.; Velji, R.; Guevara, N.V.; Hicks, M.J.; Chan, L.; Beaudet, A.L. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J. Exp. Med., 2000, 191(1), 189-194.
[http://dx.doi.org/10.1084/jem.191.1.189] [PMID: 10620617]
[36]
Dong, Z.M.; Chapman, S.M.; Brown, A.A.; Frenette, P.S.; Hynes, R.O.; Wagner, D.D. The combined role of P- and E-selectins in atherosclerosis. J. Clin. Invest., 1998, 102(1), 145-152.
[http://dx.doi.org/10.1172/JCI3001] [PMID: 9649568]
[37]
Hynes, R.O. Integrins. Cell, 2002, 110(6), 673-687.
[http://dx.doi.org/10.1016/S0092-8674(02)00971-6] [PMID: 12297042]
[38]
Hogg, N.; Henderson, R.; Leitinger, B.; McDowall, A.; Porter, J.; Stanley, P. Mechanisms contributing to the activity of integrins on leukocytes. Immunol. Rev., 2002, 186(1), 164-171.
[http://dx.doi.org/10.1034/j.1600-065X.2002.18614.x] [PMID: 12234370]
[39]
Luo, B.H.; Carman, C.V.; Springer, T.A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol., 2007, 25(1), 619-647.
[http://dx.doi.org/10.1146/annurev.immunol.25.022106.141618] [PMID: 17201681]
[40]
Elices, M.J.; Osborn, L.; Takada, Y.; Crouse, C.; Luhowskyj, S.; Hemler, M.E.; Lobb, R.R. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/Fibronectin binding site. Cell, 1990, 60(4), 577-584.
[http://dx.doi.org/10.1016/0092-8674(90)90661-W] [PMID: 1689216]
[41]
Kürzinger, K.; Reynolds, T.; Germain, R.N.; Davignon, D.; Martz, E.; Springer, T.A. A novel lymphocyte function-associated antigen (LFA-1): cellular distribution, quantitative expression, and structure. J. Immunol., 1981, 127(2), 596-602.
[PMID: 6788846]
[42]
Cybulsky, M.I.; Gimbrone, M.A., Jr Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science, 1991, 251(4995), 788-791.
[http://dx.doi.org/10.1126/science.1990440] [PMID: 1990440]
[43]
Ramana, K.V.; Bhatnagar, A.; Srivastava, S.K. Inhibition of aldose reductase attenuates TNF-α-induced expression of adhesion molecules in endothelial cells. FASEB J., 2004, 18(11), 1209-1218.
[http://dx.doi.org/10.1096/fj.04-1650com] [PMID: 15284221]
[44]
Li, H.; Cybulsky, M.I.; Gimbrone, M.A., Jr; Libby, P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler. Thromb., 1993, 13(2), 197-204.
[http://dx.doi.org/10.1161/01.ATV.13.2.197] [PMID: 7678986]
[45]
Kawakami, A.; Aikawa, M.; Alcaide, P.; Luscinskas, F.W.; Libby, P.; Sacks, F.M. Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation, 2006, 114(7), 681-687.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.622514] [PMID: 16894036]
[46]
VanderLaan, P.A.; Reardon, C.A.; Getz, G.S. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler. Thromb. Vasc. Biol., 2004, 24(1), 12-22.
[http://dx.doi.org/10.1161/01.ATV.0000105054.43931.f0] [PMID: 14604830]
[47]
O’Brien, K.D.; McDonald, T.O.; Chait, A.; Allen, M.D.; Alpers, C.E. Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation, 1996, 93(4), 672-682.
[http://dx.doi.org/10.1161/01.CIR.93.4.672] [PMID: 8640995]
[48]
Kita, T.; Kume, N.; Minami, M.; Hayashida, K.; Murayama, T.; Sano, H.; Moriwaki, H.; Kataoka, H.; Nishi, E.; Horiuchi, H.; Arai, H.; Yokode, M. Role of oxidized LDL in atherosclerosis. Ann. N. Y. Acad. Sci., 2001, 947(1), 199-206.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03941.x] [PMID: 11795267]
[49]
Oikonomou, E.; Tsaplaris, P.; Anastasiou, A.; Xenou, M.; Lampsas, S.; Siasos, G.; Pantelidis, P.; Theofilis, P.; Tsatsaragkou, A.; Katsarou, O.; Sagris, M.; Vavuranakis, M.A.; Vavuranakis, M.; Tousoulis, D. Interleukin-1 in Coronary Artery Disease. Curr. Top. Med. Chem., 2022, 231568026623666221017144734
[http://dx.doi.org/10.2174/1568026623666221017144734] [PMID: 36263481]
[50]
Smalley, D.M.; Lin, J.H.C.; Curtis, M.L.; Kobari, Y.; Stemerman, M.B.; Pritchard, K.A. Jr Native LDL increases endothelial cell adhesiveness by inducing intercellular adhesion molecule-1. Arterioscler. Thromb. Vasc. Biol., 1996, 16(4), 585-590.
[http://dx.doi.org/10.1161/01.ATV.16.4.585] [PMID: 8624781]
[51]
Verna, L.; Ganda, C.; Stemerman, M.B. In vivo low-density lipoprotein exposure induces intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 correlated with activator protein-1 expression. Arterioscler. Thromb. Vasc. Biol., 2006, 26(6), 1344-1349.
[http://dx.doi.org/10.1161/01.ATV.0000222152.83069.3f] [PMID: 16614315]
[52]
Manka, D.; Collins, R.G.; Ley, K.; Beaudet, A.L.; Sarembock, I.J. Absence of p-selectin, but not intercellular adhesion molecule-1, attenuates neointimal growth after arterial injury in apolipoprotein e-deficient mice. Circulation, 2001, 103(7), 1000-1005.
[http://dx.doi.org/10.1161/01.CIR.103.7.1000] [PMID: 11181476]
[53]
Newman, P.J.; Berndt, M.C.; Gorski, J.; White, G.C., II; Lyman, S.; Paddock, C.; Muller, W.A. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science, 1990, 247(4947), 1219-1222.
[http://dx.doi.org/10.1126/science.1690453] [PMID: 1690453]
[54]
Elrayess, M.A.; Webb, K.E.; Flavell, D.M.; Syvänne, M.; Taskinen, M.R.; Frick, M.H.; Nieminen, M.S.; Kesäniemi, Y.A.; Pasternack, A.; Jukema, J.W.; Kastelein, J.J.P.; Zwinderman, A.H.; Humphries, S.E. A novel functional polymorphism in the PECAM-1 gene (53G>A) is associated with progression of atherosclerosis in the LOCAT and REGRESS studies. Atherosclerosis, 2003, 168(1), 131-138.
[http://dx.doi.org/10.1016/S0021-9150(03)00089-3] [PMID: 12732396]
[55]
Tzima, E.; Irani-Tehrani, M.; Kiosses, W.B.; Dejana, E.; Schultz, D.A.; Engelhardt, B.; Cao, G.; DeLisser, H.; Schwartz, M.A. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 2005, 437(7057), 426-431.
[http://dx.doi.org/10.1038/nature03952] [PMID: 16163360]
[56]
Mandell, K.; Parkos, C. The JAM family of proteins. Adv. Drug Deliv. Rev., 2005, 57(6), 857-867.
[http://dx.doi.org/10.1016/j.addr.2005.01.005] [PMID: 15820556]
[57]
Imhof, B.A.; Aurrand-Lions, M. Adhesion mechanisms regulating the migration of monocytes. Nat. Rev. Immunol., 2004, 4(6), 432-444.
[http://dx.doi.org/10.1038/nri1375] [PMID: 15173832]
[58]
Martìn-Padura, I.; Lostaglio, S.; Schneemann, M.; Williams, L.; Romano, M.; Fruscella, P.; Panzeri, C.; Stoppacciaro, A.; Ruco, L.; Villa, A.; Simmons, D.; Dejana, E. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol., 1998, 142(1), 117-127.
[http://dx.doi.org/10.1083/jcb.142.1.117] [PMID: 9660867]
[59]
Keiper, T.; Al-Fakhri, N.; Chavakis, E.; Athanasopoulos, A.N.; Isermann, B.; Herzog, S.; Saffrich, R.; Hersemeyer, K.; Bohle, R.M.; Haendeler, J.; Preissner, K.T.; Santoso, S.; Chavakis, T. The role of junctional adhesion molecule-C (JAM-C) in oxidized LDL-mediated leukocyte recruitment. FASEB J., 2005, 19(14), 2078-2080.
[http://dx.doi.org/10.1096/fj.05-4196fje] [PMID: 16195363]
[60]
Orlova, V.V.; Economopoulou, M.; Lupu, F.; Santoso, S.; Chavakis, T. Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin-mediated cell-cell contacts. J. Exp. Med., 2006, 203(12), 2703-2714.
[http://dx.doi.org/10.1084/jem.20051730] [PMID: 17116731]
[61]
Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; Djousse, L.; Elkind, M.S.V.; Ferguson, J.F.; Fornage, M.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Shay, C.M.; Spartano, N.L.; Stokes, A.; Tirschwell, D.L.; VanWagner, L.B.; Tsao, C.W. Heart Disease and Stroke Statistics-2020 Update: A report from the American Heart Association. Circulation, 2020, 141(9), e139-e596.
[http://dx.doi.org/10.1161/CIR.0000000000000757] [PMID: 31992061]
[62]
Malakar, A.K.; Choudhury, D.; Halder, B.; Paul, P.; Uddin, A.; Chakraborty, S. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell. Physiol., 2019, 234(10), 16812-16823.
[http://dx.doi.org/10.1002/jcp.28350] [PMID: 30790284]
[63]
Tedgui, A.; Mallat, Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol. Rev., 2006, 86(2), 515-581.
[http://dx.doi.org/10.1152/physrev.00024.2005] [PMID: 16601268]
[64]
Fijnheer, R.; Frijns, C.J.M.; Korteweg, J.; Rommes, H.; Peters, J.H.; Sixma, J.J.; Nieuwenhuis, H.K. The origin of P-selectin as a circulating plasma protein. Thromb. Haemost., 1997, 77(6), 1081-1085.
[http://dx.doi.org/10.1055/s-0038-1656116] [PMID: 9241736]
[65]
Chong, B.H.; Murray, B.; Berndt, M.C.; Dunlop, L.C.; Brighton, T.; Chesterman, C.N. Plasma P-selectin is increased in thrombotic consumptive platelet disorders. Blood, 1994, 83(6), 1535-1541.
[http://dx.doi.org/10.1182/blood.V83.6.1535.1535] [PMID: 7510145]
[66]
Pigott, R.; Dillon, L.P.; Hemingway, I.H.; Gearing, A.J.H. Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem. Biophys. Res. Commun., 1992, 187(2), 584-589.
[http://dx.doi.org/10.1016/0006-291X(92)91234-H] [PMID: 1382417]
[67]
Jilma, B.; Fasching, P.; Ruthner, C.; Rumplmayr, A.; Ruzicka, S.; Kapiotis, S.; Wagner, O.F.; Eichler, H.G. Elevated circulating P-selectin in insulin dependent diabetes mellitus. Thromb. Haemost., 1996, 76(3), 328-332.
[http://dx.doi.org/10.1055/s-0038-1650578] [PMID: 8883265]
[68]
Herrmann, S.; Ricard, S.; Nicaud, V.; Mallet, C.; Evans, A.; Ruidavets, J.B.; Arveiler, D.; Luc, G.; Cambien, F. The P-selectin gene is highly polymorphic: reduced frequency of the Pro715 allele carriers in patients with myocardial infarction. Hum. Mol. Genet., 1998, 7(8), 1277-1284.
[http://dx.doi.org/10.1093/hmg/7.8.1277] [PMID: 9668170]
[69]
Kee, F.; Morrison, C.; Evans, A.E.; McCrum, E.; McMaster, D.; Dallongeville, J.; Nicaud, V.; Poirier, O.; Cambien, F. Polymorphisms of the P-selectin gene and risk of myocardial infarction in men and women in the ECTIM extension study. Br. Heart J., 2000, 84(5), 548-552.
[http://dx.doi.org/10.1136/heart.84.5.548] [PMID: 11040019]
[70]
Myers, R.H.; Kiely, D.K.; Cupples, L.A.; Kannel, W.B. Parental history is an independent risk factor for coronary artery disease: The Framingham Study. Am. Heart J., 1990, 120(4), 963-969.
[http://dx.doi.org/10.1016/0002-8703(90)90216-K] [PMID: 2220549]
[71]
Roncaglioni, M.C.; Santoro, L.; D’Avanzo, B.; Negri, E.; Nobili, A.; Ledda, A.; Pietropaolo, F.; Franzosi, M.G.; La Vecchia, C.; Feruglio, G.A. Role of family history in patients with myocardial infarction. An Italian case-control study. Circulation, 1992, 85(6), 2065-2072.
[http://dx.doi.org/10.1161/01.CIR.85.6.2065] [PMID: 1591825]
[72]
Mehta, P.; Patel, K.D.; Laue, T.M.; Erickson, H.P.; McEver, R.P. Soluble monomeric P-selectin containing only the lectin and epidermal growth factor domains binds to P-selectin glycoprotein ligand-1 on leukocytes. Blood, 1997, 90(6), 2381-2389.
[http://dx.doi.org/10.1182/blood.V90.6.2381] [PMID: 9310489]
[73]
Ridker, P.M.; Buring, J.E.; Rifai, N. Soluble P-selectin and the risk of future cardiovascular events. Circulation, 2001, 103(4), 491-495.
[http://dx.doi.org/10.1161/01.CIR.103.4.491] [PMID: 11157711]
[74]
Abu-Amero, K.K.; Al-Boudari, O.M.; Mohamed, G.H.; Dzimiri, N. E-selectin S128R polymorphism and severe coronary artery disease in Arabs. BMC Med. Genet., 2006, 7(1), 52.
[http://dx.doi.org/10.1186/1471-2350-7-52] [PMID: 16756647]
[75]
Podgoreanu, M.V.; White, W.D.; Morris, R.W.; Mathew, J.P.; Stafford-Smith, M.; Welsby, I.J.; Grocott, H.P.; Milano, C.A.; Newman, M.F.; Schwinn, D.A.; Perioperative, G. Inflammatory gene polymorphisms and risk of postoperative myocardial infarction after cardiac surgery. Circulation, 2006, 114(1 Suppl.), I275-I281.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.001032] [PMID: 16820586]
[76]
Kansas, G.S. Selectins and their ligands: current concepts and controversies. Blood, 1996, 88(9), 3259-3287.
[http://dx.doi.org/10.1182/blood.V88.9.3259.bloodjournal8893259] [PMID: 8896391]
[77]
Wenzel, K.; Stahn, R.; Speer, A.; Denner, K.; Gläser, C.; Affeldt, M.; Moobed, M.; Scheer, A.; Baumann, G.; Felix, S.B. Functional Characterization of Atherosclerosis-Associated Ser128Arg and Leu554Phe E-Selectin Mutations. Biol. Chem., 1999, 380(6), 661-667.
[http://dx.doi.org/10.1515/BC.1999.082] [PMID: 10430030]
[78]
Zak, I.; Sarecka, B.; Krauze, J. Synergistic effects between 561A > C and 98G > T polymorphisms of E-selectin gene and hypercholesterolemia in determining the susceptibility to coronary artery disease. Heart Vessels, 2008, 23(4), 257-263.
[http://dx.doi.org/10.1007/s00380-008-1040-2] [PMID: 18649056]
[79]
Testa, A.; Benedetto, F.A.; Spoto, B.; Pisano, A.; Tripepi, G.; Mallamaci, F.; Malatino, L.S.; Zoccali, C. The E-selectin gene polymorphism and carotid atherosclerosis in end-stage renal disease. Nephrol. Dial. Transplant., 2006, 21(7), 1921-1926.
[http://dx.doi.org/10.1093/ndt/gfl115] [PMID: 16554320]
[80]
Zheng, F.; Chevalier, J.A.; Zhang, L.Q.; Virgil, D.; Ye, S.Q.; Kwiterovich, P.O. An HphI polymorphism in the E-selectin gene is associated with premature coronary artery disease. Clin. Genet., 2001, 59(1), 58-64.
[http://dx.doi.org/10.1034/j.1399-0004.2001.590110.x] [PMID: 11168027]
[81]
Sagris, M.; Giannopoulos, S.; Giannopoulos, S.; Tzoumas, A.; Texakalidis, P.; Charisis, N.; Kokkinidis, D.G.; Malgor, R.D.; Mouawad, N.J.; Bakoyiannis, C. Transcervical carotid artery revascularization: A systematic review and meta-analysis of outcomes. J. Vasc. Surg., 2021, 74(2), 657-665.e12.
[http://dx.doi.org/10.1016/j.jvs.2021.03.032] [PMID: 33864829]
[82]
Albertini, J.P.; Valensi, P.; Lormeau, B.; Vaysse, J.; Attali, J.R.; Gattegno, L. Soluble L-selectin level is a marker for coronary artery disease in type 2 diabetic patients. Diabetes Care, 1999, 22(12), 2044-2048.
[http://dx.doi.org/10.2337/diacare.22.12.2044] [PMID: 10587840]
[83]
Berardi, C.; Decker, P.A.; Kirsch, P.S.; de Andrade, M.; Tsai, M.Y.; Pankow, J.S.; Sale, M.M.; Sicotte, H.; Tang, W.; Hanson, N.; Polak, J.F.; Bielinski, S.J. Plasma and serum L-selectin and clinical and subclinical cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Transl. Res., 2014, 163(6), 585-592.
[http://dx.doi.org/10.1016/j.trsl.2014.02.001] [PMID: 24631064]
[84]
Tousoulis, D.; Daves, G.J.; Asimakopoulos, G.; Homaei, H.; Zouridakis, E.; Ahmed, N.; Kaski, J.C. Vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 serum level in patients with chest pain and normal coronary arteries (syndrome X). Clin. Cardiol., 2001, 24(4), 301-304.
[http://dx.doi.org/10.1002/clc.4960240409] [PMID: 11303698]
[85]
Lin, C.P.; Lin, W.T.; Leu, H.B.; Wu, T.C.; Chen, J.W. Differential mononuclear cell activity and endothelial inflammation in coronary artery disease and cardiac syndrome X. Int. J. Cardiol., 2003, 89(1), 53-62.
[http://dx.doi.org/10.1016/S0167-5273(02)00428-X] [PMID: 12727005]
[86]
Burke, A.P.; Tracy, R.P.; Kolodgie, F.; Malcom, G.T.; Zieske, A.; Kutys, R.; Pestaner, J.; Smialek, J.; Virmani, R. Elevated C-reactive protein values and atherosclerosis in sudden coronary death: association with different pathologies. Circulation, 2002, 105(17), 2019-2023.
[http://dx.doi.org/10.1161/01.CIR.0000015507.29953.38] [PMID: 11980679]
[87]
Blankenberg, S.; Barbaux, S.; Tiret, L. Adhesion molecules and atherosclerosis. Atherosclerosis, 2003, 170(2), 191-203.
[http://dx.doi.org/10.1016/S0021-9150(03)00097-2] [PMID: 14612198]
[88]
Mizia-Stec, K.; Zahorska-Markiewicz, B.; Mandecki, T.; Janowska, J.; Szulc, A.; Jastrzebska-Maj, E. Serum levels of selected adhesion molecules in patients with coronary artery disease. Int. J. Cardiol., 2002, 83(2), 143-150.
[http://dx.doi.org/10.1016/S0167-5273(02)00032-3] [PMID: 12007686]
[89]
Sagris, M.; Theofilis, P.; Antonopoulos, A.S.; Oikonomou, E.; Paschaliori, C.; Galiatsatos, N.; Tsioufis, K.; Tousoulis, D. Inflammation in coronary microvascular dysfunction. Int. J. Mol. Sci., 2021, 22(24), 13471.
[http://dx.doi.org/10.3390/ijms222413471] [PMID: 34948272]
[90]
Eschen, O.; Christensen, J.H.; Toft, E.; Schmidt, E.B. Soluble adhesion molecules and marine n-3 fatty acids in patients referred for coronary angiography. Atherosclerosis, 2005, 180(2), 327-331.
[http://dx.doi.org/10.1016/j.atherosclerosis.2004.12.006] [PMID: 15910859]
[91]
Serebruany, V.L.; Gurbel, P.A. Effect of thrombolytic therapy on platelet expression and plasma concentration of PECAM-1 (CD31) in patients with acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol., 1999, 19(1), 153-158.
[http://dx.doi.org/10.1161/01.ATV.19.1.153] [PMID: 9888878]
[92]
Gumina, R.J.; Schultz, J.E.; Yao, Z.; Kenny, D.; Warltier, D.C.; Newman, P.J.; Gross, G.J. Antibody to platelet/endothelial cell adhesion molecule-1 reduces myocardial infarct size in a rat model of ischemia-reperfusion injury. Circulation, 1996, 94(12), 3327-3333.
[http://dx.doi.org/10.1161/01.CIR.94.12.3327] [PMID: 8989147]
[93]
Sagris, M.; Antonopoulos, A.S.; Theofilis, P.; Oikonomou, E.; Siasos, G.; Tsalamandris, S.; Antoniades, C.; Brilakis, E.S.; Kaski, J.C.; Tousoulis, D. Risk factors profile of young and older patients with Myocardial Infarction. Cardiovasc. Res., 2022, 118(10), 2281-2292.
[PMID: 34358302]
[94]
Sagris, M.; Katsaros, I.; Giannopoulos, S.; Rosenberg, R.D.; Altin, S.E.; Rallidis, L.; Mena-Hurtado, C.; Armstrong, E.J.; Kokkinidis, D.G. Statins and statin intensity in peripheral artery disease. Vasa, 2022, 51(4), 198-211.
[http://dx.doi.org/10.1024/0301-1526/a001012] [PMID: 35673949]
[95]
Serebruany, V.L.; Murugesan, S.R.; Pothula, A.; Semaan, H.; Gurbel, P.A. Soluble PECAM-1, but not P-selectin, nor osteonectin identify acute myocardial infarction in patients presenting with chest pain. Cardiology, 1999, 91(1), 50-55.
[http://dx.doi.org/10.1159/000006876] [PMID: 10393398]
[96]
Serebruany, V.L.; Murugesan, S.R.; Pothula, A.; Atar, D.; Lowry, D.R.; O’Connor, C.M.; Gurbel, P.A. Increased soluble platelet / endothelial cellular adhesion molecule-1 and osteonectin levels in patients with severe congestive heart failure. Independence of disease etiology, and antecedent aspirin therapy. Eur. J. Heart Fail., 1999, 1(3), 243-249.
[http://dx.doi.org/10.1016/S1388-9842(99)00029-X] [PMID: 10935670]
[97]
Diavati, S.; Sagris, M.; Terentes-Printzios, D.; Vlachopoulos, C. Anticoagulation treatment in venous thromboembolism: options and optimal duration. Curr. Pharm. Des., 2022, 28(4), 296-305.
[http://dx.doi.org/10.2174/1381612827666211111150705] [PMID: 34766887]
[98]
Sagris, M.; Bakoyiannis, C. Venous thromboembolism and chronic thromboembolic pulmonary hypertension: novel clinical insights. Curr. Pharm. Des., 2022, 28(10), 769-770.
[http://dx.doi.org/10.2174/138161282810220511124302] [PMID: 35708100]
[99]
Sagris, M.; Kokkinidis, D.G.; Bakoyiannis, C. Contemporary management of deep vein thrombosis, pulmonary embolism and chronic thromboembolic pulmonary hypertension. Curr. Pharm. Des., 2022, 28(7), 511.
[http://dx.doi.org/10.2174/138161282807220221103233] [PMID: 35379122]
[100]
Gurbel, P.A.; Cummings, C.C.; Bell, C.R.; Alford, A.B.; Meister, A.F.; Serebruany, V.L. Onset and extent of platelet inhibition by clopidogrel loading in patients undergoing elective coronary stenting: The Plavix Reduction Of New Thrombus Occurrence (PRONTO) trial. Am. Heart J., 2003, 145(2), 239-247.
[http://dx.doi.org/10.1067/mhj.2003.109] [PMID: 12595840]
[101]
A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet., 2011, 43(4), 339-344.
[http://dx.doi.org/10.1038/ng.782] [PMID: 21378988]
[102]
Hara, T.; Monguchi, T.; Iwamoto, N.; Akashi, M.; Mori, K.; Oshita, T.; Okano, M.; Toh, R.; Irino, Y.; Shinohara, M.; Yamashita, Y.; Shioi, G.; Furuse, M.; Ishida, T.; Hirata, K. Targeted disruption of JCAD (Junctional protein associated with coronary artery disease)/KIAA1462, a coronary artery disease-associated gene product, inhibits angiogenic processes in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol., 2017, 37(9), 1667-1673.
[http://dx.doi.org/10.1161/ATVBAHA.117.309721] [PMID: 28705794]
[103]
Erdmann, J.; Willenborg, C.; Nahrstaedt, J.; Preuss, M.; König, I.R.; Baumert, J.; Linsel-Nitschke, P.; Gieger, C.; Tennstedt, S.; Belcredi, P.; Aherrahrou, Z.; Klopp, N.; Loley, C.; Stark, K.; Hengstenberg, C.; Bruse, P.; Freyer, J.; Wagner, A.K.; Medack, A.; Lieb, W.; Grosshennig, A.; Sager, H.B.; Reinhardt, A.; Schäfer, A.; Schreiber, S.; El Mokhtari, N.E.; Raaz-Schrauder, D.; Illig, T.; Garlichs, C.D.; Ekici, A.B.; Reis, A.; Schrezenmeir, J.; Rubin, D.; Ziegler, A.; Wichmann, H.E.; Doering, A.; Meisinger, C.; Meitinger, T.; Peters, A.; Schunkert, H. Genome-wide association study identifies a new locus for coronary artery disease on chromosome 10p11.23. Eur. Heart J., 2011, 32(2), 158-168.
[http://dx.doi.org/10.1093/eurheartj/ehq405] [PMID: 21088011]
[104]
Lee, J.E.; Lee, N.; Kim, H.; Kim, J.; Choi, S.H.; Kim, J.H.; Kim, T.; Song, I.C.; Park, S.P.; Moon, W.K.; Hyeon, T. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J. Am. Chem. Soc., 2010, 132(2), 552-557.
[http://dx.doi.org/10.1021/ja905793q] [PMID: 20017538]
[105]
Yavuz, M.S.; Cheng, Y.; Chen, J.; Cobley, C.M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K.H.; Schwartz, A.G.; Wang, L.V.; Xia, Y. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater., 2009, 8(12), 935-939.
[http://dx.doi.org/10.1038/nmat2564] [PMID: 19881498]
[106]
Yu, M.K.; Park, J.; Jon, S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2012, 2(1), 3-44.
[http://dx.doi.org/10.7150/thno.3463] [PMID: 22272217]
[107]
Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond.), 2013, 8(9), 1509-1528.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[108]
Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev., 2011, 63(3), 136-151.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[109]
Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed., 2010, 49(36), 6288-6308.
[http://dx.doi.org/10.1002/anie.200902672] [PMID: 20648499]
[110]
Nakashima, Y.; Raines, E.W.; Plump, A.S.; Breslow, J.L.; Ross, R. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol., 1998, 18(5), 842-851.
[http://dx.doi.org/10.1161/01.ATV.18.5.842] [PMID: 9598845]
[111]
Woodfin, A.; Voisin, M.B.; Nourshargh, S. PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler. Thromb. Vasc. Biol., 2007, 27(12), 2514-2523.
[http://dx.doi.org/10.1161/ATVBAHA.107.151456] [PMID: 17872453]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy