Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Electrochemical Sensors for the Detection of Anti-asthma Drugs in Pharmaceutical and Biological Fluids: A Review

Author(s): Rajasekhar Chokkareddy, Joan Chepkoech Kilele, Suvardhan Kanchi* and Gan G. Redhi

Volume 19, Issue 3, 2023

Published on: 01 March, 2023

Page: [220 - 239] Pages: 20

DOI: 10.2174/1573411019666230117152951

Price: $65

Abstract

Background: Worldwide, the prescriptions for asthma drugs are on the rise. However, antiasthma drugs have side effects and can lead to fatal death at higher doses. Quite often, these drugs are abused as growth promoters in poultry/livestock as well as by athletes to enhance their performance. Consequently, it is vital to design uncomplicated, portable, rapid and highly sensitive means of detecting these anti-asthma drugs in pharmaceutical formulations and other sample matrices. This review highlights the use of electrochemical sensors as alternative methods to conventional analytical techniques for detecting anti-asthma drugs in pharmaceuticals and biological fluids.

Methods: Literature covering diverse detection methods for anti-asthma drugs were reviewed to provide background information in this area of research. Next, the literature survey focused primarily on the emergence of the nanotechnology platform, including the strengths and weaknesses of this approach. Finally, a perspective on the future direction of this method was summarized.

Results: Electrochemical sensors offer several advantages over conventional methods, which require long and tedious extraction, pre-concentration and clean up steps. Moreover, electrochemical sensor techniques are less expensive, easy to operate and avoid the need for harmful reagents known to generate a huge amount of non-environmental friendly chemicals.

Conclusion: Nanotechnology-based electrochemical sensors represent a promising platform for analysing anti-asthma drugs in pharmaceuticals and biological fluids given their beneficial effects such as low cost, use of less health hazardous materials, and compatibility with environmental health.

Keywords: Electrochemical methods, sensors, anti-Asthma drugs, pharmaceuticals, biological fluids, bronchial inflammation.

Graphical Abstract
[1]
Bateman, E.D.; Hurd, S.S.; Barnes, P.J.; Bousquet, J.; Drazen, J.M.; FitzGerald, M.; Gibson, P.; Ohta, K.; O’Byrne, P.; Pedersen, S.E.; Piz-zichini, E.; Sullivan, S.D.; Wenzel, S.E.; Zar, H.J. Global strategy for asthma management and prevention: GINA executive summary. Eur. Respir. J., 2008, 31(1), 143-178.
[http://dx.doi.org/10.1183/09031936.00138707] [PMID: 18166595]
[2]
Valizadeh, M.; Sohrabi, M.R.; Motiee, F. Simple spectrophotometric method for simultaneous determination of salmeterol and fluticasone as anti-asthma drugs in inhalation spray based on artificial neural network and support vector regression. Optik (Stuttg.), 2021, 240, 166879.
[http://dx.doi.org/10.1016/j.ijleo.2021.166879]
[3]
Morales, E. The Global Asthma Report 2018, 2018.
[4]
Bissell, K.; Ellwood, P.; Ellwood, E.; Chiang, C.Y.; Marks, G.; El Sony, A.; Asher, I.; Billo, N.; Perrin, C. Essential medicines at the na-tional level: The Global Asthma Network’s essential asthma medicines survey 2014. Int. J. Environ. Res. Public Health, 2019, 16(4), 605.
[http://dx.doi.org/10.3390/ijerph16040605] [PMID: 30791442]
[5]
Adeloye, D.; Chan, K.Y.; Rudan, I.; Campbell, H. An estimate of asthma prevalence in Africa: a systematic analysis. Croat. Med. J., 2013, 54(6), 519-531.
[http://dx.doi.org/10.3325/cmj.2013.54.519] [PMID: 24382846]
[6]
Dharmage, S.C.; Perret, J.L.; Custovic, A. Epidemiology of asthma in children and adults. Front Pediatr., 2019, 7, 246.
[http://dx.doi.org/10.3389/fped.2019.00246] [PMID: 31275909]
[7]
Masekela, R.; Gray, C.; Green, J.; Manjra, A.; Kritzinger, F.; Levin, M. The increasing burden of asthma in South African children: A call to action. S. Afr. Med. J., 2018, 108(7), 537-539.
[http://dx.doi.org/10.7196/SAMJ.2018.v108i7.13162]
[8]
Lion-Cachet, H.C.; Musonda, J.M.M.; Omole, O.B. Severe asthma in South Africa: A literature review and management approach for pri-mary care. S. Afr. Fam. Pract., 2021, 63(1), e1-e10.
[http://dx.doi.org/10.4102/safp.v63i1.5179] [PMID: 33567835]
[9]
de Roos, E.W.; Lahousse, L.; Verhamme, K.M.C.; Braunstahl, G.J.; Ikram, M.A.; in ’t Veen, J.C.C.M.; Stricker, B.H.C.; Brusselle, G.G.O. Asthma and its comorbidities in middle-aged and older adults; the Rotterdam Study. Respir. Med., 2018, 139, 6-12.
[http://dx.doi.org/10.1016/j.rmed.2018.04.006] [PMID: 29858003]
[10]
Baldacci, S.; Simoni, M.; Maio, S.; Angino, A.; Martini, F.; Sarno, G.; Cerrai, S.; Silvi, P.; Pala, A.P.; Bresciani, M.; Paggiaro, P.; Viegi, G.; Angino, A.; Baldacci, S.; Bresciani, M.; Cerrai, S.; Di Pede, F.; Maio, S.; Martini, F.; Piegaia, B.B.; Sarno, G.; Silvi, P.; Viegi, G.; Mangione, M.; Pala, A.P.; Bacci, E.; Carrozzi, L.; Dente, F.; Paggiaro, P.; Pistelli, F.; Bancalari, L.; Foschino, M.P.; Pelucchi, A.; Moscato, G.; Pieri-marchi, P.; Brunetto, B.; Iacovacci, P.; Pini, C.; Tinghino, R.; Forastiere, F.; Perucci, C.A.; Porta, D.; Ancona, L.; Protasi, S.; Lazazzera, B.; Ziroli, V.; D’Armini, E.; Campanile, S.F.; Ferri, M.; Lorusso, P.; Pistelli, R.; Salotti, R.; Santagati, M.; Agea, E.; Casciari, C.; Murgia, N.; Spinozzi, F.; Bonifazi, F.; Antonicelli, L.; Braschi, M.C.; Conti, V.; Filippelli, A.; Corbi, G.M.; Russomanno, G.; Braido, F.; Canonica, W.; Balbi, F.; Cerveri, I.; Corsico, A.; Grosso, A. Prescriptive adherence to GINA guidelines and asthma control: An Italian cross sectional study in general practice. Respir. Med., 2019, 146, 10-17.
[http://dx.doi.org/10.1016/j.rmed.2018.11.001] [PMID: 30665506]
[11]
Barnes, P.J. Drugs for asthma. Br. J. Pharmacol., 2006, 147(S1), S297-S303.
[http://dx.doi.org/10.1038/sj.bjp.0706437] [PMID: 16402117]
[12]
Bonini, M.; Usmani, O.S. Drugs for airway disease. Medicine (Abingdon), 2020, 48(5), 314-322.
[http://dx.doi.org/10.1016/j.mpmed.2020.02.007]
[13]
Sears, M.R.; Lötvall, J. Past, present and future-β2-adrenoceptor agonists in asthma management. Respir. Med., 2005, 99(2), 152-170.
[http://dx.doi.org/10.1016/j.rmed.2004.07.003] [PMID: 15715182]
[14]
Al Majidi, M.I.H.; El-Shaheny, R.; El-Shabrawy, Y.; El-Maghrabey, M. Screening and greenness profiling of oxidative-coupling and elec-trophilic aromatic substitution reactions for determination of three phenolic drugs. Microchem. J., 2019, 149, 104051.
[http://dx.doi.org/10.1016/j.microc.2019.104051]
[15]
Zhou, L.; Sleiman, M.; Ferronato, C.; Chovelon, J.M.; de Sainte-Claire, P.; Richard, C. Sulfate radical induced degradation of β2-adrenoceptor agonists salbutamol and terbutaline: Phenoxyl radical dependent mechanisms. Water Res., 2017, 123, 715-723.
[http://dx.doi.org/10.1016/j.watres.2017.07.025] [PMID: 28719816]
[16]
He, H.; Sun, T.; Liu, W.; Xu, Z.; Han, Z.; Zhao, L.; Wu, X.; Ning, B.; Bai, J. Highly sensitive detection of salbutamol by ALP-mediated plasmonic ELISA based on controlled growth of AgNPs. Microchem. J., 2020, 156, 104804.
[http://dx.doi.org/10.1016/j.microc.2020.104804]
[17]
Li, L.; Li, L.; Jin, Y.; Shuang, Y.; Wang, H. Preparation of a teicoplanin-bonded chiral stationary phase for simultaneous determination of clenbuterol and salbutamol enantiomers in meat by LC-MS/MS. Microchem. J., 2020, 157, 104925.
[http://dx.doi.org/10.1016/j.microc.2020.104925]
[18]
Sankar, J.; Lodha, R.; Kabra, S.K. Doxofylline: The next generation methylxanthine. Indian J. Pediatr., 2008, 75(3), 251-254.
[http://dx.doi.org/10.1007/s12098-008-0054-1] [PMID: 18376093]
[19]
Cazzola, M.; Matera, M.G. The effect of doxofylline in asthma and COPD. Respir. Med., 2020, 164, 105904.
[http://dx.doi.org/10.1016/j.rmed.2020.105904] [PMID: 32094104]
[20]
Makino, S.; Fueki, M.; Fueki, N. Efficacy and safety of methylxanthines in the treatment of asthma. Allergol. Int., 2004, 53(1), 13-22.
[http://dx.doi.org/10.1046/j.1440-1592.2003.00306.x]
[21]
Gan, T.; Li, J.; Zhao, A.; Xu, J.; Zheng, D.; Wang, H.; Liu, Y. Detection of theophylline using molecularly imprinted mesoporous silica spheres. Food Chem., 2018, 268, 1-8.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.058] [PMID: 30064735]
[22]
Primpray, V.; Chailapakul, O.; Tokeshi, M.; Rojanarata, T.; Laiwattanapaisal, W. A paper-based analytical device coupled with electro-chemical detection for the determination of dexamethasone and prednisolone in adulterated traditional medicines. Anal. Chim. Acta, 2019, 1078, 16-23.
[http://dx.doi.org/10.1016/j.aca.2019.05.072] [PMID: 31358214]
[23]
Chen, D.; Yang, M.; Zheng, N.; Xie, N.; Liu, D.; Xie, C.; Yao, D. A novel aptasensor for electrochemical detection of ractopamine, clen-buterol, salbutamol, phenylethanolamine and procaterol. Biosens. Bioelectron., 2016, 80, 525-531.
[http://dx.doi.org/10.1016/j.bios.2016.01.025] [PMID: 26890828]
[24]
Baytak, A.K.; Teker, T.; Duzmen, S.; Aslanoglu, M. A sensitive determination of terbutaline in pharmaceuticals and urine samples using a composite electrode based on zirconium oxide nanoparticles. Mater. Sci. Eng. C, 2016, 67, 125-131.
[http://dx.doi.org/10.1016/j.msec.2016.05.008] [PMID: 27287106]
[25]
Feng, S.; Chen, C.; Wang, W.; Que, L. An aptamer nanopore-enabled microsensor for detection of theophylline. Biosens. Bioelectron., 2018, 105, 36-41.
[http://dx.doi.org/10.1016/j.bios.2018.01.016] [PMID: 29351868]
[26]
Bartella, L.; Di Donna, L.; Napoli, A.; Siciliano, C.; Sindona, G.; Mazzotti, F. A rapid method for the assay of methylxanthines alkaloids: Theobromine, theophylline and caffeine, in cocoa products and drugs by paper spray tandem mass spectrometry. Food Chem., 2019, 278, 261-266.
[http://dx.doi.org/10.1016/j.foodchem.2018.11.072] [PMID: 30583372]
[27]
Goyal, R.N.; Bishnoi, S. Simultaneous voltammetric determination of prednisone and prednisolone in human body fluids. Talanta, 2009, 79(3), 768-774.
[http://dx.doi.org/10.1016/j.talanta.2009.04.067] [PMID: 19576443]
[28]
Lee, W.; Syed A, A.; Leow, C.Y.; Tan, S.C.; Leow, C.H. Isolation and characterization of a novel anti-salbutamol chicken scFv for human doping urinalysis. Anal. Biochem., 2018, 555, 81-93.
[http://dx.doi.org/10.1016/j.ab.2018.05.009] [PMID: 29775561]
[29]
Zvereva, E.A.; Zherdev, A.V.; Xu, C.; Dzantiev, B.B. Highly sensitive immunochromatographic assay for qualitative and quantitative con-trol of beta-agonist salbutamol and its structural analogs in foods. Food Control, 2018, 86, 50-58.
[http://dx.doi.org/10.1016/j.foodcont.2017.11.003]
[30]
Nagle, L.C.; Wahl, A.; Ogourstov, V.; Seymour, I.; Barry, F.; Rohan, J.F.; Mac Loughlin, R. Electrochemical discrimination of salbutamol from its excipients in ventolinTM at nanoporous gold microdisc arrays. Sensors (Basel), 2021, 21(12), 3975.
[http://dx.doi.org/10.3390/s21123975] [PMID: 34207616]
[31]
Ni, B.J.; Joss, A.; Yuan, Z. Modeling nitrogen removal with partial nitritation and anammox in one floc-based sequencing batch reactor. Water Res., 2014, 67, 321-329.
[http://dx.doi.org/10.1016/j.watres.2014.09.028] [PMID: 25310704]
[32]
Díez, A.M.; Ribeiro, A.S.; Sanromán, M.A.; Pazos, M. Optimization of photo-Fenton process for the treatment of prednisolone. Environ. Sci. Pollut. Res. Int., 2018, 25(28), 27768-27782.
[http://dx.doi.org/10.1007/s11356-018-1782-z] [PMID: 29600382]
[33]
Talebpour, Z.; Maesum, S.; Jalali-Heravi, M.; Shamsipur, M. Simultaneous determination of theophylline and caffeine by proton magnetic resonance spectroscopy using partial least squares regression techniques. Anal. Sci., 2003, 19(7), 1079-1082.
[http://dx.doi.org/10.2116/analsci.19.1079] [PMID: 12880097]
[34]
Kalyani, L.; Rao, C.V.N. Simultaneous spectrophotometric estimation of Salbutamol, Theophylline and Ambroxol three component tablet formulation using simultaneous equation methods. Karbala Int. J. Modern Sci., 2018, 4(1), 171-179.
[http://dx.doi.org/10.1016/j.kijoms.2018.01.004]
[35]
Sousa, C.P.; Ribeiro, F.W.P.; Oliveira, T.M.B.F.; Salazar-Banda, G.R.; de Lima-Neto, P.; Morais, S.; Correia, A.N. Electroanalysis of pharmaceuticals on boron‐doped diamond electrodes: A review. ChemElectroChem, 2019, 6(9), 2350-2378.
[http://dx.doi.org/10.1002/celc.201801742]
[36]
Aydin, E.B.; Aydin, M.; Sezginturk, M.K. Immobilization techniques of nanomaterials. In: New developments in nanosensors for pharma-ceutical analysis; Ozkan, S.A.; Shah, A., Eds.; Academic Press, 2019; pp. 47-78.
[http://dx.doi.org/10.1016/B978-0-12-816144-9.00002-X]
[37]
de Lima, L.F.; Maciel, C.C.; Ferreira, A.L.; de Almeida, J.C.; Ferreira, M. Nickel (II) phthalocyanine-tetrasulfonic-Au nanoparticles nano-composite film for tartrazine electrochemical sensing. Mater. Lett., 2020, 262, 127186.
[http://dx.doi.org/10.1016/j.matlet.2019.127186]
[38]
Cui, F.; Zhang, X. Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocompo-sites. J. Electroanal. Chem. (Lausanne), 2012, 669, 35-41.
[http://dx.doi.org/10.1016/j.jelechem.2012.01.021]
[39]
Li, J.; Xu, Z.; Liu, M.; Deng, P.; Tang, S.; Jiang, J.; Feng, H.; Qian, D.; He, L. Ag/N-doped reduced graphene oxide incorporated with mo-lecularly imprinted polymer: An advanced electrochemical sensing platform for salbutamol determination. Biosens. Bioelectron., 2017, 90, 210-216.
[http://dx.doi.org/10.1016/j.bios.2016.11.016] [PMID: 27898378]
[40]
Jadon, N.; Jain, R.; Sharma, S.; Singh, K. Recent trends in electrochemical sensors for multianalyte detection - A review. Talanta, 2016, 161, 894-916.
[http://dx.doi.org/10.1016/j.talanta.2016.08.084] [PMID: 27769500]
[41]
Pal, N. Nanoporous metal oxide composite materials: A journey from the past, present to future. Adv. Colloid Interface Sci., 2020, 280, 102156.
[http://dx.doi.org/10.1016/j.cis.2020.102156] [PMID: 32335382]
[42]
Singh, A.; Sinsinbar, G.; Choudhary, M.; Kumar, V.; Pasricha, R.; Verma, H.N.; Singh, S.P.; Arora, K. Graphene oxide-chitosan nanocom-posite based electrochemical DNA biosensor for detection of typhoid. Sens. Actuators B Chem., 2013, 185, 675-684.
[http://dx.doi.org/10.1016/j.snb.2013.05.014]
[43]
Khoshroo, A.; Hosseinzadeh, L.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ahmadi, F. Silver nanofibers/ionic liquid nanocomposite based electrochemical sensor for detection of clonazepam via electrochemically amplified detection. Microchem. J., 2019, 145, 1185-1190.
[http://dx.doi.org/10.1016/j.microc.2018.12.049]
[44]
Li, M.; Wang, W.; Chen, Z.; Song, Z.; Luo, X. Electrochemical determination of paracetamol based on Au@graphene core-shell nanoparti-cles doped conducting polymer PEDOT nanocomposite. Sens. Actuators B Chem., 2018, 260, 778-785.
[http://dx.doi.org/10.1016/j.snb.2018.01.093]
[45]
Rezvani, S.A.; Soleymanpour, A. Application of a sensitive electrochemical sensor modified with WO3 nanoparticles for the trace determi-nation of theophylline. Microchem. J., 2019, 149, 104005.
[http://dx.doi.org/10.1016/j.microc.2019.104005]
[46]
Shalauddin, M.; Akhter, S.; Basirun, W.J.; Bagheri, S.; Anuar, N.S.; Johan, M.R. Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids. Electrochim. Acta, 2019, 304, 323-333.
[http://dx.doi.org/10.1016/j.electacta.2019.03.003]
[47]
Mallakpour, S.; Khadem, E. Carbon nanotube-metal oxide nanocomposites: Fabrication, properties and applications. Chem. Eng. J., 2016, 302, 344-367.
[http://dx.doi.org/10.1016/j.cej.2016.05.038]
[48]
Munir, A.; Bozal-Palabiyik, B.; Khan, A.; Shah, A.; Uslu, B. A novel electrochemical method for the detection of oxymetazoline drug based on MWCNTs and TiO2 nanoparticles. J. Electroanal. Chem. (Lausanne), 2019, 844, 58-65.
[http://dx.doi.org/10.1016/j.jelechem.2019.05.017]
[49]
Shaterian, M.; Aghaei, A.; Koohi, M.; Teymouri, M.; Mohammadi-Ganjgah, A. Synthesis, characterization and electrochemical sensing application of CoFe2O4/graphene magnetic nanocomposite for analysis of atenolol. Polyhedron, 2020, 182, 114479.
[http://dx.doi.org/10.1016/j.poly.2020.114479]
[50]
Lopes, J.H.; Colson, F.X.; Barralet, J.E.; Merle, G. Electrically wired enzyme/TiO2 composite for glucose detection. Mater. Sci. Eng. C, 2017, 76, 991-996.
[http://dx.doi.org/10.1016/j.msec.2017.03.113] [PMID: 28482617]
[51]
Liu, X.; Chen, W.; Lian, M.; Chen, X.; Lu, Y.; Yang, W. Enzyme immobilization on ZIF-67/MWCNT composite engenders high sensitivity electrochemical sensing. J. Electroanal. Chem. (Lausanne), 2019, 833, 505-511.
[http://dx.doi.org/10.1016/j.jelechem.2018.12.027]
[52]
Erkmen, C.; Kurbanoglu, S.; Uslu, B. Fabrication of poly(3,4-ethylenedioxythiophene)-iridium oxide nanocomposite based Tyrosinase biosensor for the dual detection of catechol and azinphos methyl. Sens. Actuators B Chem., 2020, 316, 128121.
[http://dx.doi.org/10.1016/j.snb.2020.128121]
[53]
Kurbanoglu, S.; Erkmen, C.; Uslu, B. Frontiers in electrochemical enzyme based biosensors for food and drug analysis. Trends Analyt. Chem., 2020, 124, 115809.
[http://dx.doi.org/10.1016/j.trac.2020.115809]
[54]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive volt-ammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6(6), 1639-1647.
[http://dx.doi.org/10.1007/s12161-013-9585-9]
[55]
Shabani-Nooshabadi, M.; Roostaee, M. Modification of carbon paste electrode with NiO/graphene oxide nanocomposite and ionic liquids for fabrication of high sensitive voltammetric sensor on sulfamethoxazole analysis. J. Mol. Liq., 2016, 220, 329-333.
[http://dx.doi.org/10.1016/j.molliq.2016.05.001]
[56]
Atta, N.F.; Abdel Gawad, S.A.; El-Ads, E.H.; El-Gohary, A.R.M.; Galal, A. A new strategy for NADH sensing using ionic liquid crystals-carbon nanotubes/nano-magnetite composite platform. Sens. Actuators B Chem., 2017, 25165-25173.
[http://dx.doi.org/10.1016/j.snb.2017.05.026]
[57]
Gholivand, M.B.; Ahmadi, E.; Mavaei, M. A novel voltammetric sensor based on graphene quantum dots-thionine/nano-porous glassy carbon electrode for detection of cisplatin as an anti-cancer drug. Sens. Actuators B Chem., 2019, 299, 126975.
[http://dx.doi.org/10.1016/j.snb.2019.126975]
[58]
Miraki, M.; Karimi-Maleh, H.; Taher, M.A.; Cheraghi, S.; Karimi, F.; Agarwal, S.; Gupta, V.K. Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq., 2019, 278, 672-676.
[http://dx.doi.org/10.1016/j.molliq.2019.01.081]
[59]
Afzali, M.; Mostafavi, A.; Nekooie, R.; Jahromi, Z. A novel voltammetric sensor based on palladium nanoparticles/carbon nano-fibers/ionic liquid modified carbon paste electrode for sensitive determination of anti-cancer drug pemetrexed. J. Mol. Liq., 2019, 282, 456-465.
[http://dx.doi.org/10.1016/j.molliq.2019.03.041]
[60]
Naveen, M.H.; Gurudatt, N.G.; Shim, Y.B. Applications of conducting polymer composites to electrochemical sensors: A review. Appl. Mater. Today, 2017, 9, 419-433.
[http://dx.doi.org/10.1016/j.apmt.2017.09.001]
[61]
Kalambate, P.K.; Rawool, C.R.; Srivastava, A.K. Voltammetric determination of pyrazinamide at graphene-zinc oxide nanocomposite mod-ified carbon paste electrode employing differential pulse voltammetry. Sens. Actuators B Chem., 2016, 237, 196-205.
[http://dx.doi.org/10.1016/j.snb.2016.06.019]
[62]
Jacobson, G.A.; Chong, F.V.; Davies, N.W. LC-MS method for the determination of albuterol enantiomers in human plasma using manual solid-phase extraction and a non-deuterated internal standard. J. Pharm. Biomed. Anal., 2003, 31(6), 1237-1243.
[http://dx.doi.org/10.1016/S0731-7085(02)00734-3] [PMID: 12667940]
[63]
Moore, L.E.; Kapoor, K.; Byers, B.W.; Brotto, A.R.; Ghods-Esfahani, D.; Henry, S.L.; St James, R.B.; Stickland, M.K. Acute effects of salbutamol on systemic vascular function in people with asthma. Respir. Med., 2019, 155, 133-140.
[http://dx.doi.org/10.1016/j.rmed.2019.07.018] [PMID: 31349187]
[64]
Cordell, R.L.; Valkenburg, T.S.E.; Pandya, H.C.; Hawcutt, D.B.; Semple, M.G.; Monks, P.S. Quantitation of salbutamol using micro-volume blood sampling - applications to exacerbations of pediatric asthma. J. Asthma, 2018, 55(11), 1205-1213.
[http://dx.doi.org/10.1080/02770903.2017.1402341] [PMID: 29211599]
[65]
Zhang, X.; Chu, Y.; Yang, H.; Zhao, K.; Li, J.; Du, H.; She, P.; Deng, A. Ultrasensitive and specific detection of salbutamol in swine feed, meat, and urine samples by a competitive immunochromatographic test integrated with surface-enhanced raman scattering. Food Anal. Methods, 2016, 9(12), 3396-3406.
[http://dx.doi.org/10.1007/s12161-016-0533-3]
[66]
Guo, X.C.; Wang, H-H.; Chen, X-J.; Xia, Z-Y.; Kang, W-Y.; Zhou, W-H. One step electrodeposition of graphene-au nanocomposites for highly sensitive electrochemical detection of salbutamol. Int. J. Electrochem. Sci., 2017, 861-875.
[http://dx.doi.org/10.20964/2017.02.29]
[67]
Yan, H.; Wang, R.; Han, Y.; Liu, S. Screening, recognition and quantitation of salbutamol residues in ham sausages by molecularly im-printed solid phase extraction coupled with high-performance liquid chromatography-ultraviolet detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 900, 18-23.
[http://dx.doi.org/10.1016/j.jchromb.2012.05.021] [PMID: 22682939]
[68]
Wu, J.; Ding, C.; Ge, Q.; Li, Z.; Zhou, Z.; Zhi, X. Simultaneous determination of ipratropium and salbutamol in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(30), 3475-3483.
[http://dx.doi.org/10.1016/j.jchromb.2011.09.027] [PMID: 21983198]
[69]
Cheng, J.; Su, X.O.; Han, C.; Wang, S.; Wang, P.; Zhang, S.; Xie, J. Ultrasensitive detection of salbutamol in animal urine by immunomag-netic bead treatment coupling with surface-enhanced Raman spectroscopy. Sens. Actuators B Chem., 2018, 255, 2329-2338.
[http://dx.doi.org/10.1016/j.snb.2017.09.047]
[70]
Zhai, C.; Li, Y.; Peng, Y.; Yang, Y.; Li, Y. Rapid detection of salbutamol in fresh muscle tissues based on surface enhanced Raman spec-troscopy. Nongye Gongcheng Xuebao (Beijing), 2017, 33(7), 275-280.
[71]
Fang, S.; Zhang, Y.; Liu, X.; Qiu, J.; Liu, Z.; Kong, F. Development of a highly sensitive time-resolved fluoroimmunoassay for the deter-mination of trace salbutamol in environmental samples. Sci. Total Environ., 2019, 679, 359-364.
[http://dx.doi.org/10.1016/j.scitotenv.2019.05.057] [PMID: 31085415]
[72]
Xu, M.; Qian, X.; Zhao, K.; Deng, A.; Li, J. Flow injection chemiluminescent competitive immunoassay for the β-adrenergic agonist sal-butamol using carboxylic resin beads and enzymatic amplification. Sens. Actuators B Chem., 2015, 215, 323-329.
[http://dx.doi.org/10.1016/j.snb.2015.04.001]
[73]
Liu, Z.; Zhang, B.; Sun, J.; Yi, Y.; Li, M.; Du, D. Highly efficient detection of salbutamol in environmental water samples by an enzyme immunoassay. Sci. Total Environ., 2018, 613-614861-865. http://dx.doi.org/10.1016/j.scitotenv.2017.08.324
[74]
Wang, W.; Zhang, Y.; Wang, J.; Shi, X.; Ye, J. Determination of β-agonists in pig feed, pig urine and pig liver using capillary electrophore-sis with electrochemical detection. Meat Sci., 2010, 85(2), 302-305.
[http://dx.doi.org/10.1016/j.meatsci.2010.01.018] [PMID: 20374903]
[75]
Lin, C.H.; Wu, C.C.; Kuo, Y.F. A high sensitive impedimetric salbutamol immunosensor based on the gold nanostructure-deposited screen-printed carbon electrode. J. Electroanal. Chem. (Lausanne), 2016, 768, 27-33.
[http://dx.doi.org/10.1016/j.jelechem.2016.02.036]
[76]
Lomae, A.; Nantaphol, S.; Kondo, T.; Chailapakul, O.; Siangproh, W.; Panchompoo, J. Simultaneous determination of β-agonists by UHPLC coupled with electrochemical detection based on palladium nanoparticles modified BDD electrode. J. Electroanal. Chem.(Lausanne), 2019, 840, 439-448.
[http://dx.doi.org/10.1016/j.jelechem.2019.04.003]
[77]
Sobczak-Kupiec, A.; Venkatesan, J.; Alhathal AlAnezi, A.; Walczyk, D.; Farooqi, A.; Malina, D.; Hosseini, S.H.; Tyliszczak, B. Magnetic nanomaterials and sensors for biological detection. Nanomedicine, 2016, 12(8), 2459-2473.
[http://dx.doi.org/10.1016/j.nano.2016.07.003] [PMID: 27456162]
[78]
Ensafi, A.A.; Zandi-Atashbar, N.; Gorgabi-Khorzoughi, M.; Rezaei, B. Nickel-Ferrite Oxide decorated on reduced Graphene Oxide, an efficient and selective electrochemical sensor for detection of Furazolidone. IEEE Sens. J., 2019, 19(14), 5396-5403.
[http://dx.doi.org/10.1109/JSEN.2019.2908994]
[79]
Dong, Y.; Yang, L.; Zhang, L. Simultaneous electrochemical detection of benzimidazole fungicides carbendazim and thiabendazole using a novel nanohybrid material-modified electrode. J. Agric. Food Chem., 2017, 65(4), 727-736.
[http://dx.doi.org/10.1021/acs.jafc.6b04675] [PMID: 28068083]
[80]
Shanmugam, S.; Subramanian, B. Evolution of phase pure magnetic cobalt ferrite nanoparticles by varying the synthesis conditions of polyol method. Mater. Sci. Eng. B, 2020, 252, 114451.
[http://dx.doi.org/10.1016/j.mseb.2019.114451]
[81]
Taei, M.; Hasanpour, F.; Salavati, H.; Mohammadian, S. Fast and sensitive determination of doxorubicin using multi-walled Carbon nano-tubes as a sensor and CoFe2O4 magnetic nanoparticles as a mediator. Mikrochim. Acta, 2016, 183(1), 49-56.
[http://dx.doi.org/10.1007/s00604-015-1588-3]
[82]
Gopal, P.; Reddy, T.M. Fabrication of carbon-based nanomaterial composite electrochemical sensor for the monitoring of terbutaline in pharmaceutical formulations. Colloids Surf. A Physicochem. Eng. Asp., 2018, 538, 600-609.
[http://dx.doi.org/10.1016/j.colsurfa.2017.11.059]
[83]
Sayed, S.; Ibrahim, H.K.; Mohamed, M.I.; El-Milligi, M.F. Fast-dissolving sublingual films of terbutaline sulfate: formulation and in vitro/in vivo evaluation. Mol. Pharm., 2013, 10(8), 2942-2947.
[http://dx.doi.org/10.1021/mp4000713] [PMID: 23883311]
[84]
Liu, J.M.; Huang, Q.; Cai, P.Y.; Lin, C.Q.; Zhang, L.H.; Zheng, Z.Y. Design of a highly sensitive fluorescent sensor and its application based on inhibiting NaIO 4 oxidizing rhodamine 6G. Anal. Methods, 2014, 6(15), 5957-5961.
[http://dx.doi.org/10.1039/C4AY00853G]
[85]
Costa, P.V.F.; Silva, R.M.P.; Suffredini, H.B.; Alves, W.A. Poly-L-Arginine-modified boron-doped diamond and glassy carbon electrodes for terbutaline sulfate detection. J. Nanosci. Nanotechnol., 2018, 18(7), 4551-4558.
[http://dx.doi.org/10.1166/jnn.2018.15309] [PMID: 29442631]
[86]
Kalambate, P.K.; Rawool, C.R.; Srivastava, A.K. Fabrication of graphene nanosheet-multiwalled carbon nanotube-polyaniline modified carbon paste electrode for the simultaneous electrochemical determination of terbutaline sulphate and guaifenesin. New J. Chem., 2017, 41(15), 7061-7072.
[http://dx.doi.org/10.1039/C7NJ00101K]
[87]
Dodeigne, C.; Thunus, L.; Lejeune, R. Chemiluminescence as diagnostic tool. A review. Talanta, 2000, 51(3), 415-439.
[http://dx.doi.org/10.1016/S0039-9140(99)00294-5] [PMID: 18967873]
[88]
McCarthy, P.T.; Atwal, S.; Sykes, A.P.; Ayres, J.G. Measurement of terbutaline and salbutamol in plasma by high performance liquid chromatography with fluorescence detection. Biomed. Chromatogr., 1993, 7(1), 25-28.
[http://dx.doi.org/10.1002/bmc.1130070107] [PMID: 8431676]
[89]
Zhou, N.; Qian, Q.; Qi, P.; Zhao, J.; Wang, C.; Wang, Q. Identification of degradation products and process impurities from terbutaline sulfate by UHPLC-Q-TOF-MS/MS and in silico toxicity prediction. Chromatographia, 2017, 80(5), 793-804.
[http://dx.doi.org/10.1007/s10337-017-3259-5]
[90]
Li, S.; Wang, J.; Zhao, S. Determination of terbutaline sulfate by capillary electrophoresis with chemiluminescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(3), 155-158.
[http://dx.doi.org/10.1016/j.jchromb.2008.11.042] [PMID: 19109076]
[91]
Li, Y.; Ye, Z.; Zhou, J.; Liu, J.; Song, G.; Zhang, K.; Ye, B. A new voltammetric sensor based on poly(L-arginine)/graphene-Nafion com-posite film modified electrode for sensitive determination of Terbutaline sulfate. J. Electroanal. Chem. (Lausanne), 2012, 687, 51-57.
[http://dx.doi.org/10.1016/j.jelechem.2012.09.045]
[92]
Teker, T.; Aslanoglu, M. Sensitive determination of terbutaline using a platform based on nanoparticles of europium oxide and carbon nanotubes. Electroanalysis, 2019, 31(1), 146-152.
[http://dx.doi.org/10.1002/elan.201800554]
[93]
Perillo, P.M.; Rodríguez, D.F. The gas sensing properties at room temperature of TiO2 nanotubes by anodization. Sens. Actuators B Chem., 2012, 171-172639-643. http://dx.doi.org/10.1016/j.snb.2012.05.047
[94]
Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Reddy, K.R. Novel heterostructured Ru-doped TiO 2/CNTs hybrids with enhanced electrochemical sensing performance for Cetirizine. Mater. Res. Express, 2019, 6(11), 115085.
[http://dx.doi.org/10.1088/2053-1591/ab4b92]
[95]
Cheng, J.; Wang, X.; Nie, T.; Yin, L.; Wang, S.; Zhao, Y.; Wu, H.; Mei, H. A novel electrochemical sensing platform for detection of do-pamine based on gold nanobipyramid/multi-walled carbon nanotube hybrids. Anal. Bioanal. Chem., 2020, 412(11), 2433-2441.
[http://dx.doi.org/10.1007/s00216-020-02455-5] [PMID: 32062832]
[96]
Mohamed, M.A.; Fayed, A.S.; Hegazy, M.A.; Salama, N.N.; Abbas, E.E. Fully optimized new sensitive electrochemical sensing platform for the selective determination of antiepileptic drug ezogabine. Microchem. J., 2019, 144, 130-138.
[http://dx.doi.org/10.1016/j.microc.2018.08.062]
[97]
Sun, H.; Qiao, F.; Liu, G. Characteristic of theophylline imprinted monolithic column and its application for determination of xanthine derivatives caffeine and theophylline in green tea. J. Chromatogr. A, 2006, 1134(1-2), 194-200.
[http://dx.doi.org/10.1016/j.chroma.2006.09.004] [PMID: 17046776]
[98]
Cazzola, M.; Page, C.P.; Calzetta, L.; Matera, M.G. Pharmacology and therapeutics of bronchodilators. Pharmacol. Rev., 2012, 64(3), 450-504.
[http://dx.doi.org/10.1124/pr.111.004580] [PMID: 22611179]
[99]
Wang, J.; Cheng, W.; Meng, F.; Yang, M.; Pan, Y.; Miao, P. Hand-in-hand RNA nanowire-based aptasensor for the detection of theophyl-line. Biosens. Bioelectron., 2018, 101, 153-158.
[http://dx.doi.org/10.1016/j.bios.2017.10.025] [PMID: 29065340]
[100]
Mahemuti, G.; Zhang, H.; Li, J.; Tieliwaerdi, N.; Ren, L. Efficacy and side effects of intravenous theophylline in acute asthma: a systemat-ic review and meta-analysis. Drug Des. Devel. Ther., 2018, 12, 99-120.
[http://dx.doi.org/10.2147/DDDT.S156509] [PMID: 29391776]
[101]
Calzetta, L.; Hanania, N.A.; Dini, F.L.; Goldstein, M.F.; Fairweather, W.R.; Howard, W.W.; Cazzola, M. Impact of doxofylline compared to theophylline in asthma: A pooled analysis of functional and clinical outcomes from two multicentre, double-blind, randomized studies (DOROTHEO 1 and DOROTHEO 2). Pulm. Pharmacol. Ther., 2018, 53, 20-26.
[http://dx.doi.org/10.1016/j.pupt.2018.09.007] [PMID: 30219705]
[102]
Reza Ganjali, M.; Dourandish, Z.; Beitollahi, H.; Tajik, S.; Hajiaghababaei, L.; Larijani, B. Highly sensitive determination of theophylline based on graphene quantum dots modified electrode. Int. J. Electrochem. Sci., 2018, 2448-2461.
[http://dx.doi.org/10.20964/2018.03.09]
[103]
Badea, D.N.; Levai, C. Separation and detection of caffeine, theophylline and theobromine from coffee varieties, carbonated soft drinks and alcoholic beverages. Revis. Chim., 2017, 68(11), 2704-2707.
[http://dx.doi.org/10.37358/RC.17.11.5959]
[104]
Oellig, C.; Schunck, J.; Schwack, W. Determination of caffeine, theobromine and theophylline in Mate beer and Mate soft drinks by high-performance thin-layer chromatography. J. Chromatogr. A, 2018, 1533, 208-212.
[http://dx.doi.org/10.1016/j.chroma.2017.12.019] [PMID: 29241955]
[105]
Li, M.; Zhou, J.; Gu, X.; Wang, Y.; Huang, X.; Yan, C. Quantitative capillary electrophoresis and its application in analysis of alkaloids in tea, coffee, coca cola, and theophylline tablets. J. Sep. Sci., 2009, 32(2), 267-274.
[http://dx.doi.org/10.1002/jssc.200800529] [PMID: 19101946]
[106]
Ma, K.; Wang, H.; Zhao, M.; Xing, J. Purity determination and uncertainty evaluation of theophylline by mass balance method, high per-formance liquid chromatography and differential scanning calorimetry. Anal. Chim. Acta, 2009, 650(2), 227-233.
[http://dx.doi.org/10.1016/j.aca.2009.07.046] [PMID: 19720197]
[107]
Zhuang, X.; Chen, D.; Wang, S.; Liu, H.; Chen, L. Manganese dioxide nanosheet-decorated ionic liquid-functionalized graphene for elec-trochemical theophylline biosensing. Sens. Actuators B Chem., 2017, 251, 185-191.
[http://dx.doi.org/10.1016/j.snb.2017.05.049]
[108]
Park, K.S.; Oh, S.S.; Soh, H.T.; Park, H.G. Target-controlled formation of silver nanoclusters in abasic site-incorporated duplex DNA for label-free fluorescence detection of theophylline. Nanoscale, 2014, 6(17), 9977-9982.
[http://dx.doi.org/10.1039/C4NR00625A] [PMID: 24901073]
[109]
Kesavan, S.; Gowthaman, N.S.K.; Alwarappan, S.; John, S.A. Real time detection of adenosine and theophylline in urine and blood sam-ples using graphene modified electrode. Sens. Actuators B Chem., 2019, 278, 46-54.
[http://dx.doi.org/10.1016/j.snb.2018.09.069]
[110]
Chen, P.; Shen, J.; Wang, C.; Wei, Y. Selective extraction of theophylline from plasma by copper-doped magnetic microspheres prior to its quantification by HPLC. Mikrochim. Acta, 2018, 185(2), 113.
[http://dx.doi.org/10.1007/s00604-017-2667-4] [PMID: 29594664]
[111]
Chen, T.W.; Chinnapaiyan, S.; Chen, S.M.; Hossam Mahmoud, A.; Elshikh, M.S.; Ebaid, H.; Taha Yassin, M. Facile sonochemical syn-thesis of rutile-type titanium dioxide microspheres decorated graphene oxide composite for efficient electrochemical sensor. Ultrason. Sonochem., 2020, 62, 104872.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104872] [PMID: 31806555]
[112]
Gan, T.; Zhao, A.; Wang, Z.; Liu, P.; Sun, J.; Liu, Y. An electrochemical sensor based on SiO2@TiO2-embedded molecularly imprinted polymers for selective and sensitive determination of theophylline. J. Solid State Electrochem., 2017, 21(12), 3683-3691.
[http://dx.doi.org/10.1007/s10008-017-3713-1]
[113]
Shashikumara, J.K.; Swamy, B.E.K. Electrochemical investigation of dopamine in presence of Uric acid and ascorbic acid at poly (Reac-tive Blue) modified carbon paste electrode: A voltammetric study. Sens. Int., 2020, 1, 100008.
[http://dx.doi.org/10.1016/j.sintl.2020.100008]
[114]
Peng, A.; Yan, H.; Luo, C.; Wang, G.; Ye, X.; Ding, H. Electrochemical determination of theophylline pharmacokinetic under the effect of roxithromycin in rats by the MWNTs/Au/poly-L-lysine modified sensor. Int. J. Electrochem. Sci., 2017, 12, 330-346.
[http://dx.doi.org/10.20964/2017.01.03]
[115]
Goud, K.Y.; Satyanarayana, M.; Hayat, A.; Gobi, K.V.; Marty, J.L. Nanomaterial-based electrochemical sensors in pharmaceutical applica-tions. In: Nanoparticles in Pharmacotherapy; Grumezescu, A.M., Ed.; William Andrew Publishing, 2019; pp. 195-216.
[http://dx.doi.org/10.1016/B978-0-12-816504-1.00015-6]
[116]
Kumar, S.; Bukkitgar, S.D.; Singh, S.; Pratibha.; Singh, V.; Reddy, K.R.; Shetti, N.P.; Venkata Reddy, C.; Sadhu, V.; Naveen, S. Electro-chemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. ChemistrySelect, 2019, 4(18), 5322-5337.
[http://dx.doi.org/10.1002/slct.201803871]
[117]
Kulkarni, D.R.; Malode, S.J.; Keerthi Prabhu, K.; Ayachit, N.H.; Kulkarni, R.M.; Shetti, N.P. Development of a novel nanosensor using Ca-doped ZnO for antihistamine drug. Mater. Chem. Phys., 2020, 246, 122791.
[http://dx.doi.org/10.1016/j.matchemphys.2020.122791]
[118]
Bukkitgar, S.D.; Shetti, N.P.; Malladi, R.S.; Reddy, K.R.; Kalanur, S.S.; Aminabhavi, T.M. Novel ruthenium doped TiO2/reduced graphene oxide hybrid as highly selective sensor for the determination of ambroxol. J. Mol. Liq., 2020, 300, 112368.
[http://dx.doi.org/10.1016/j.molliq.2019.112368]
[119]
Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Bukkitgar, S.D.; Bagihalli, G.B.; Kulkarni, R.M.; Reddy, K.R. Novel nanoclay-based electrochemical sensor for highly efficient electrochemical sensing nimesulide. J. Phys. Chem. Solids, 2020, 137, 109210.
[http://dx.doi.org/10.1016/j.jpcs.2019.109210]
[120]
Bukkitgar, S.D.; Shetti, N.P.; Kulkarni, R.M.; Reddy, K.R.; Shukla, S.S.; Saji, V.S.; Aminabhavi, T.M. Electro-catalytic behavior of Mg-doped ZnO nano-flakes for oxidation of anti-inflammatory drug. J. Electrochem. Soc., 2019, 166(9), B3072-B3078.
[http://dx.doi.org/10.1149/2.0131909jes]
[121]
Al-Harbi, E.A. Fabrication and application of bismuth-film modified glassy carbon electrode as sensor for highly sensitive determination of cetirizine dihydrochloride in pharmaceutical products and water samples. Int. J. Electrochem. Sci., 2021, 16(211036), 2.
[http://dx.doi.org/10.20964/2021.10.37]
[122]
Chokkareddy, R.; Thondavada, N.; Kabane, B.; Redhi, G.G. A novel ionic liquid based electrochemical sensor for detection of pyrazinamide. J. Iran. Chem. Soc., 2020, 2020, 1-9.
[http://dx.doi.org/10.1007/s13738-020-02047-1]
[123]
Shaikshavali, P.; Madhusudana Reddy, T.; Venu Gopal, T.; Venkataprasad, G.; Kotakadi, V.S.; Palakollu, V.N.; Karpoormath, R. A simple sonochemical assisted synthesis of nanocomposite (ZnO/MWCNTs) for electrochemical sensing of Epinephrine in human serum and pharmaceutical formulation. Colloids Surf. A Physicochem. Eng. Asp., 2020, 584, 124038.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124038]
[124]
Ghanbari, M.H.; Khoshroo, A.; Sobati, H.; Ganjali, M.R.; Rahimi-Nasrabadi, M.; Ahmadi, F. An electrochemical sensor based on poly (l-Cysteine)@AuNPs @ reduced graphene oxide nanocomposite for determination of levofloxacin. Microchem. J., 2019, 147, 198-206.
[http://dx.doi.org/10.1016/j.microc.2019.03.016]
[125]
Chokkareddy, R.; Bhajanthri, N.; Redhi, G. An enzyme-induced novel biosensor for the sensitive electrochemical determination of isonia-zid. Biosensors (Basel), 2017, 7(2), 21.
[http://dx.doi.org/10.3390/bios7020021] [PMID: 28587260]
[126]
Chokkareddy, R.; Bhajanthri, N.; Redhi, G.G.; Redhi, D.G. Ultra-sensitive electrochemical sensor for the determination of pyrazinamide. Curr. Anal. Chem., 2018, 14(4), 391-398.
[http://dx.doi.org/10.2174/1573411013666170530105000]
[127]
Dakshayini, B.S.; Reddy, K.R.; Mishra, A.; Shetti, N.P.; Malode, S.J.; Basu, S.; Naveen, S.; Raghu, A.V. Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem. J., 2019, 147, 7-24.
[http://dx.doi.org/10.1016/j.microc.2019.02.061]
[128]
Bukkitgar, S.D.; Shetti, N.P. Electrochemical behavior of theophylline at methylene blue dye modified electrode and its analytical application. Mater. Today Proc., 2018, 5(10), 21474-21481.
[http://dx.doi.org/10.1016/j.matpr.2018.06.557]
[129]
Quintanilla, G.; Usarralde, Á.; Pérez, I.; Gargiulo, M.L.; Yakupoglu, G.; Martín, A.; Barba, F. Anodic oxidation of caffeine and theophyl-line in glacial acetic acid. ChemistrySelect, 2016, 1(3), 414-416.
[http://dx.doi.org/10.1002/slct.201500047]
[130]
Bandi, A.B.; Shetti, N.P.; Malode, S.J.; Bukkitgar, S.D.; Kulkarni, R.M. Electroanalysis of 1,3-dimethylexanthine at Zinc Oxide nanoparti-cles modified electrode. Mater. Today Proc., 2019, 18, 590-595.
[http://dx.doi.org/10.1016/j.matpr.2019.06.452]
[131]
Janaj, A.A.; Shetti, N.P.; Malode, S.J.; Bukkitgar, S.D.; Kulkarni, R.M. TiO2 nanoparticles modified sensor for theophylline drug. Mater. Today Proc., 2019, 18, 606-612.
[http://dx.doi.org/10.1016/j.matpr.2019.06.454]
[132]
Chokkareddy, R.; Kanchi, S.; Redhi, G.G. A novel IL-f-ZnONPs@MWCNTs nanocomposite fabricated glassy carbon electrode for the determination of sulfamethoxazole. J. Mol. Liq., 2022, 359(359), 119232.
[http://dx.doi.org/10.1016/j.molliq.2022.119232]
[133]
Soylak, M.; Erbas, Z. Magnetic solid phase extraction of trace lead and copper on chromotrope FB impregnated magnetic multiwalled carbon nanotubes from cigarette and hair samples for measurement by flame AAS. At. Spectr., 2017, 38(3), 57-61.
[http://dx.doi.org/10.46770/AS.2017.03.004]
[134]
Soylak, M.; Sahinbas, D.H. Copper, iron, and lead levels in fertilizer and water samples: separation and preconcentration on multiwaled carbon nanotubes. Desalination Water Treat., 2013, 51(37-39), 7296-7303.
[http://dx.doi.org/10.1080/19443994.2013.792163]
[135]
Keerthika Devi, R.; Muthusankar, G.; Gopu, G.; Berchmans, L.J. A simple self-assembly fabrication of tin oxide nanoplates on multiwall carbon nanotubes for selective and sensitive electrochemical determination of antipyretic drug. Colloids Surf. A Physicochem. Eng. Asp., 2020, 598, 124825.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124825]
[136]
Mwafy, E.A.; Mostafa, A.M. Multi walled carbon nanotube decorated cadmium oxide nanoparticles via pulsed laser ablation in liquid media. Opt. Laser Technol., 2019, 111, 249-254.
[http://dx.doi.org/10.1016/j.optlastec.2018.09.055]
[137]
Mukdasai, S.; Langsi, V.; Pravda, M.; Srijaranai, S.; Glennon, J.D. A highly sensitive electrochemical determination of norepinephrine using l-cysteine self-assembled monolayers over gold nanoparticles/multi-walled carbon nanotubes electrode in the presence of sodium dodecyl sulfate. Sens. Actuators B Chem., 2016, 236, 126-135.
[http://dx.doi.org/10.1016/j.snb.2016.05.086]
[138]
Chokkareddy, R.; Redhi, G.G.; Karthick, T. A lignin polymer nanocomposite based electrochemical sensor for the sensitive detection of chlorogenic acid in coffee samples. Heliyon, 2019, 5(3), e01457.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01457] [PMID: 30976709]
[139]
Mansur, A.H.; Hassan, M.; Duffy, J.; Webster, C. Development and clinical application of a prednisolone/cortisol assay to determine ad-herence to maintenance oral prednisolone in severe asthma. Chest, 2020, 158(3), 901-912.
[http://dx.doi.org/10.1016/j.chest.2020.03.056] [PMID: 32298734]
[140]
Arabi, M.; Ghaedi, M.; Ostovan, A.; Wang, S. Synthesis of lab-in-a-pipette-tip extraction using hydrophilic nano-sized dummy molecularly imprinted polymer for purification and analysis of prednisolone. J. Colloid Interface Sci., 2016, 480, 232-239.
[http://dx.doi.org/10.1016/j.jcis.2016.07.017] [PMID: 27442150]
[141]
Goyal, R.N.; Oyama, M.; Bachheti, N.; Singh, S.P. Fullerene C60 modified gold electrode and nanogold modified indium tin oxide elec-trode for prednisolone determination. Bioelectrochemistry, 2009, 74(2), 272-277.
[http://dx.doi.org/10.1016/j.bioelechem.2008.10.001] [PMID: 19028444]
[142]
Beotra, A.; Ahi, S.; Dubey, S.; Upadhyay, A.; Jain, S. Application of liquid chromatography tandem mass spectrometry for the detection often long‐term metabolites of Prednisolone. In: Recent Advances in Doping Analysis; Sport und Buch Strauß, 2009; p. 17309.
[143]
Touber, M.E.; van Engelen, M.C.; Georgakopoulus, C.; van Rhijn, J.A.; Nielen, M.W.F. Multi-detection of corticosteroids in sports doping and veterinary control using high-resolution liquid chromatography/time-of-flight mass spectrometry. Anal. Chim. Acta, 2007, 586(1-2), 137-146.
[http://dx.doi.org/10.1016/j.aca.2006.09.058] [PMID: 17386705]
[144]
Rezaei, B.; Mirahmadi-Zare, S.Z. Nanoscale Manipulation of prednisolone as electroactive configuration using molecularly imprinted‐multiwalled carbon nanotube paste electrode. Electroanalysis, 2011, 23(11), 2724-2734.
[http://dx.doi.org/10.1002/elan.201100261]
[145]
Smajdor, J.; Piech, R.; Paczosa-Bator, B. A novel method of high sensitive determination of prednisolone on renewable mercury film sil-ver based electrode. Electroanalysis, 2016, 28(2), 394-400.
[http://dx.doi.org/10.1002/elan.201500262]
[146]
Yilmaz, S.; Skrzypek, S.; Dilgin, Y.; Yagmur, S.; Coskun, M. Electrochemical oxidation of prednisolone at glassy carbon electrode and its quantitative determination in human serum and tablets by Osteryoung square wave voltammetry. Curr. Anal. Chem., 2007, 3(1), 41-46.
[http://dx.doi.org/10.2174/157341107779314181]
[147]
Chitlange, S.S.; Chaturvedi, K.K.; Wankhede, S.B. Development and validation of spectrophotometric and HPLC method for the simulta-neous estimation of salbutamol sulphate and prednisolone in tablet dosage form. J. Anal. Bioanal. Tech., 2011, 2(117), 2.
[http://dx.doi.org/10.4172/2155-9872.1000117]
[148]
Klinsunthorn, N.; Petsom, A.; Nhujak, T. Determination of steroids adulterated in liquid herbal medicines using QuEChERS sample prepa-ration and high-performance liquid chromatography. J. Pharm. Biomed. Anal., 2011, 55(5), 1175-1178.
[http://dx.doi.org/10.1016/j.jpba.2011.03.046] [PMID: 21531110]
[149]
Limmatvapirat, C.; Burana-osot, J.; Laopoonpat, P.; Phattanwasin, P.; Rojanarata, T.; Chaidedgumjorn, A. Determination of dexame-thasone and prednisolone adulterated in herbal medicines using thin-layer chromatography. Res. J. Pharm. Biol. Chem. Sci., 2012, 31353-31358.
[150]
AbuRuz, S.; Millership, J.; Heaney, L.; McElnay, J. Simple liquid chromatography method for the rapid simultaneous determination of prednisolone and cortisol in plasma and urine using hydrophilic lipophilic balanced solid phase extraction cartridges. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 798(2), 193-201.
[http://dx.doi.org/10.1016/j.jchromb.2003.09.044] [PMID: 14643497]
[151]
Fidani, M.; Gamberini, M.C.; Pompa, G.; Mungiguerra, F.; Casati, A.; Arioli, F. Presence of endogenous prednisolone in human urine. Steroids, 2013, 78(2), 121-126.
[http://dx.doi.org/10.1016/j.steroids.2012.10.020] [PMID: 23182764]
[152]
Liu, Y.; Zhu, K.; Wang, J.; Huang, X.; Wang, G.; Li, C.; Cao, J.; Ding, S. Simultaneous detection and comparative pharmacokinetics of amoxicillin, clavulanic acid and prednisolone in cows’ milk by UPLC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1008, 74-80.
[http://dx.doi.org/10.1016/j.jchromb.2015.11.031] [PMID: 26638031]
[153]
Mohamed, A.; Anas, A.K.; Bakar, S.A.; Ardyani, T.; Zin, W.M.W.; Ibrahim, S.; Sagisaka, M.; Brown, P.; Eastoe, J. Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. J. Colloid Interface Sci., 2015, 455, 179-187.
[http://dx.doi.org/10.1016/j.jcis.2015.05.054] [PMID: 26070188]
[154]
Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.; Takigawa, T.; Ishii, N.; Aida, T. Molecular ordering of organic molten salts trig-gered by single-walled carbon nanotubes. Science, 2003, 300(5628), 2072-2074.
[http://dx.doi.org/10.1126/science.1082289] [PMID: 12829776]
[155]
Khezrian, S.; Salimi, A.; Teymourian, H.; Hallaj, R. Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode. Biosens. Bioelectron., 2013, 43, 218-225.
[http://dx.doi.org/10.1016/j.bios.2012.12.006] [PMID: 23313881]
[156]
Chen, Y.; Huang, Y.; Guo, D.; Chen, C.; Wang, Q.; Fu, Y. A chiral sensor for recognition of DOPA enantiomers based on immobilization of β-cyclodextrin onto the carbon nanotube-ionic liquid nanocomposite. J. Solid State Electrochem., 2014, 18(12), 3463-3469.
[http://dx.doi.org/10.1007/s10008-014-2575-z]
[157]
Wang, X.; Cheng, C.; Dong, R.; Hao, J. Sensitive voltammetric determination of rutin at a carbon nanotubes-ionic liquid composite electrode. J. Solid State Electrochem., 2012, 16(8), 2815-2821.
[http://dx.doi.org/10.1007/s10008-012-1711-x]
[158]
Gholivand, M.B.; Shamsipur, M.; Ehzari, H. Cetirizine dihydrochloride sensor based on nano composite chitosan, MWCNTs and ionic liquid. Microchem. J., 2019, 146, 692-700.
[http://dx.doi.org/10.1016/j.microc.2019.01.068]
[159]
Laurinavičius, L.; Radzevič, A.; Ignatjev, I.; Niaura, G.; Vitkutė, K.; Širšinaitis, T.; Trusovas, R.; Pauliukaite, R. Investigation of electrochemical polymerisation of L-lysine and application for immobilisation of functionalised graphene as platform for electrochemical sensing. Electrochim. Acta, 2019, 299, 936-945.
[http://dx.doi.org/10.1016/j.electacta.2019.01.079]
[160]
Aresta, A.; Palmisano, F.; Zambonin, C. Simultaneous determination of caffeine, theobromine, theophylline, paraxanthine and nicotine in human milk by liquid chromatography with diode array UV detection. Food Chem., 2005, 93(1), 177-181.
[http://dx.doi.org/10.1016/j.foodchem.2004.11.013]
[161]
Schreiber-Deturmeny, E.; Bruguerolle, B. Simultaneous high-performance liquid chromatographic determination of caffeine and theophyl-line for routine drug monitoring in human plasma. J. Chromatogr., Biomed. Appl., 1996, 677(2), 305-312.
[http://dx.doi.org/10.1016/0378-4347(95)00383-5] [PMID: 8704934]
[162]
Huck, C.W.; Guggenbichler, W.; Bonn, G.K. Analysis of caffeine, theobromine and theophylline in coffee by near infrared spectroscopy (NIRS) compared to high-performance liquid chromatography (HPLC) coupled to mass spectrometry. Anal. Chim. Acta, 2005, 538(1-2), 195-203.
[http://dx.doi.org/10.1016/j.aca.2005.01.064] [PMID: 17723349]
[163]
Jafari, M.T.; Rezaei, B.; Javaheri, M. A new method based on electrospray ionisation ion mobility spectrometry (ESI-IMS) for simultane-ous determination of caffeine and theophylline. Food Chem., 2011, 126(4), 1964-1970.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.054] [PMID: 25213984]
[164]
Huang, W.S.; Lin, S.J.; Wu, H.L.; Chen, S.H. Simultaneous determination of theophylline and dyphylline by micellar electrokinetic chro-matography and application in drug formulations. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 795(2), 329-335.
[http://dx.doi.org/10.1016/S1570-0232(03)00601-9] [PMID: 14522037]
[165]
Meyer, A.; Ngiruwonsanga, T.; Henze, G. Determination of adenine, caffeine, theophylline and theobromine by HPLC with amperometric detection. Anal. Bioanal. Chem., 1996, 356(3-4), 284-287.
[http://dx.doi.org/10.1007/s0021663560284] [PMID: 15048370]
[166]
Kanazawa, H.; Atsumi, R.; Matsushima, Y.; Kizu, J. Determination of theophylline and its metabolites in biological samples by liquid chromatography-mass spectrometry. J. Chromatogr. A, 2000, 870(1-2), 87-96.
[http://dx.doi.org/10.1016/S0021-9673(99)00891-2] [PMID: 10722065]
[167]
Fernandes, T.A.P.; Aguiar, J.P.; Fernandes, A.I.; Pinto, J.F. Quantification of theophylline or paracetamol in milk matrices by high-performance liquid chromatography. J. Pharm. Anal., 2017, 7(6), 401-405.
[http://dx.doi.org/10.1016/j.jpha.2017.07.005] [PMID: 29404066]
[168]
Solanki, T.D.; Patel, S.K.; Patel, B.K. Development and validation of stability indicating method for simultaneous estimation of ofloxacin and prednisolone in pharmaceutical dosage form. Pharm. Biol. Evaluat., 2016, 3256-263.
[http://dx.doi.org/10.5281/zenodo.51074]
[169]
Kim, K.H.; Kim, H.J.; Kim, J.H.; Shin, S.D. Determination of terbutaline enantiomers in human urine by coupled achiral-chiral high-performance liquid chromatography with fluorescence detection. J. Chromatogr., Biomed. Appl., 2001, 751(1), 69-77.
[http://dx.doi.org/10.1016/S0378-4347(00)00449-7] [PMID: 11232857]
[170]
Han, L.; Zhang, Y.; Kang, J.; Tang, J.; Zhang, Y. Chemiluminescence determination of terbutaline sulfate in bovine urine and pharmaceuti-cal preparations based on enhancement of the 2-phenyl-4, 5-di (2-furyl) imidazole-potassium ferricyanide system. J. Pharm. Biomed. Anal., 2012, 58(1), 141-145.
[http://dx.doi.org/10.1016/j.jpba.2011.09.011] [PMID: 21996060]
[171]
Itagimatha, N.; Manjunatha, D.H. RP-HPLC-UV method development and validation for simultaneous determination of terbutaline sul-phate, ambroxol HCl and guaifenesin in pure and dosage forms. Ann. Pharm. Fr., 2019, 77(4), 295-301.
[http://dx.doi.org/10.1016/j.pharma.2019.02.004] [PMID: 31027752]
[172]
Luo, W.; Zhu, L.; Deng, J.; Liu, A.; Guo, B.; Tan, W.; Dai, R. Simultaneous analysis of bambuterol and its active metabolite terbutaline enantiomers in rat plasma by chiral liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal., 2010, 52(2), 227-231.
[http://dx.doi.org/10.1016/j.jpba.2009.12.020] [PMID: 20096531]
[173]
Wang, Z.; Zhang, Z.; Fu, Z.; Chen, D.; Zhang, X. Flow-injection chemiluminescence detection for studying protein binding of terbutaline sulfate with on-line microdialysis sampling. J. Pharm. Biomed. Anal., 2003, 33(4), 765-773.
[http://dx.doi.org/10.1016/S0731-7085(03)00416-3] [PMID: 14623603]
[174]
Wood, T.P.; Du Preez, C.; Steenkamp, A.; Duvenage, C.; Rohwer, E.R. Database-driven screening of South African surface water and the targeted detection of pharmaceuticals using liquid chromatography - High resolution mass spectrometry. Environ. Pollut., 2017, 230, 453-462.
[http://dx.doi.org/10.1016/j.envpol.2017.06.043] [PMID: 28683392]
[175]
Dési, E.; Kovács, Á.; Palotai, Z.; Kende, A. Analysis of dexamethasone and prednisolone residues in bovine milk using matrix solid phase dispersion-liquid chromatography with ultraviolet detection. Microchem. J., 2008, 89(1), 77-81.
[http://dx.doi.org/10.1016/j.microc.2007.12.004]
[176]
Elzayat, E.M.; Shakeel, F.; Alshehri, S.; Ibrahim, M.A.; Altamimi, M.A.; Kazi, M.; Alanazi, F.K.; Haq, N. UHPLC assisted simultaneous separation of apigenin and prednisolone and its application in the pharmacokinetics of apigenin. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2019, 1117, 58-65.
[http://dx.doi.org/10.1016/j.jchromb.2019.04.006] [PMID: 30999274]
[177]
Chiesa, L.M.; Nobile, M.; Biolatti, B.; Pavlovic, R.; Panseri, S.; Cannizzo, F.T.; Arioli, F. Detection of selected corticosteroids and anabolic steroids in calf milk replacers by liquid chromatography-electrospray ionisation - Tandem mass spectrometry. Food Control, 2016, 61, 196-203.
[http://dx.doi.org/10.1016/j.foodcont.2015.09.028]
[178]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2017, 10S1409-S1421. http://dx.doi.org/10.1016/j.arabjc.2013.04.016
[179]
Qu, C.H.; Li, X.L.; Zhang, L.; Xi, C.X.; Wang, G.M.; Li, N.B.; Luo, H.Q. Simultaneous determination of cimaterol, salbutamol, terbutaline and ractopamine in feed by SPE coupled to UPLC. Chromatographia, 2011, 73(3-4), 243-249.
[http://dx.doi.org/10.1007/s10337-010-1873-6]
[180]
Caban, M.; Stepnowski, P.; Kwiatkowski, M.; Migowska, N.; Kumirska, J. Determination of β-blockers and β-agonists using gas chroma-tography and gas chromatography-mass spectrometry - A comparative study of the derivatization step. J. Chromatogr. A, 2011, 1218(44), 8110-8122.
[http://dx.doi.org/10.1016/j.chroma.2011.08.093] [PMID: 21945621]
[181]
Domínguez-Romero, J.C.; García-Reyes, J.F.; Martínez-Romero, R.; Martínez-Lara, E.; Del Moral-Leal, M.L.; Molina-Díaz, A. Detection of main urinary metabolites of β2-agonists clenbuterol, salbutamol and terbutaline by liquid chromatography high resolution mass spectrometry. J. Chromatogr. B, 2013, 923-924128-135. http://dx.doi.org/10.1016/j.jchromb.2013.02.008
[182]
Herring, V.L.; Johnson, J.A. Simple method for determination of terbutaline plasma concentration by high-performance liquid chromatog-raphy. J. Chromatogr., Biomed. Appl., 2000, 741(2), 307-312.
[http://dx.doi.org/10.1016/S0378-4347(00)00107-9] [PMID: 10872601]
[183]
Reich, G. Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Adv. Drug Deliv. Rev., 2005, 57(8), 1109-1143.
[http://dx.doi.org/10.1016/j.addr.2005.01.020] [PMID: 15899537]
[184]
Algethami, F.K.; Eid, S.M.; Kelani, K.M.; Elghobashy, M.R.; Abd El-Rahman, M.K. Chemical fingerprinting and quantitative monitoring of the doping drugs bambuterol and terbutaline in human urine samples using ATR-FTIR coupled with a PLSR chemometric tool. RSC Advances, 2020, 10(12), 7146-7154.
[http://dx.doi.org/10.1039/C9RA10033D] [PMID: 35493915]
[185]
Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy, 2013, 104, 801-809.
[http://dx.doi.org/10.1016/j.apenergy.2012.12.019]
[186]
Mostafa, I.M.; Omar, M.A.; Nagy, D.M.; Derayea, S.M. Analysis of quetiapine in human plasma using fluorescence spectroscopy. Spectrochim. Acta A Mol., 2018, 2018, 196196-196201. http://dx.doi.org/10.1016/j.saa.2018.02.019
[187]
Saar-Reismaa, P.; Tretjakova, A.; Mazina-Šinkar, J.; Vaher, M.; Kaljurand, M.; Kulp, M. Rapid and sensitive capillary electrophoresis method for the analysis of Ecstasy in an oral fluid. Talanta, 2019, 197, 390-396.
[http://dx.doi.org/10.1016/j.talanta.2019.01.029] [PMID: 30771952]
[188]
Kubáň, P.; Dvořák, M.; Kubáň, P. Capillary electrophoresis of small ions and molecules in less conventional human body fluid samples: A review. Anal. Chim. Acta, 2019, 1075, 1-26.
[http://dx.doi.org/10.1016/j.aca.2019.05.004] [PMID: 31196414]
[189]
Gogolashvili, A.; Tatunashvili, E.; Chankvetadze, L.; Sohajda, T.; Szeman, J.; Gumustas, M.; Ozkan, S.A.; Salgado, A.; Chankvetadze, B. Separation of terbutaline enantiomers in capillary electrophoresis with cyclodextrin-type chiral selectors and investigation of structure of selector-selectand complexes. J. Chromatogr. A, 2018, 1571, 231-239.
[http://dx.doi.org/10.1016/j.chroma.2018.08.012] [PMID: 30093095]
[190]
Trapiella-Alfonso, L.; Ramírez-García, G.; d’Orlyé, F.; Varenne, A. Electromigration separation methodologies for the characterization of nanoparticles and the evaluation of their behaviour in biological systems. Trends Analyt. Chem., 2016, 84, 121-130.
[http://dx.doi.org/10.1016/j.trac.2016.04.022]
[191]
Montaseri, H.; Forbes, P.B.C. Analytical techniques for the determination of acetaminophen: A review. Trends Analyt. Chem., 2018, 108, 122-134.
[http://dx.doi.org/10.1016/j.trac.2018.08.023]
[192]
Karami, F.; Ranjbar, S.; Ghasemi, Y.; Negahdaripour, M. Analytical methodologies for determination of methotrexate and its metabolites in pharmaceutical, biological and environmental samples. J. Pharm. Anal., 2019, 9(6), 373-391.
[http://dx.doi.org/10.1016/j.jpha.2019.06.001] [PMID: 31890337]
[193]
Hatamluyi, B.; Es’haghi, Z.; Modarres Zahed, F.; Darroudi, M. A novel electrochemical sensor based on GQDs-PANI/ZnO-NCs modified glassy carbon electrode for simultaneous determination of Irinotecan and 5-Fluorouracil in biological samples. Sens. Actuators B Chem., 2019, 286, 540-549.
[http://dx.doi.org/10.1016/j.snb.2019.02.017]
[194]
Asadian, E.; Ghalkhani, M.; Shahrokhian, S. Electrochemical sensing based on carbon nanoparticles: A review. Sens. Actuators B Chem., 2019, 293, 183-209.
[http://dx.doi.org/10.1016/j.snb.2019.04.075]
[195]
Hou, J.; Du, W.; Meng, F.; Zhao, C.; Du, X. Effective dispersion of multi-walled carbon nanotubes in aqueous solution using an ionic-gemini dispersant. J. Colloid Interface Sci., 2018, 512, 750-757.
[http://dx.doi.org/10.1016/j.jcis.2017.10.109] [PMID: 29112925]
[196]
Liu, R.; Wang, Y.; Li, D.; Dong, L.; Li, B.; Liu, B. A simple, low-cost and efficient β-CD/MWCNTs/CP-based electrochemical sensor for the rapid and sensitive detection of methyl parathion. Int. J. Electrochem. Sci., 2019, 14, 9785-9795.
[http://dx.doi.org/10.20964/2019.10.28]
[197]
Clark, M.D.; Subramanian, S.; Krishnamoorti, R. Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. J. Colloid Interface Sci., 2011, 354(1), 144-151.
[http://dx.doi.org/10.1016/j.jcis.2010.10.027] [PMID: 21084094]
[198]
Alharthi, S.; El Rassi, Z. CE with multi-walled carbon nanotubes (MWCNTs). Part I. Functionalized and SDS coated MWCNTs as pseudo-stationary phases in nanoparticle EKC - Studies on retention energetics. Talanta, 2019, 192, 534-544.
[http://dx.doi.org/10.1016/j.talanta.2018.09.045] [PMID: 30348427]
[199]
Madhan Kumar, A.; Gasem, Z.M. In situ electrochemical synthesis of polyaniline/f-MWCNT nanocomposite coatings on mild steel for corrosion protection in 3.5% NaCl solution. Prog. Org. Coat., 2015, 78, 387-394.
[http://dx.doi.org/10.1016/j.porgcoat.2014.07.009]
[200]
Rahi, A.; Karimian, K.; Heli, H. Nanostructured materials in electroanalysis of pharmaceuticals. Anal. Biochem., 2016, 497, 39-47.
[http://dx.doi.org/10.1016/j.ab.2015.12.018] [PMID: 26751130]
[201]
Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Electrochemical (bio)sensors: promising tools for green analytical chemistry. Curr. Opin. Green Sustain. Chem., 2019, 19, 1-7.
[http://dx.doi.org/10.1016/j.cogsc.2019.01.004]
[202]
Thu, P.T.K.; Trinh, N.D.; Hoan, N.T.V.; Du, D.X.; Mau, T.X.; Trung, V.H.; Phong, N.H.; Toan, T.T.T.; Khieu, D.Q. Synthesis of cobalt ferrite and simultaneous determination of ascorbic acid, acetaminophen and caffeine by voltammetric method using cobalt ferrite modified electrode. J. Mater. Sci. Mater. Electron., 2019, 30(18), 17245-17261.
[http://dx.doi.org/10.1007/s10854-019-02072-8]
[203]
Kumar, Y.; Pramanik, P.; Das, D.K. Electrochemical detection of paracetamol and dopamine molecules using nano-particles of cobalt ferrite and manganese ferrite modified with graphite. Heliyon, 2019, 5(7), e02031.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02031] [PMID: 31321329]
[204]
Vajedi, F.; Dehghani, H. A high-sensitive electrochemical DNA biosensor based on a novel ZnAl/layered double hydroxide modified co-balt ferrite-graphene oxide nanocomposite electrophoretically deposited onto FTO substrate for electroanalytical studies of etoposide. Talanta, 2020, 208, 120444.
[http://dx.doi.org/10.1016/j.talanta.2019.120444] [PMID: 31816745]
[205]
Daffé, N.; Choueikani, F.; Neveu, S.; Arrio, M.A.; Juhin, A.; Ohresser, P.; Dupuis, V.; Sainctavit, P. Magnetic anisotropies and cationic distribution in CoFe2O4 nanoparticles prepared by co-precipitation route: Influence of particle size and stoichiometry. J. Magn. Magn. Mater., 2018, 460, 243-252.
[http://dx.doi.org/10.1016/j.jmmm.2018.03.041]
[206]
Revathi, J.; Abel, M.J.; Archana, V.; Sumithra, T.; Thiruneelakandan, R.; Joseph prince, J. Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight. Physica B, 2020, 587, 412136.
[http://dx.doi.org/10.1016/j.physb.2020.412136]
[207]
Ojha, V.H.; Kant, K.M. Temperature dependent magnetic properties of superparamagnetic CoFe2O4 nanoparticles. Phys. B, 2019, 567, 87-94.
[http://dx.doi.org/10.1016/j.physb.2019.04.035]
[208]
Vadivel, M.; Babu, R.R.; Ramamurthi, K.; Arivanandhan, M. CTAB cationic surfactant assisted synthesis of CoFe2O4 magnetic nanoparti-cles. Ceram. Int., 2016, 42(16), 19320-19328.
[http://dx.doi.org/10.1016/j.ceramint.2016.09.101]
[209]
Hassanein, A.; Salahuddin, N.; Matsuda, A.; Kawamura, G.; Elfiky, M. Fabrication of biosensor based on Chitosan-ZnO/Polypyrrole nanocomposite modified carbon paste electrode for electroanalytical application. Mater. Sci. Eng. C, 2017, 80, 494-501.
[http://dx.doi.org/10.1016/j.msec.2017.04.101] [PMID: 28866192]
[210]
George, J.M.; Antony, A.; Mathew, B. Metal oxide nanoparticles in electrochemical sensing and biosensing: A review. Mikrochim. Acta, 2018, 185(7), 358.
[http://dx.doi.org/10.1007/s00604-018-2894-3] [PMID: 29974265]
[211]
Sebastian, N.; Yu, W.C.; Hu, Y.C.; Balram, D.; Yu, Y.H. Sonochemical synthesis of iron-graphene oxide/honeycomb-like ZnO ternary nanohybrids for sensitive electrochemical detection of antipsychotic drug chlorpromazine. Ultrason. Sonochem., 2019, 59, 104696.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104696] [PMID: 31430655]
[212]
Alavi-Tabari, S.A.R.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous determination of doxorubicin and dasatinib as two breast anti-cancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. (Lausanne), 2018, 811, 84-88.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.034]
[213]
Yusof, N.A.A.; Zain, N.M.; Pauzi, N. Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. Int. J. Biol. Macromol., 2019, 124, 1132-1136.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.228] [PMID: 30496864]
[214]
Adam, R.E.; Pozina, G.; Willander, M.; Nur, O. Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegrada-tion of Congo red dye at different pH. Photon. Nanostruct, 2018, 32, 11-18.
[http://dx.doi.org/10.1016/j.photonics.2018.08.005]
[215]
Golmohammadi, M.; Honarmand, M.; Ghanbari, S. A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes; Spectrochim. Acta A Mol, 2020, p. 229117961.
[http://dx.doi.org/10.1016/j.saa.2019.117961]
[216]
Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. ZnO-based nanostructured electrodes for electrochemical sen-sors and biosensors in biomedical applications. Biosens. Bioelectron., 2019, 141, 111417.
[http://dx.doi.org/10.1016/j.bios.2019.111417] [PMID: 31202187]
[217]
Kaplan, R.; Erjavec, B.; Pintar, A. Enhanced photocatalytic activity of single-phase, nanocomposite and physically mixed TiO2 poly-morphs. Appl. Catal. A Gen., 2015, 489, 51-60.
[http://dx.doi.org/10.1016/j.apcata.2014.10.018]
[218]
Alkaim, A.F.; Kandiel, T.A.; Hussein, F.H.; Dillert, R.; Bahnemann, D.W. Solvent-free hydrothermal synthesis of anatase TiO2 nanoparti-cles with enhanced photocatalytic hydrogen production activity. Appl. Catal. A Gen., 2013, 466, 32-37.
[http://dx.doi.org/10.1016/j.apcata.2013.06.033]
[219]
Kanan, S.; Moyet, M.A.; Arthur, R.B.; Patterson, H.H. Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catal. Rev., Sci. Eng., 2020, 62(1), 1-65.
[http://dx.doi.org/10.1080/01614940.2019.1613323]
[220]
Ravishankar, T.N.; Suresh Kumar, K.; Teixeira, S.R.; Fernandez, C.; Ramakrishnappa, T. Ag doped titanium dioxide nanocomposite-modified glassy carbon electrode as electrochemical interface for catechol sensing. Electroanalysis, 2016, 28(3), 452-461.
[http://dx.doi.org/10.1002/elan.201500238]
[221]
Fan, Y.; Huang, K.J.; Niu, D.J.; Yang, C.P.; Jing, Q.S. TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim. Acta, 2011, 56(12), 4685-4690.
[http://dx.doi.org/10.1016/j.electacta.2011.02.114]
[222]
Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kakarla, R.R.; Shukla, S.S.; Aminabhavi, T.M. Sensors based on ruthenium-doped TiO2 nanoparti-cles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Anal. Chim. Acta, 2019, 1051, 58-72.
[http://dx.doi.org/10.1016/j.aca.2018.11.041] [PMID: 30661620]
[223]
Bazli, L.; Siavashi, M.; Shiravi, A. A review of carbon nanotube/TiO2 composite prepared via sol-gel method. J. Compos. Compd., 2019, 1(1), 1-9.
[http://dx.doi.org/10.29252/jcc.1.1.1]
[224]
Askari, M.B.; Tavakoli Banizi, Z.; Seifi, M.; Bagheri Dehaghi, S.; Veisi, P. Synthesis of TiO2 nanoparticles and decorated multi-wall car-bon nanotube (MWCNT) with anatase TiO2 nanoparticles and study of optical properties and structural characterization of TiO2/MWCNT nanocomposite. Optik (Stuttg.), 2017, 149, 447-454.
[http://dx.doi.org/10.1016/j.ijleo.2017.09.078]
[225]
Farghali, R.; Ahmed, R.A.; Alharthi, A.A. Synthesis and characterization of electrochemical sensor based on Polymeric/TiO2 Nanocompo-site modified with imidizolium ionic liquid for determination of diclofenac. Int. J. Electrochem. Sci., 2018, 1310390-1310414.
[226]
Faridbod, F.; Rashedi, H.; Ganjali, M.R.; Norouzi, P.; Riahi, S. Application of room temperature ionic liquids in electrochemical sensors and biosensors; INTECH Open Access Publisher, 2011.
[http://dx.doi.org/10.5772/14702]
[227]
Saleem, A.; Muhammad, N.; Ullah, Z.; Khan, A.S.; Rahim, A. Applications of ionic liquids in sensors and biosensors. Indus. Appl. Green Solvents, 2019, II, 5429-5450.
[http://dx.doi.org/10.1155/2012/165683]
[228]
Wang, X.; Hao, J. Recent advances in ionic liquid-based electrochemical biosensors. Sci. Bull. (Beijing), 2016, 61(16), 1281-1295.
[http://dx.doi.org/10.1007/s11434-016-1151-6]
[229]
Chokkareddy, R.; Niranjan, T.; Redhi, G.G. Ionic liquid based electrochemical sensors and their applications. In: Green Sustainable Pro-cess for Chemical and Environmental Engineering and Science; Elsevier, 2020; pp. 367-387.
[http://dx.doi.org/10.1016/B978-0-12-817386-2.00013-5]
[230]
Sanati, A.L.; Faridbod, F.; Ganjali, M.R. Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq., 2017, 241, 316-320.
[http://dx.doi.org/10.1016/j.molliq.2017.04.123]
[231]
Mert, S.; Bankoğlu, B.; Özkan, A.; Atar, N.; Yola, M.L. Electrochemical sensing of ractopamine by carbon nitride nanotubes/ionic liquid nanohybrid in presence of other β-agonists. J. Mol. Liq., 2018, 254, 8-11.
[http://dx.doi.org/10.1016/j.molliq.2018.01.066]
[232]
Boobphahom, S.; Ruecha, N.; Rodthongkum, N.; Chailapakul, O.; Remcho, V.T. A copper oxide-ionic liquid/reduced graphene oxide composite sensor enabled by digital dispensing: Non-enzymatic paper-based microfluidic determination of creatinine in human blood se-rum. Anal. Chim. Acta, 2019, 1083, 110-118.
[http://dx.doi.org/10.1016/j.aca.2019.07.029] [PMID: 31493801]
[233]
Zdarta, J.; Meyer, A.; Jesionowski, T.; Pinelo, M. A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts, 2018, 8(2), 92.
[http://dx.doi.org/10.3390/catal8020092]
[234]
Liu, D.M.; Dong, C. Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem., 2020, 92, 464-475.
[http://dx.doi.org/10.1016/j.procbio.2020.02.005]
[235]
Putzbach, W.; Ronkainen, N. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors (Basel), 2013, 13(4), 4811-4840.
[http://dx.doi.org/10.3390/s130404811] [PMID: 23580051]
[236]
Manickam, P.; Kaushik, A.; Karunakaran, C.; Bhansali, S. Recent advances in cytochrome c biosensing technologies. Biosens. Bioelectron., 2017, 87, 654-668.
[http://dx.doi.org/10.1016/j.bios.2016.09.013] [PMID: 27619529]
[237]
Wang, Z.; Ma, B.; Shen, C.; Cheong, L.Z. Direct, selective and ultrasensitive electrochemical biosensing of methyl parathion in vegetables using Burkholderia cepacia lipase@MOF nanofibers-based biosensor. Talanta, 2019, 197, 356-362.
[http://dx.doi.org/10.1016/j.talanta.2019.01.052] [PMID: 30771947]
[238]
Li, Y.; Wang, H.; Yan, B.; Zhang, H. An electrochemical sensor for the determination of bisphenol A using glassy carbon electrode modi-fied with reduced graphene oxide-silver/poly-l-lysine nanocomposites. J. Electroanal. Chem. (Lausanne), 2017, 805, 39-46.
[http://dx.doi.org/10.1016/j.jelechem.2017.10.022]
[239]
Zhang, D.; Li, L.; Ma, W.; Chen, X.; Zhang, Y. Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on elec-trode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Mater. Sci. Eng. C, 2017, 70(Pt 1), 241-249.
[http://dx.doi.org/10.1016/j.msec.2016.08.078] [PMID: 27770887]
[240]
Kudur Jayaprakash, G.; Kumara Swamy, B.E.; Nicole González Ramírez, H.; Tumbre Ekanthappa, M.; Flores-Moreno, R. Quantum chem-ical and electrochemical studies of lysine modified carbon paste electrode surfaces for sensing dopamine. New J. Chem., 2018, 42(6), 4501-4506.
[http://dx.doi.org/10.1039/C7NJ04998F]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy