Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Multi-target Polypharmacology of 4-aminoquinoline Compounds against Malaria, Tuberculosis and Cancer

Author(s): Sisir Nandi*, Bhumika Chauhan, Heena Tarannum and Mayank Kumar Khede

Volume 23, Issue 5, 2023

Published on: 08 February, 2023

Page: [403 - 414] Pages: 12

DOI: 10.2174/1568026623666230123142357

Price: $65

Abstract

Background: Polypharmacology means drugs having interactions with multiple targets of a unique disease or many disease pathways. This concept has been greatly appreciated against complex diseases, such as oncology, CNS disorders, and anti-infectives.

Methods: The integration of diverse compounds available on public databases initiates polypharmacological drug discovery research. Immunocompromised patients may suffer from complex diseases. Multiple-component drug formulations may produce side effects and resistance issues due to unintended drug-target interactions.

Results: Polypharmacology remains a novel avenue to propose a more effective and less toxic treatment. The 4-amino quinoline scaffold has become an important construction motif for the development of new drugs against lifestyle diseases like cancer and infectious diseases like tuberculosis and malaria.

Conclusion: The present study is an attempt to explore the polypharmacological effects of 4- aminoquinoline drugs to combat malaria, cancer, and tuberculosis.

Keywords: Multi-target, Polypharmacology, 4-aminoquinolines, Cancer, Malaria, Tuberculosis.

« Previous
Graphical Abstract
[1]
Reddy, A.S.; Zhang, S. Polypharmacology: Drug discovery for the future. Expert Rev. Clin. Pharmacol., 2013, 6(1), 41-47.
[http://dx.doi.org/10.1586/ecp.12.74] [PMID: 23272792]
[2]
Favre, H.A.; Powell, W.H.O. Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013; The Royal Society of Chemistry: Cambridge, 2014, p. 211.
[3]
Al-Ahmary, K.M.; Alenezi, M.S.; Habeeb, M.M. Synthesis, spectroscopic and DFT theoretical studies on the hydrogen bonded charge transfer complex of 4-aminoquinoline with chloranilic acid. J. Mol. Liq., 2016, 220, 166-182.
[http://dx.doi.org/10.1016/j.molliq.2016.04.074]
[4]
World Health Organization. Available from: https://www.who.int/
[5]
Plowe, C.V. Antimalarial drug resistance in Africa: Strategies for monitoring and deterrence. Curr. Top. Microbiol. Immunol., 2005, 295, 55-79.
[http://dx.doi.org/10.1007/3-540-29088-5_3] [PMID: 16265887]
[6]
Staedke, S.G.; Kamya, M.R.; Dorsey, G.; Gasasira, A.; Ndeezi, G.; Charlebois, E.D.; Rosenthal, P.J. Amodiaquine, sulfadoxine/pyrimethamine, and combination therapy for treatment of uncomplicated falciparum malaria in Kampala, Uganda: A randomised trial. Lancet, 2001, 358(9279), 368-374.
[http://dx.doi.org/10.1016/S0140-6736(01)05557-X] [PMID: 11502317]
[7]
Pou, S.; Winter, R.W.; Nilsen, A.; Kelly, J.X.; Li, Y.; Doggett, J.S.; Riscoe, E.W.; Wegmann, K.W.; Hinrichs, D.J.; Riscoe, M.K. Sontochin as a guide to the development of drugs against chloroquine-resistant malaria. Antimicrob. Agents Chemother., 2012, 56(7), 3475-3480.
[http://dx.doi.org/10.1128/AAC.00100-12] [PMID: 22508305]
[8]
Nobles, W.L.; Tietz, R.F.; Koh, Y.S.; Burckhalter, J.H. Antimalarial Agents VIII. Synthesis of Amopyroquin J. Pharm. Sci., 1963, 52(6), 600-601.
[http://dx.doi.org/10.1002/jps.2600520621]
[9]
Rabinovich, S.A. Experimental study of an antimalarial drug, haloquine (cycloquine). IV. Comparison of the prophylactic action of haloquine and chloroquine used in equal doses. Med. Parazitol. (Mosk.), 1965, 34(6), 650-657.
[PMID: 5876186]
[10]
Sharma, S.; Anand, N. Approaches to design and synthesis of antiparasitic drugs. Pharmacochem. Liberary, 1997, 25, 1-511.
[11]
Hocart, S.J.; Liu, H.; Deng, H.; De, D.; Krogstad, F.M.; Krogstad, D.J. 4-aminoquinolines active against chloroquine-resistant Plasmodium falciparum: Basis of antiparasite activity and quantitative structure-activity relationship analyses. Antimicrob. Agents Chemother., 2011, 55(5), 2233-2244.
[http://dx.doi.org/10.1128/AAC.00675-10] [PMID: 21383099]
[12]
Parihar, N.; Nandi, S. In silico combinatorial design and pharmacophore modeling of potent antimalarial 4-anilinoquinolines utilizing QSAR and computed descriptors. Springerplus, 2015, 4(1), 819.
[http://dx.doi.org/10.1186/s40064-015-1593-3] [PMID: 29021931]
[13]
Kaschula, C.H.; Egan, T.J.; Hunter, R.; Basilico, N.; Parapini, S.; Taramelli, D.; Pasini, E.; Monti, D. Structure-activity relationships in 4-aminoquinoline antiplasmodials. The role of the group at the 7-position. J. Med. Chem., 2002, 45(16), 3531-3539.
[http://dx.doi.org/10.1021/jm020858u] [PMID: 12139464]
[14]
Chirawurah, J.D.; Ansah, F.; Nyarko, P.B.; Duodu, S.; Aniweh, Y.; Awandare, G.A. Antimalarial activity of malaria box compounds against Plasmodium falciparum clinical isolates. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(3), 399-406.
[http://dx.doi.org/10.1016/j.ijpddr.2017.10.005] [PMID: 29128848]
[15]
Kondratskyi, A.; Kondratska, K.; Vanden Abeele, F.; Gordienko, D.; Dubois, C.; Toillon, R.A.; Slomianny, C.; Lemière, S.; Delcourt, P.; Dewailly, E.; Skryma, R.; Biot, C.; Prevarskaya, N. Ferroquine, the next generation antimalarial drug, has antitumor activity. Sci. Rep., 2017, 7(1), 15896.
[http://dx.doi.org/10.1038/s41598-017-16154-2] [PMID: 29162859]
[16]
Held, J.; Supan, C.; Salazar, C.L.O.; Tinto, H.; Bonkian, L.N.; Nahum, A.; Moulero, B.; Sié, A.; Coulibaly, B.; Sirima, S.B.; Siribie, M.; Otsyula, N.; Otieno, L.; Abdallah, A.M.; Kimutai, R.; Bouyou-Akotet, M.; Kombila, M.; Koiwai, K.; Cantalloube, C.; Din-Bell, C.; Djeriou, E.; Waitumbi, J.; Mordmüller, B.; TerMinassian, D.; Lell, B.; Kremsner, P.G. Ferroquine and artesunate in African adults and children with Plasmodium falciparum malaria: A phase 2, multicentre, randomised, double-blind, dose-ranging, non-inferiority study. Lancet Infect. Dis., 2015, 15(12), 1409-1419.
[http://dx.doi.org/10.1016/S1473-3099(15)00079-1] [PMID: 26342427]
[17]
O’Neill, P.M.; Willock, D.J.; Hawley, S.R.; Bray, P.G.; Storr, R.C.; Ward, S.A.; Park, B.K. Synthesis, antimalarial activity, and molecular modeling of tebuquine analogues. J. Med. Chem., 1997, 40(4), 437-448.
[http://dx.doi.org/10.1021/jm960370r] [PMID: 9046333]
[18]
O’Neill, P.M.; Mukhtar, A.; Stocks, P.A.; Randle, L.E.; Hindley, S.; Ward, S.A.; Storr, R.C.; Bickley, J.F.; O’Neil, I.A.; Maggs, J.L.; Hughes, R.H.; Winstanley, P.A.; Bray, P.G.; Park, B.K. Isoquine and related amodiaquine analogues: A new generation of improved 4-aminoquinoline antimalarials. J. Med. Chem., 2003, 46(23), 4933-4945.
[http://dx.doi.org/10.1021/jm030796n] [PMID: 14584944]
[19]
Rajapakse, C.S.K.; Lisai, M.; Deregnaucourt, C.; Sinou, V.; Latour, C.; Roy, D.; Schrével, J.; Sánchez-Delgado, R.A. Synthesis of new 4-aminoquinolines and evaluation of their in vitro activity against chloroquine-sensitive and chloroquine-resistant plasmodium falciparum. PLoS One, 2015, 10(10), e0140878.
[http://dx.doi.org/10.1371/journal.pone.0140878] [PMID: 26473363]
[20]
World Health Organization. Cancer 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
[21]
Solomon, V.R.; Pundir, S.; Lee, H. Examination of novel 4-aminoquinoline derivatives designed and synthesized by a hybrid pharmacophore approach to enhance their anticancer activities. Sci. Rep., 2019, 9(1), 6315.
[http://dx.doi.org/10.1038/s41598-019-42816-4] [PMID: 31004122]
[22]
Liu, F.; Shang, Y.; Chen, S. Chloroquine potentiates the anti-cancer effect of lidamycin on non-small cell lung cancer cells in vitro. Acta Pharmacol. Sin., 2014, 35(5), 645-652.
[http://dx.doi.org/10.1038/aps.2014.3] [PMID: 24727941]
[23]
Joshi, P.; Chakraborti, S.; Ramirez-Vick, J.E.; Ansari, Z.A.; Shanker, V.; Chakrabarti, P.; Singh, S.P. The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids Surf. B Biointerfaces, 2012, 95, 195-200.
[http://dx.doi.org/10.1016/j.colsurfb.2012.02.039] [PMID: 22445746]
[24]
Rajapakse, C.S.K.; Martínez, A.; Naoulou, B.; Jarzecki, A.A.; Suárez, L.; Deregnaucourt, C.; Sinou, V.; Schrével, J.; Musi, E.; Ambrosini, G.; Schwartz, G.K.; Sánchez-Delgado, R.A. Synthesis, characterization, and in vitro antimalarial and antitumor activity of new ruthenium(II) complexes of chloroquine. Inorg. Chem., 2009, 48(3), 1122-1131.
[http://dx.doi.org/10.1021/ic802220w] [PMID: 19119867]
[25]
Manohar, S.; Rajesh, U.C.; Khan, S.I.; Tekwani, B.L.; Rawat, D.S. Novel 4-aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial activity. ACS Med. Chem. Lett., 2012, 3(7), 555-559.
[http://dx.doi.org/10.1021/ml3000808] [PMID: 24900509]
[26]
Bhat, H.R.; Masih, A.; Shakya, A.; Ghosh, S.K.; Singh, U.P. Design, synthesis, anticancer, antibacterial, and antifungal evaluation of 4‐aminoquinoline‐1, 3, 5‐triazine derivatives. J. Heterocycl. Chem., 2019, 1-10.
[http://dx.doi.org/10.1002/jhet.3791]
[27]
Kandi, S.K.; Manohar, S.; Vélez Gerena, C.E.; Zayas, B.; Malhotra, S.V.; Rawat, D.S.C. 5 -curcuminoid-4-aminoquinoline based molecular hybrids: Design, synthesis and mechanistic investigation of anticancer activity. New J. Chem., 2015, 39(1), 224-234.
[http://dx.doi.org/10.1039/C4NJ00936C]
[28]
Ghorab, M.M.; Al-Said, M.S.; Arafa, R.K. Design, synthesis and potential anti-proliferative activity of some novel 4-aminoquinoline derivatives. Acta Pharm., 2014, 64(3), 285-297.
[http://dx.doi.org/10.2478/acph-2014-0030] [PMID: 25296675]
[29]
Ferrer, R.; Lobo, G.; Gamboa, N.; Rodrigues, J. Synthesis of [(7-Chloroquinolin-4-yl)amino]chalcones: Potential antimalarial and anticancer agents. Sci. Pharm., 2009, 77, 725.
[http://dx.doi.org/10.3797/scipharm.0905-07]
[30]
Jiang, N.; Zhai, X.; Li, T.; Liu, D.; Zhang, T.; Wang, B.; Gong, P. Design, synthesis and antiproliferative activity of novel 2-substituted-4-amino-6-halogenquinolines. Molecules, 2012, 17(5), 5870-5881.
[http://dx.doi.org/10.3390/molecules17055870] [PMID: 22592090]
[31]
Wang, W.; Liu, L.; Zhou, Y.; Ye, Q.; Yang, X.; Jiang, J.; Ye, Z.; Gao, F.; Tan, X.; Zhang, G.; Fang, Q.; Xuan, Z.X. Hydroxychloroquine enhances the antitumor effects of BC001 in gastric cancer. Int. J. Oncol., 2019, 55(2), 405-414.
[http://dx.doi.org/10.3892/ijo.2019.4824] [PMID: 31268153]
[32]
Verbaanderd, C.; Maes, H.; Schaaf, M.B.; Sukhatme, V.P.; Pantziarka, P.; Sukhatme, V.; Agostinis, P.; Bouche, G. Repurposing Drugs in Oncology (ReDO)—chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience, 2017, 11, 781.
[http://dx.doi.org/10.3332/ecancer.2017.781] [PMID: 29225688]
[33]
Elshazly, E.H.; Zhang, S.; Yu, L.; Zhang, Y.; Ke, L.; Gong, R. Hydroxychloroquine enhances anticancer effect of DOX/folate-phytosterol-carboxymethyl cellulose nanoparticles in A549 lung cancer cells. Trop. J. Pharm. Res., 2020, 19(2), 219-225.
[http://dx.doi.org/10.4314/tjpr.v19i2.1]
[34]
Salako, K.S.; Chukwuemeka, P.A.; Moshood, O.A.; Boladale, O.S. Screening of amodiaquine for its in vitro anti-cancer activity on breast cancer cell lines- a case study for drug reprofiling. PAJOLS, 2021, 5(2), 263-273.
[http://dx.doi.org/10.36108/pajols/1202.50.0240]
[35]
T.B.C., India Guidelines for Programmatic Management of Tuberculosis Preventive Treatment in India., Available from: tbcindia.gov.in
[36]
T.B.C., India India annual TB Report., 2022. Available from: tbcindia.gov.in
[37]
Nandi, S.; Ahmed, S.; Saxena, A.K. Combinatorial design and virtual screening of potent anti-tubercular fluoroquinolone and isothiazoloquinolone compounds utilizing QSAR and pharmacophore modelling. SAR QSAR Environ. Res., 2018, 29(2), 151-170.
[http://dx.doi.org/10.1080/1062936X.2017.1419375] [PMID: 29347843]
[38]
Grange, J.M. Tuberculosis: A comprehensive clinical reference; Saunders, 2009, pp. 44-59.
[39]
Dye, C.; Scheele, S.; Dolin, P.; Pathania, V.; Raviglione, M.C. Consensus statement. Global burden of tuberculosis: Estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA, 1999, 282(7), 677-686.
[http://dx.doi.org/10.1001/jama.282.7.677] [PMID: 10517722]
[40]
Ahmed, S.; Nandi, S.; Saxena, A.K. An updated patent review on drugs for the treatment of tuberculosis (2018-present). Expert Opin. Ther. Pat., 2022, 32(3), 243-260.
[http://dx.doi.org/10.1080/13543776.2022.2012151] [PMID: 34846976]
[41]
Dey, R.; Nandi, S.; Samadder, A.; Saxena, A.; Saxena, A.K. Exploring the potential inhibition of candidate drug molecules for clinical investigation based on their docking or crystallographic analyses against M. tuberculosis enzyme targets. Curr. Top. Med. Chem., 2020, 20(29), 2662-2680.
[http://dx.doi.org/10.2174/1568026620666200903163921] [PMID: 32885754]
[42]
Mital, A.; Negi, V.S.; Ramachandran, U. Synthesis and antimycobacterial activities of certain trifluoromethyl-aminoquinoline derivatives. ARKIVOC, 2006, 2006(10), 220-227.
[http://dx.doi.org/10.3998/ark.5550190.0007.a25]
[43]
Alegaon, S.; Kashniyal, K.; Kuncolienkar, S.; Kavalapure, R.; Salve, P.; Palled, M.; Suryawanshi, S.; Jalalpure, S. Synthesis and biological evaluation of some 4-aminoquinoline derivatives as potential antitubercular agents. Future J. Pharm. Sci., 2020, 6(1), 2.
[http://dx.doi.org/10.1186/s43094-019-0016-7]
[44]
Rani, A.; Johansen, M.D.; Roquet-Banères, F.; Kremer, L.; Awolade, P.; Ebenezer, O.; Singh, P. Sumanjit; Kumar, V. Design and synthesis of 4-Aminoquinoline-isoindoline-dione-isoniazid triads as potential anti-mycobacterials. Bioorg. Med. Chem. Lett., 2020, 30(22), 127576.
[http://dx.doi.org/10.1016/j.bmcl.2020.127576] [PMID: 32980514]
[45]
Singh, A.; Viljoen, A.; Kremer, L.; Kumar, V. Azide-alkyne cycloaddition en route to 4-aminoquinoline-ferrocenylchalcone conjugates: synthesis and anti-TB evaluation. Future Med. Chem., 2017, 9(15), 1701-1708.
[http://dx.doi.org/10.4155/fmc-2017-0098] [PMID: 28869400]
[46]
Rani, A.; Viljoen, A. Sumanjit; Kremer, L.; Kumar, V. Microwave-assisted highly efficient route to 4-aminoquinoline-phthalimide conjugates: Synthesis and anti-tubercular evaluation. ChemistrySelect, 2017, 2(33), 10782-10785.
[http://dx.doi.org/10.1002/slct.201702220]
[47]
Salve, P.S.; Alegaon, S.G.; Sriram, D. Three-component, one-pot synthesis of anthranilamide Schiff bases bearing 4-aminoquinoline moiety as Mycobacterium tuberculosis gyrase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(8), 1859-1866.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.031] [PMID: 28274627]
[48]
Eswaran, S.; Adhikari, A.V.; Pal, N.K.; Chowdhury, I.H. Design and synthesis of some new quinoline-3-carbohydrazone derivatives as potential antimycobacterial agents. Bioorg. Med. Chem. Lett., 2010, 20(3), 1040-1044.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.045] [PMID: 20056418]
[49]
Carmo, A.M.L.; Silva, F.M.C.; Machado, P.A.; Fontes, A.P.S.; Pavan, F.R.; Leite, C.Q.F.; Leite, S.R.A.; Coimbra, E.S.; Da Silva, A.D. Synthesis of 4-aminoquinoline analogues and their platinum (II) complexes as new antileishmanial and antitubercular agents. Biomed. Pharmacother., 2011, 65(3), 204-209.
[http://dx.doi.org/10.1016/j.biopha.2011.01.003] [PMID: 21602021]
[50]
Paz, J.D.; Denise de Moura Sperotto, N.; Ramos, A.S.; Pissinate, K.; da Silva Rodrigues, Junior, V.; Abbadi, B.L.; Borsoi, A.F.; Rambo, R.S.; Corso Minotto, A.C.; da Silva Dadda, A.; Galina, L.; Macchi Hopf, F.S.; Muniz, M.N.; Borges Martinelli, L.K.; Roth, C.D.; Madeira Silva, R.B.; Perelló, M.A.; de Matos Czeczot, A.; Neves, C.E.; Duarte, L.S.; Leyser, M.; Dias de Oliveira, S.; Bizarro, C.V.; Machado, P.; Basso, L.A. Novel 4-aminoquinolines: Synthesis, inhibition of the Mycobacterium tuberculosis enoyl-acyl carrier protein reductase, antitubercular activity, SAR, and preclinical evaluation. Eur. J. Med. Chem., 2023, 245(Pt 1), 114908.
[http://dx.doi.org/10.1016/j.ejmech.2022.114908] [PMID: 36435016]
[51]
Medapi, B.; Suryadevara, P.; Renuka, J.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D. 4-Aminoquinoline derivatives as novel Mycobacterium tuberculosis GyrB inhibitors: Structural optimization, synthesis and biological evaluation. Eur. J. Med. Chem., 2015, 103, 1-16.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.032] [PMID: 26318054]
[52]
Shirude, P.S.; Paul, B.; Roy Choudhury, N.; Kedari, C.; Bandodkar, B.; Ugarkar, B.G. Quinolinyl pyrimidines: Potent inhibitors of NDH-2 as a novel class of anti-TB agents. ACS Med. Chem. Lett., 2012, 3(9), 736-740.
[http://dx.doi.org/10.1021/ml300134b] [PMID: 24900541]
[53]
Diacon, A.H.; Pym, A.; Grobusch, M.; Patientia, R.; Rustomjee, R.; Page-Shipp, L.; Pistorius, C.; Krause, R.; Bogoshi, M.; Churchyard, G.; Venter, A.; Allen, J.; Palomino, J.C.; De Marez, T.; van Heeswijk, R.P.G.; Lounis, N.; Meyvisch, P.; Verbeeck, J.; Parys, W.; de Beule, K.; Andries, K.; Neeley, D.F.M. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med., 2009, 360(23), 2397-2405.
[http://dx.doi.org/10.1056/NEJMoa0808427] [PMID: 19494215]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy