Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Exploring Palmitoylated Arabinogalactan in Solid Lipid Nanoparticles: Formulation Design and in vitro Assessment for Hepatospecific Targeting

Author(s): Neelam Shah, Saurabh Katawale, Sanket Shah, Vivek Dhawan and Mangal Nagarsenker*

Volume 13, Issue 2, 2023

Published on: 15 February, 2023

Page: [92 - 102] Pages: 11

DOI: 10.2174/2210303113666230202153647

Price: $65

Abstract

Aim: The present study evaluates the feasibility of the incorporation of palmitoylated arabinogalactan in solid lipid nanoparticles and its potential as a hepatospecific targeting ligand.

Background: Human hepatocellular carcinoma (HCC) is a neoplasm presenting low survival and higher incidence, due to difficulties in the treatment modalities to effectively place cancer therapeutics at the site. Targeting asialoglycoprotein receptors on the surface of hepatocytes employing lipid nanoparticles, and liposomes presents opportunities for improvement in therapy.

Objective: The objective of the present investigation was to fabricate and evaluate the potential of palmitoylated arabinogalactan (PAG) incorporated SLNs to target asialoglycoprotein receptors.

Methods: Daunorubicin-loaded targeted SLNs prepared by ultrasound dispersion method were evaluated for in vitro release and in vitro cytotoxicity. Lipids, surfactants, and biocompatible solvents were screened for SLN formation and optimization was done using 22 factorial designs.

Results: The particle size for formulations was below 200 nm with a unimodal distribution. Differential scanning calorimetry analysis revealed the interaction of lipids with other components characterized by a shift in lipid melting endotherm. Daunorubicin-loaded PAG SLNs released a significantly higher amount of daunorubicin at pH 5.5 as compared to pH 7.4, providing an advantage for targeted tumor therapy. In vitro cytotoxicity studies showed that daunorubicin depicted a dosedependent reduction in viability in all cell lines treated with formulation as well as free drug.

Conclusion: SLNs showed enhancement in intracellular uptake of daunorubicin thereby establishing their potential in improved treatment of HCC and warrant further in vivo investigations.

Keywords: Asialoglycoprotein receptors, arabinogalactan, hepatocellular carcinoma, carbohydrate conjugates, daunorubicin, targeted nanoparticles.

Graphical Abstract
[1]
Sihorkar, V.; Vyas, S.P. Potential of polysaccharide anchored liposomes in drug delivery, targeting and immunization. J. Pharm. Pharm. Sci., 2001, 4(2), 138-158.
[PMID: 11466172]
[2]
Davis, B.G.; Robinson, M.A. Drug delivery systems based on sugar-macromolecule conjugates. Curr. Opin. Drug Discov. Devel., 2002, 5(2), 279-288.
[PMID: 11926134]
[3]
Bies, C.; Lehr, C.M.; Woodley, J.F. Lectin-mediated drug targeting: History and applications. Adv. Drug Deliv. Rev., 2004, 56(4), 425-435.
[http://dx.doi.org/10.1016/j.addr.2003.10.030] [PMID: 14969751]
[4]
Llovet, J.M.; Burroughs, A.; Bruix, J. Hepatocellular carcinoma. Lancet, 2003, 362(9399), 1907-1917.
[http://dx.doi.org/10.1016/S0140-6736(03)14964-1] [PMID: 14667750]
[5]
Ma, S.; Jiao, B.; Liu, X.; Yi, H.; Kong, D.; Gao, L.; Zhao, G.; Yang, Y.; Liu, X. Approach to radiation therapy in hepatocellular carcinoma. Cancer Treat. Rev., 2010, 36(2), 157-163.
[http://dx.doi.org/10.1016/j.ctrv.2009.11.008] [PMID: 20031332]
[6]
Qin, L.X.; Tang, Z.Y. The prognostic significance of clinical and pathological features in hepatocellular carcinoma. World J. Gastroenterol., 2002, 8(2), 193-199.
[http://dx.doi.org/10.3748/wjg.v8.i2.193] [PMID: 11925590]
[7]
Wu, J.; Nantz, M.H.; Zern, M.A. Targeting hepatocytes for drug and gene delivery: Emerging novel approaches and applications. Front. Biosci., 2002, 7, 717-725.
[8]
Shah, S.M.; Pathak, P.O.; Jain, A.S.; Barhate, C.R.; Nagarsenker, M.S. Synthesis, characterization, and in vitro evaluation of palmitoylated arabinogalactan with potential for liver targeting. Carbohydr. Res., 2013, 367, 41-47.
[http://dx.doi.org/10.1016/j.carres.2012.11.025] [PMID: 23298829]
[9]
Shah, S.M.; Goel, P.N.; Jain, A.S.; Pathak, P.O.; Padhye, S.G.; Govindarajan, S.; Ghosh, S.S.; Chaudhari, P.R.; Gude, R.P.; Gopal, V.; Nagarsenker, M.S. Liposomes for targeting hepatocellular carcinoma: Use of conjugated arabinogalactan as targeting ligand. Int. J. Pharm., 2014, 477(1-2), 128-139.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.014] [PMID: 25311181]
[10]
Julyan, P.; Seymour, L.W.; Ferry, D.R.; Daryani, S.; Boivin, C.M.; Doran, J.; David, M.; Anderson, D.; Christodoulou, C.; Young, A.M.; Hesslewood, S.; Kerr, D.J. Preliminary clinical study of the distribution of HPMA copolymers bearing doxorubicin and galactosamine. J. Control. Release, 1999, 57(3), 281-290.
[http://dx.doi.org/10.1016/S0168-3659(98)00124-2] [PMID: 9895415]
[11]
Fiume, L.; Di Stefano, G. Lactosaminated human albumin, a hepatotropic carrier of drugs. Eur. J. Pharm. Sci., 2010, 40(4), 253-262.
[http://dx.doi.org/10.1016/j.ejps.2010.04.004] [PMID: 20403430]
[12]
Zhou, X.; Zhang, M.; Yung, B.; Li, H.; Zhou, C.; Lee, L.J.; Lee, R.J. Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma. Int. J. Nanomedicine, 2012, 7, 5465-5474.
[PMID: 23093902]
[13]
Cheng, M.; He, B.; Wan, T.; Zhu, W.; Han, J.; Zha, B.; Chen, H.; Yang, F.; Li, Q.; Wang, W.; Xu, H.; Ye, T. 5-Fluorouracil nanoparticles inhibit hepatocellular carcinoma via activation of the p53 pathway in the orthotopic transplant mouse model. PLoS One, 2012, 7(10), e47115.
[http://dx.doi.org/10.1371/journal.pone.0047115] [PMID: 23077553]
[14]
Pathak, P.O.; Nagarsenker, M.S.; Barhate, C.R.; Padhye, S.G.; Dhawan, V.V.; Bhattacharyya, D.; Viswanathan, C.L.; Steiniger, F.; Fahr, A. Cholesterol anchored arabinogalactan for asialoglycoprotein receptor targeting: Synthesis, characterization, and proof of concept of hepatospecific delivery. Carbohydr. Res., 2015, 408(408), 33-43.
[http://dx.doi.org/10.1016/j.carres.2015.03.003] [PMID: 25841057]
[15]
Dhawan, V.; Joshi, G.; Sutariya, B.; Shah, J.; Ashtikar, M.; Nagarsekar, K.; Steiniger, F.; Lokras, A.; Fahr, A.; Krishnapriya, M.; Warawdekar, U.; Saraf, M.; Nagarsenker, M. Polysaccharide conjugates surpass monosaccharide ligands in hepatospecific targeting - Synthesis and comparative in silico and in vitro assessment. Carbohydr. Res., 2021, 509, 108417.
[http://dx.doi.org/10.1016/j.carres.2021.108417] [PMID: 34481155]
[16]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1, 1112-1116.
[17]
Choi, K.O.; Aditya, N.P.; Ko, S. Effect of aqueous pH and electrolyte concentration on structure, stability and flow behavior of non-ionic surfactant based solid lipid nanoparticles. Food Chem., 2014, 147, 239-244.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.095] [PMID: 24206712]
[18]
Jenning, V.; Gysler, A.; Schäfer-Korting, M.; Gohla, S.H. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm., 2000, 49(3), 211-218. a.
[http://dx.doi.org/10.1016/S0939-6411(99)00075-2] [PMID: 10799811]
[19]
Jenning, V.; Schäfer-Korting, M.; Gohla, S. Vitamin A-loaded solid lipid nanoparticles for topical use: Drug release properties. J. Control. Release, 2000, 66(2-3), 115-126. b.
[http://dx.doi.org/10.1016/S0168-3659(99)00223-0] [PMID: 10742573]
[20]
Jenning, V.; Mäder, K.; Gohla, S.H. Solid lipid nanoparticles (SLN™) based on binary mixtures of liquid and solid lipids: A 1H-NMR study. Int. J. Pharm., 2000, 205(1-2), 15-21.
[http://dx.doi.org/10.1016/S0378-5173(00)00462-2] [PMID: 11000538]
[21]
Ramadugu, S.K.; Chung, Y.H.; Fuentes, E.J.; Rice, K.G.; Margulis, C.J. In silico prediction of the 3D structure of trimeric asialoglycoprotein receptor bound to triantennary oligosaccharide. J. Am. Chem. Soc., 2010, 132(26), 9087-9095.
[http://dx.doi.org/10.1021/ja1021766] [PMID: 20540518]
[22]
Ma, Y.; Chen, H.; Su, S.; Wang, T.; Zhang, C.; Fida, G.; Cui, S.; Zhao, J.; Gu, Y. Galactose as broad ligand for multiple tumor imaging and therapy. J. Cancer, 2015, 6(7), 658-670.
[http://dx.doi.org/10.7150/jca.11647] [PMID: 26078797]
[23]
Shen, Z.; Nieh, M.P.; Li, Y. Decorating nanoparticle surface for targeted drug delivery: Opportunities and challenges. Polymers, 2016, 8(3), 83.
[http://dx.doi.org/10.3390/polym8030083] [PMID: 30979183]
[24]
Fakhari, A.; Baoum, A.; Siahaan, T.J.; Le, K.B.; Berkland, C. Controlling ligand surface density optimizes nanoparticle binding to ICAM-1. J. Pharm. Sci., 2011, 100(3), 1045-1056.
[http://dx.doi.org/10.1002/jps.22342] [PMID: 20922813]
[25]
Rahman, M.; Almalki, W.H.; Afzal, O.; Kazmi, I.; Alfawaz Altamimi, A.S.; Alghamdi, S.; Al-Abbasi, F.A.; Altowayan, W.M.; Alrobaian, M.; Alharbi, K.S.; Beg, S.; Saleem, S.; Kumar, V. Diosmin-loaded solid nanoparticles as nano-antioxidant therapy for management of hepatocellular carcinoma: QbD-based optimization, in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol., 2021, 61(16), 102213.
[http://dx.doi.org/10.1016/j.jddst.2020.102213]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy