Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Roles of Nuclear Receptors in Esophageal Cancer

Author(s): Lihao Deng, Jiaxuan Liu, Wei-Dong Chen and Yan-Dong Wang*

Volume 24, Issue 12, 2023

Published on: 22 February, 2023

Page: [1489 - 1503] Pages: 15

DOI: 10.2174/1389201024666230202155426

Price: $65

Abstract

Background: Esophageal cancer (EC), including esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), is a highly prevalent malignancy that occurs predominantly in the Asian region and is related to ethnicity, genetics, diet, and lifestyle. The nuclear receptor (NR) superfamily consists of 48 members of the human body. It is a collection of a large class of transcription factors, including Peroxisome proliferator-activated receptors (PPARs), Farnesol X receptor (FXR), Vitamin D receptor (VDR), Retinoic acid receptor (RAR), Pregnane X receptor (PXR), Androgen receptor (AR) and so on. Several NRs have been detected as oncogenes or tumor suppressors in EC progression.

Objectives: NRs are associated with the progression of many cancers, including EC. Some NRs, such as PPARs and FXR, play an important role in EC. Studying the molecular mechanism of NRs in EC is helpful for further understanding the development of EC. Preclinical research and development of small molecule compound drugs targeting NRs have provided new ideas for the potential targeted therapy of EC.

Methods: This review summarizes the studies on NRs in EC in recent years, mainly including in vitro cell experiments and in vivo animal experiments.

Results: NRs influence EC progress in a variety of ways. They mainly affect the proliferation, migration and drug resistance of EC cells by affecting key cancer cell signaling pathways. Activation or inhibition of NRs inhibits or promotes EC progression, depending on EC types and tumor stages. Preclinical studies mainly focus on the development of small molecule drugs for targeting NRs (such as PPARγ agonists, PPARδ inhibitors, and FXR agonists), and agonists or inhibitors of NRs will become a potential therapeutic regimen for EC.

Conclusion: The studies on the roles of NRs in EC have provided a theoretical basis for us to further understand the pathogenesis of EC and develop potential therapeutic drugs targeting NRs for the treatment of different diseases.

Keywords: Esophageal cancer, esophageal squamous cell carcinoma, esophageal adenocarcinoma, nuclear receptors, orphan receptors, peroxisome proliferator-activated receptors, vitamin D receptor, farnesol X receptor, androgen receptor.

Graphical Abstract
[1]
Wu, K.; Hu, Y.; Yan, K.; Qi, Y.; Zhang, C.; Zhu, D.; Liu, D.; Zhao, S. MicroRNA-10b confers cisplatin resistance by activating AKT/mTOR/P70S6K signaling via targeting PPARγ in esophageal cancer. J. Cell. Physiol., 2020, 235(2), 1247-1258.
[http://dx.doi.org/10.1002/jcp.29040] [PMID: 31267531]
[2]
Yang, J.; Wang, H.; Ji, A.; Ma, L.; Wang, J.; Lian, C.; Wei, Z.; Wang, L.; Vitamin, D. Vitamin D signaling pathways confer the susceptibility of esophageal squamous cell carcinoma in a northern chinese population. Nutr. Cancer, 2017, 69(4), 593-600.
[http://dx.doi.org/10.1080/01635581.2017.1299873] [PMID: 28362172]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Cui, L.; Xu, F.; Wu, K.; Li, L.; Qiao, T.; Li, Z.; Chen, T.; Sun, C. Anticancer effects and possible mechanisms of lycopene intervention on N-methylbenzylnitrosamine induced esophageal cancer in F344 rats based on PPARγ1. Eur. J. Pharmacol., 2020, 881, 173230.
[http://dx.doi.org/10.1016/j.ejphar.2020.173230] [PMID: 32553810]
[6]
Zhong, R.; Chen, Z.; Mo, T.; Li, Z.; Zhang, P. Potential role of circPVT1 as a proliferative factor and treatment target in esophageal carcinoma. Cancer Cell Int., 2019, 19(1), 267.
[http://dx.doi.org/10.1186/s12935-019-0985-9] [PMID: 31636510]
[7]
van de Winkel, A.; Menke, V.; Capello, A.; Moons, L.M.G.; Pot, R.G.J.; van Dekken, H.; Siersema, P.D.; Kusters, J.G.; van der Laan, L.J.W.; Kuipers, E.J. Expression, localization and polymorphisms of the nuclear receptor PXR in Barrett’s esophagus and esophageal adenocarcinoma. BMC Gastroenterol., 2011, 11(1), 108.
[http://dx.doi.org/10.1186/1471-230X-11-108] [PMID: 21977915]
[8]
Janmaat, V.T.; van de Winkel, A.; Peppelenbosch, M.P.; Spaander, M.C.W.; Uitterlinden, A.G.; Pourfarzad, F.; Tilanus, H.W.; Rygiel, A.M.; Moons, L.M.G.; Arp, P.P.; Krishnadath, K.K.; Kuipers, E.J.; van der Laan, L.J.W.; Vitamin, D. Vitamin D receptor polymorphisms are associated with reduced esophageal vitamin D receptor expression and reduced esophageal adenocarcinoma risk. Mol. Med., 2015, 21(1), 346-354.
[http://dx.doi.org/10.2119/molmed.2012.00336] [PMID: 25910066]
[9]
Taubenheim, J.; Kortmann, C.; Fraune, S. Function and evolution of nuclear receptors in environmental-dependent postembryonic development. Front. Cell Dev. Biol., 2021, 9, 653792.
[http://dx.doi.org/10.3389/fcell.2021.653792] [PMID: 34178983]
[10]
Gronemeyer, H.; Gustafsson, J.Å.; Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov., 2004, 3(11), 950-964.
[http://dx.doi.org/10.1038/nrd1551] [PMID: 15520817]
[11]
Weikum, E.R.; Liu, X.; Ortlund, E.A. The nuclear receptor superfamily: A structural perspective. Protein Sci., 2018, 27(11), 1876-1892.
[http://dx.doi.org/10.1002/pro.3496] [PMID: 30109749]
[12]
Chinetti, G.; Neels, J.G. Roles of nuclear receptors in vascular calcification. Int. J. Mol. Sci., 2021, 22(12), 6491.
[http://dx.doi.org/10.3390/ijms22126491] [PMID: 34204304]
[13]
Tan, N.S.; Vázquez-Carrera, M.; Montagner, A.; Sng, M.K.; Guillou, H.; Wahli, W. Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ. Prog. Lipid Res., 2016, 64, 98-122.
[http://dx.doi.org/10.1016/j.plipres.2016.09.001] [PMID: 27665713]
[14]
Zheng, D.; Williams, C.; Vold, J.A.; Nguyen, J.H.; Harnois, D.M.; Bagaria, S.P.; McLaughlin, S.A.; Li, Z. Regulation of sex hormone receptors in sexual dimorphism of human cancers. Cancer Lett., 2018, 438, 24-31.
[http://dx.doi.org/10.1016/j.canlet.2018.09.001] [PMID: 30223066]
[15]
Polvani, S.; Pepe, S.; Milani, S.; Galli, A. COUP-TFII in health and disease. Cells, 2019, 9(1), 101.
[http://dx.doi.org/10.3390/cells9010101] [PMID: 31906104]
[16]
Dong, H.; Xu, J.; Li, W.; Gan, J.; Lin, W.; Ke, J.; Jiang, J.; Du, L.; Chen, Y.; Zhong, X.; Zhang, D.; Yeung, S.C.J.; Li, X.; Zhang, H. Reciprocal androgen receptor/interleukin-6 crosstalk drives oesophageal carcinoma progression and contributes to patient prognosis. J. Pathol., 2017, 241(4), 448-462.
[http://dx.doi.org/10.1002/path.4839] [PMID: 27801498]
[17]
Fucci, A.; Colangelo, T.; Votino, C.; Pancione, M.; Sabatino, L.; Colantuoni, V. The role of peroxisome proliferator-activated receptors in the esophageal, gastric, and colorectal cancer. PPAR Res., 2012, 2012, 1-9.
[http://dx.doi.org/10.1155/2012/242498] [PMID: 22991505]
[18]
Chang, W.H.; Lai, A.G. The pan-cancer mutational landscape of the PPAR pathway reveals universal patterns of dysregulated metabolism and interactions with tumor immunity and hypoxia. Ann. N. Y. Acad. Sci., 2019, 1448(1), 65-82.
[http://dx.doi.org/10.1111/nyas.14170] [PMID: 31215667]
[19]
Mirza, A.Z.; Althagafi, I.I.; Shamshad, H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur. J. Med. Chem., 2019, 166, 502-513.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.067] [PMID: 30739829]
[20]
Xi, Y.; Zhang, Y.; Zhu, S.; Luo, Y.; Xu, P.; Huang, Z. PPAR-mediated toxicology and applied pharmacology. Cells, 2020, 9(2), 352.
[http://dx.doi.org/10.3390/cells9020352] [PMID: 32028670]
[21]
Laganà, A.; Vitale, S.; Nigro, A.; Sofo, V.; Salmeri, F.; Rossetti, P.; Rapisarda, A.; La Vignera, S.; Condorelli, R.; Rizzo, G.; Buscema, M. Pleiotropic actions of peroxisome proliferator-activated receptors (ppars) in dysregulated metabolic homeostasis, inflammation and cancer: Current evidence and future perspectives. Int. J. Mol. Sci., 2016, 17(7), 999.
[http://dx.doi.org/10.3390/ijms17070999] [PMID: 27347932]
[22]
Behl, T.; Kaur, I.; Goel, H.; Kotwani, A. Implications of the endogenous PPAR-gamma ligand, 15-deoxy-delta-12, 14-prostag-landin J2, in diabetic retinopathy. Life Sci., 2016, 153, 93-99.
[http://dx.doi.org/10.1016/j.lfs.2016.03.054] [PMID: 27060220]
[23]
Wu, K.; Yang, Y.; Liu, D.; Qi, Y.; Zhang, C.; Zhao, J.; Zhao, S. Activation of PPARγ suppresses proliferation and induces apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway. Oncotarget, 2016, 7(28), 44572-44582.
[http://dx.doi.org/10.18632/oncotarget.10067] [PMID: 27323819]
[24]
Pun, I.H.Y.; Chan, D.; Chan, S.H.; Chung, P.Y.; Zhou, Y.Y.; Law, S.; Lam, A.K.Y.; Chui, C.H.; Chan, A.S.C.; Lam, K.H.; Tang, J.C.O. Anti-cancer effects of a novel quinoline derivative 83b1 on human esophageal squamous cell carcinoma through down-regulation of COX-2 mRNA and PGE2. Cancer Res. Treat., 2017, 49(1), 219-229.
[http://dx.doi.org/10.4143/crt.2016.190] [PMID: 27456944]
[25]
Sawayama, H.; Ishimoto, T.; Watanabe, M.; Yoshida, N.; Sugihara, H.; Kurashige, J.; Hirashima, K.; Iwatsuki, M.; Baba, Y.; Oki, E.; Morita, M.; Shiose, Y.; Baba, H. Small molecule agonists of PPAR-γ exert therapeutic effects in esophageal cancer. Cancer Res., 2014, 74(2), 575-585.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1836] [PMID: 24272485]
[26]
Suo, D.; Wang, L.; Zeng, T.; Zhang, H.; Li, L.; Liu, J.; Yun, J.; Guan, X.Y.; Li, Y. NRIP3 upregulation confers resistance to chemoradiotherapy in ESCC via RTF2 removal by accelerating ubiquitination and degradation of RTF2. Oncogenesis, 2020, 9(8), 75.
[http://dx.doi.org/10.1038/s41389-020-00260-4] [PMID: 32839439]
[27]
Li, X.; Hong, X.; Gao, X.; Gu, X.; Xiong, W.; Zhao, J.; Yu, H.; Cui, M.; Xie, M.; Bai, Y.; Sun, S. Methyl jasmonate enhances the radiation sensitivity of esophageal carcinoma cells by inhibiting the 11-ketoprostaglandin reductase activity of AKR1C3. Cancer Manag. Res., 2018, 10, 3149-3158.
[http://dx.doi.org/10.2147/CMAR.S166942] [PMID: 30214307]
[28]
Kizaibek, M.; Wubuli, A.; Gu, Z.; Bahetjan, D.; Tursinbai, L.; Nurhamit, K.; Chen, B.; Wang, J.; Tahan, O.; Cao, P. Effects of an ethyl acetate extract of Daphne altaica stem bark on the cell cycle, apoptosis and expression of PPARγ in Eca 109 human esophageal carcinoma cells. Mol. Med. Rep., 2020, 22(2), 1400-1408.
[http://dx.doi.org/10.3892/mmr.2020.11187] [PMID: 32468007]
[29]
Ma, S.; Zhou, B.; Yang, Q.; Pan, Y.; Yang, W.; Freedland, S.J.; Ding, L.W.; Freeman, M.R.; Breunig, J.J.; Bhowmick, N.A.; Pan, J.; Koeffler, H.P.; Lin, D.C. A transcriptional regulatory loop of master regulator transcription factors, pparg, and fatty acid synthesis promotes esophageal adenocarcinoma. Cancer Res., 2021, 81(5), 1216-1229.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-0652] [PMID: 33402390]
[30]
Pike, J.W.; Meyer, M.B.; Lee, S.M.; Onal, M.; Benkusky, N.A. The vitamin D receptor: Contemporary genomic approaches reveal new basic and translational insights. J. Clin. Invest., 2017, 127(4), 1146-1154.
[http://dx.doi.org/10.1172/JCI88887] [PMID: 28240603]
[31]
Laczmanski, L.; Laczmanska, I.; Lwow, F. Association of select vitamin D receptor gene polymorphisms with the risk of tobacco-related cancers - a meta-analysis. Sci. Rep., 2019, 9(1), 16026.
[http://dx.doi.org/10.1038/s41598-019-52519-5] [PMID: 31690771]
[32]
Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G.; Vitamin, D.; Vitamin, D. Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev., 2016, 96(1), 365-408.
[http://dx.doi.org/10.1152/physrev.00014.2015] [PMID: 26681795]
[33]
Zhou, Z.; Xia, Y.; Bandla, S.; Zakharov, V.; Wu, S.; Peters, J.; Godfrey, T.E.; Sun, J. Vitamin D receptor is highly expressed in precancerous lesions and esophageal adenocarcinoma with significant sex difference. Hum. Pathol., 2014, 45(8), 1744-1751.
[http://dx.doi.org/10.1016/j.humpath.2014.02.029] [PMID: 24951052]
[34]
Rouphael, C.; Kamal, A.; Sanaka, M.R.; Thota, P.N. Vitamin D in esophageal cancer: Is there a role for chemoprevention? World J. Gastrointest. Oncol., 2018, 10(1), 23-30.
[http://dx.doi.org/10.4251/wjgo.v10.i1.23] [PMID: 29375745]
[35]
Teske, K.A.; Yu, O.; Arnold, L.A. Inhibitors for the vitamin D receptor–coregulator interaction. Vitam. Horm., 2016, 100, 45-82.
[http://dx.doi.org/10.1016/bs.vh.2015.10.002] [PMID: 26827948]
[36]
Trowbridge, R.; Sharma, P.; Hunter, W.J.; Agrawal, D.K. Vitamin D receptor expression and neoadjuvant therapy in esophageal adenocarcinoma. Exp. Mol. Pathol., 2012, 93(1), 147-153.
[http://dx.doi.org/10.1016/j.yexmp.2012.04.018] [PMID: 22546272]
[37]
Bao, Y.; Zhang, S.; Guo, Y.; Wei, X.; Zhang, Y.; Yang, Y.; Zhang, H.; Ma, M.; Yang, W. Stromal expression of JNK1 and VDR is associated with the prognosis of esophageal squamous cell carcinoma. Clin. Transl. Oncol., 2018, 20(9), 1185-1195.
[http://dx.doi.org/10.1007/s12094-018-1843-2] [PMID: 29423673]
[38]
McCain, S.; Trainor, J.; McManus, D.T.; McMenamin, Ú.C.; McQuaid, S.; Bingham, V.; James, J.A.; Salto-Tellez, M.; Turkington, R.C.; Coleman, H.G. Vitamin D receptor as a marker of prognosis in oesophageal adenocarcinoma: A prospective cohort study. Oncotarget, 2018, 9(76), 34347-34356.
[http://dx.doi.org/10.18632/oncotarget.26151] [PMID: 30344947]
[39]
Abu-Farsakh, S.; Wu, T.; Lalonde, A.; Sun, J.; Zhou, Z. High expression of Claudin-2 in esophageal carcinoma and precancerous lesions is significantly associated with the bile salt receptors VDR and TGR5. BMC Gastroenterol., 2017, 17(1), 33.
[http://dx.doi.org/10.1186/s12876-017-0590-0] [PMID: 28212604]
[40]
Mimori, K.; Tanaka, Y.; Yoshinaga, K.; Masuda, T.; Yamashita, K.; Okamoto, M.; Inoue, H.; Mori, M. Clinical significance of the overexpression of the candidate oncogene CYP24 in esophageal cancer. Ann. Oncol., 2004, 15(2), 236-241.
[http://dx.doi.org/10.1093/annonc/mdh056] [PMID: 14760115]
[41]
Launoy, G.; Milan, C.; Day, N.E.; Pienkowski, M.P.; Gignoux, M.; Faivre, J. Diet and squamous-cell cancer of the oesophagus: A french multicentre case-control study. Int. J. Cancer, 1998, 76(1), 7-12.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19980330)76:1<7:AID-IJC2>3.0.CO;2-4] [PMID: 9533754]
[42]
Chen, Y.; Tang, Y.; Guo, C.; Wang, J.; Boral, D.; Nie, D. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem. Pharmacol., 2012, 83(8), 1112-1126.
[http://dx.doi.org/10.1016/j.bcp.2012.01.030] [PMID: 22326308]
[43]
Zhang, T.; Zhong, S.; Li, T.; Zhang, J. Saponins as modulators of nuclear receptors. Crit. Rev. Food Sci. Nutr., 2020, 60(1), 94-107.
[http://dx.doi.org/10.1080/10408398.2018.1514580] [PMID: 30582348]
[44]
Takeyama, D.; Miki, Y.; Fujishima, F.; Suzuki, T.; Akahira, J.; Hata, S.; Miyata, G.; Satomi, S.; Sasano, H. Steroid and xenobiotic receptor in human esophageal squamous cell carcinoma: A potent prognostic factor. Cancer Sci., 2010, 101(2), 543-549.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01380.x] [PMID: 19860844]
[45]
Hunsu, V.O.; Facey, C.O.B.; Fields, J.Z.; Boman, B.M. Retinoids as chemo-preventive and molecular-targeted anti-cancer therapies. Int. J. Mol. Sci., 2021, 22(14), 7731.
[http://dx.doi.org/10.3390/ijms22147731] [PMID: 34299349]
[46]
Germain, P.; Chambon, P.; Eichele, G.; Evans, R.M.; Lazar, M.A.; Leid, M.; De Lera, A.R.; Lotan, R.; Mangelsdorf, D.J.; Gronemeyer, H. International union of pharmacology. LXIII. retinoid X receptors. Pharmacol. Rev., 2006, 58(4), 760-772.
[http://dx.doi.org/10.1124/pr.58.4.7] [PMID: 17132853]
[47]
Brabender, J.; Lord, R.V.; Metzger, R.; Park, J.; Salonga, D.; Danenberg, K.D.; Hölscher, A.H.; Danenberg, P.V.; Schneider, P.M. Role of retinoid X receptor mRNA expression in Barrett’s esophagus. J. Gastrointest. Surg., 2004, 8(4), 413-422.
[http://dx.doi.org/10.1016/j.gassur.2004.02.007] [PMID: 15120365]
[48]
Mao, X.M.; Li, H.; Zhang, X.Y.; Zhou, P.; Fu, Q.R.; Chen, Q.E.; Shen, J.X.; Liu, Y.; Chen, Q.X.; Shen, D.Y. Retinoic acid receptor α knockdown suppresses the tumorigenicity of esophageal carcinoma via wnt/β-catenin pathway. Dig. Dis. Sci., 2018, 63(12), 3348-3358.
[http://dx.doi.org/10.1007/s10620-018-5254-6] [PMID: 30155836]
[49]
Xu, X.; Lee, J.J.; Wu, T.T.; Hoque, A.; Ajani, J.A.; Lippman, S.M. Increased retinoic acid receptor-beta4 correlates in vivo with reduced retinoic acid receptor-beta2 in esophageal squamous cell carcinoma. Cancer Epidemiol. Biomarkers Prev., 2005, 14(4), 826-829.
[http://dx.doi.org/10.1158/1055-9965.EPI-04-0500] [PMID: 15824151]
[50]
Song, S.; Lippman, S.M.; Zou, Y.; Ye, X.; Ajani, J.A.; Xu, X. Induction of cyclooxygenase-2 by benzo[a]pyrene diol epoxide through inhibition of retinoic acid receptor-β2 expression. Oncogene, 2005, 24(56), 8268-8276.
[http://dx.doi.org/10.1038/sj.onc.1208992] [PMID: 16170369]
[51]
Ye, F.; Xu, X.C. Benzo[a]pyrene diol epoxide suppresses retinoic acid receptor-β2 expression by recruiting DNA (cytosine-5-)-methyltransferase 3A. Mol. Cancer, 2010, 9(1), 93.
[http://dx.doi.org/10.1186/1476-4598-9-93] [PMID: 20426865]
[52]
Liang, Z.D.; Lippman, S.M.; Wu, T.T.; Lotan, R.; Xu, X.C. RRIG1 mediates effects of retinoic acid receptor beta2 on tumor cell growth and gene expression through binding to and inhibition of RhoA. Cancer Res., 2006, 66(14), 7111-7118.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0812] [PMID: 16849557]
[53]
Yang, Q.; Wang, R.; Xiao, W.; Sun, F.; Yuan, H.; Pan, Q. Cellular retinoic acid binding protein 2 is strikingly downregulated in human esophageal squamous cell carcinoma and functions as a tumor suppressor. PLoS One, 2016, 11(2), e0148381.
[http://dx.doi.org/10.1371/journal.pone.0148381] [PMID: 26839961]
[54]
Fujishima, F.; Suzuki, T.; Nakamura, Y.; Taniyama, Y.; Ono, K.; Sugawara, A.; Miyazaki, S.; Moriya, T.; Sato, A.; Satomi, S.; Sasano, H. Retinoid receptors in human esophageal squamous cell carcinoma: Retinoid X receptor as a potent prognostic factor. Pathol. Int., 2011, 61(7), 401-408.
[http://dx.doi.org/10.1111/j.1440-1827.2011.02674.x] [PMID: 21707843]
[55]
Teng, H.; Xue, M.; Liang, J.; Wang, X.; Wang, L.; Wei, W.; Li, C.; Zhang, Z.; Li, Q.; Ran, X.; Shi, X.; Cai, W.; Wang, W.; Gao, H.; Sun, Z. Inter- and intra-tumor DNA methylation heterogeneity associated with lymph node metastasis and prognosis of esophageal squamous cell carcinoma. Theranostics, 2020, 10(7), 3035-3048.
[http://dx.doi.org/10.7150/thno.42559] [PMID: 32194853]
[56]
Ticho, A.L.; Malhotra, P.; Dudeja, P.K.; Gill, R.K.; Alrefai, W.A. Bile acid receptors and gastrointestinal functions. Liver Res., 2019, 3(1), 31-39.
[http://dx.doi.org/10.1016/j.livres.2019.01.001] [PMID: 32368358]
[57]
Xiang, J.; Zhang, Z.; Xie, H.; Zhang, C.; Bai, Y.; Cao, H.; Che, Q.; Guo, J.; Su, Z. Effect of different bile acids on the intestine through enterohepatic circulation based on FXR. Gut Microbes, 2021, 13(1), 1949095.
[http://dx.doi.org/10.1080/19490976.2021.1949095] [PMID: 34313539]
[58]
Jiang, L.; Zhang, H.; Xiao, D.; Wei, H.; Chen, Y. Farnesoid X receptor (FXR): Structures and ligands. Comput. Struct. Biotechnol. J., 2021, 19, 2148-2159.
[http://dx.doi.org/10.1016/j.csbj.2021.04.029] [PMID: 33995909]
[59]
Carotti, A.; Marinozzi, M.; Custodi, C.; Cerra, B.; Pellicciari, R.; Gioiello, A.; Macchiarulo, A. Beyond bile acids: Targeting farnesoid X receptor (FXR) with natural and synthetic ligands. Curr. Top. Med. Chem., 2014, 14(19), 2129-2142.
[http://dx.doi.org/10.2174/1568026614666141112094058] [PMID: 25388537]
[60]
Cariello, M.; Piccinin, E.; Garcia-Irigoyen, O.; Sabbà, C.; Moschetta, A. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(4)(4 Pt B), 1308-1318.
[http://dx.doi.org/10.1016/j.bbadis.2017.09.019] [PMID: 28965883]
[61]
Shin, D.J.; Wang, L. Bile acid-activated receptors: A review on FXR and other nuclear receptors. Handb. Exp. Pharmacol., 2019, 256, 51-72.
[http://dx.doi.org/10.1007/164_2019_236] [PMID: 31230143]
[62]
De Gottardi, A.; Dumonceau, J.M.; Bruttin, F.; Vonlaufen, A.; Morard, I.; Spahr, L.; Rubbia-Brandt, L.; Frossard, J.L.; Dinjens, W.N.M.; Rabinovitch, P.S.; Hadengue, A. Expression of the bile acid receptor FXR in Barrett’s esophagus and enhancement of apoptosis by guggulsterone in vitro. Mol. Cancer, 2006, 5(1), 48.
[http://dx.doi.org/10.1186/1476-4598-5-48] [PMID: 17054793]
[63]
Guan, B.; Li, H.; Yang, Z.; Hoque, A.; Xu, X. Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts. Cancer, 2013, 119(7), 1321-1329.
[http://dx.doi.org/10.1002/cncr.27910] [PMID: 23280144]
[64]
Matsuzaki, J.; Suzuki, H.; Tsugawa, H.; Watanabe, M.; Hossain, S.; Arai, E.; Saito, Y.; Sekine, S.; Akaike, T.; Kanai, Y.; Mukaisho, K.I.; Auwerx, J.; Hibi, T. Bile acids increase levels of microRNAs 221 and 222, leading to degradation of CDX2 during esophageal carcinogenesis. Gastroenterology, 2013, 145(6), 1300-1311.
[http://dx.doi.org/10.1053/j.gastro.2013.08.008] [PMID: 23933602]
[65]
Feng, Q.; Zhang, H.; Yao, D.; Zhang, X.; Chen, W.D.; Wang, Y.D. Activation of FXR suppresses esophageal squamous cell carcinoma through antagonizing erk1/2 signaling pathway. Cancer Manag. Res., 2021, 13, 5907-5918.
[http://dx.doi.org/10.2147/CMAR.S243317] [PMID: 34366680]
[66]
Buttigliero, C.; Tucci, M.; Bertaglia, V.; Vignani, F.; Bironzo, P.; Di Maio, M.; Scagliotti, G.V. Understanding and overcoming the mechanisms of primary and acquired resistance to abiraterone and enzalutamide in castration resistant prostate cancer. Cancer Treat. Rev., 2015, 41(10), 884-892.
[http://dx.doi.org/10.1016/j.ctrv.2015.08.002] [PMID: 26342718]
[67]
Paschalis, A.; Sharp, A.; Welti, J.C.; Neeb, A.; Raj, G.V.; Luo, J.; Plymate, S.R.; de Bono, J.S. Alternative splicing in prostate cancer. Nat. Rev. Clin. Oncol., 2018, 15(11), 663-675.
[http://dx.doi.org/10.1038/s41571-018-0085-0] [PMID: 30135575]
[68]
Shafi, A.A.; Yen, A.E.; Weigel, N.L. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol. Ther., 2013, 140(3), 223-238.
[http://dx.doi.org/10.1016/j.pharmthera.2013.07.003] [PMID: 23859952]
[69]
Cutress, M.L.; Whitaker, H.C.; Mills, I.G.; Stewart, M.; Neal, D.E. Structural basis for the nuclear import of the human androgen receptor. J. Cell Sci., 2008, 121(7), 957-968.
[http://dx.doi.org/10.1242/jcs.022103] [PMID: 18319300]
[70]
Pisano, C.; Tucci, M.; Di Stefano, R.F.; Turco, F.; Scagliotti, G.V.; Di Maio, M.; Buttigliero, C. Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: Current and future clinical implications. Crit. Rev. Oncol. Hematol., 2021, 157, 103185.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103185] [PMID: 33341506]
[71]
Awan, A.K.; Iftikhar, S.Y.; Morris, T.M.; Clarke, P.A.; Grabowska, A.M.; Waraich, N.; Watson, S.A. Androgen receptors may act in a paracrine manner to regulate oesophageal adenocarcinoma growth. Eur. J. Surg. Oncol., 2007, 33(5), 561-568.
[http://dx.doi.org/10.1016/j.ejso.2006.12.001] [PMID: 17254742]
[72]
Huang, F.; Chen, H.; Zhu, X.; Gong, T.; Li, X.; Hankey, W.; Wang, H.; Chen, Z.; Wang, Q.; Liu, Z. The oncogenomic function of androgen receptor in esophageal squamous cell carcinoma is directed by GATA3. Cell Res., 2021, 31(3), 362-365.
[http://dx.doi.org/10.1038/s41422-020-00428-y] [PMID: 33139924]
[73]
Culig, Z.; Santer, F.R. Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev., 2014, 33(2-3), 413-427.
[http://dx.doi.org/10.1007/s10555-013-9474-0] [PMID: 24384911]
[74]
Zhang, Y.; Pan, T.; Zhong, X.; Cheng, C. Androgen receptor promotes esophageal cancer cell migration and proliferation via matrix metalloproteinase 2. Tumour Biol., 2015, 36(8), 5859-5864.
[http://dx.doi.org/10.1007/s13277-015-3257-x] [PMID: 25724186]
[75]
Wu, S.; Zhang, L.; Deng, J.; Guo, B.; Li, F.; Wang, Y.; Wu, R.; Zhang, S.; Lu, J.; Zhou, Y. A novel micropeptide encoded by y-linked LINC00278 links cigarette smoking and ar signaling in male esophageal squamous cell carcinoma. Cancer Res., 2020, 80(13), 2790-2803.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3440] [PMID: 32169859]
[76]
Lamorte, S.; Shinde, R.; McGaha, T.L. Nuclear receptors, the aryl hydrocarbon receptor, and macrophage function. Mol. Aspects Med., 2021, 78, 100942.
[http://dx.doi.org/10.1016/j.mam.2021.100942] [PMID: 33451803]
[77]
Stockinger, B.; Shah, K.; Wincent, E. AHR in the intestinal microenvironment: Safeguarding barrier function. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(8), 559-570.
[http://dx.doi.org/10.1038/s41575-021-00430-8] [PMID: 33742166]
[78]
Murray, I.A.; Patterson, A.D.; Perdew, G.H. Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat. Rev. Cancer, 2014, 14(12), 801-814.
[http://dx.doi.org/10.1038/nrc3846] [PMID: 25568920]
[79]
Safe, S.; Zhang, L. The role of the aryl hydrocarbon receptor (AhR) and its ligands in breast cancer. Cancers, 2022, 14(22), 5574.
[http://dx.doi.org/10.3390/cancers14225574] [PMID: 36428667]
[80]
Leclerc, D.; Staats Pires, A.C.; Guillemin, G.J.; Gilot, D. Detrimental activation of AhR pathway in cancer: An overview of therapeutic strategies. Curr. Opin. Immunol., 2021, 70, 15-26.
[http://dx.doi.org/10.1016/j.coi.2020.12.003] [PMID: 33429228]
[81]
Gutiérrez-Vázquez, C.; Quintana, F.J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity, 2018, 48(1), 19-33.
[http://dx.doi.org/10.1016/j.immuni.2017.12.012] [PMID: 29343438]
[82]
Sadik, A.; Somarribas Patterson, L.F.; Öztürk, S.; Mohapatra, S.R.; Panitz, V.; Secker, P.F.; Pfänder, P.; Loth, S.; Salem, H.; Prentzell, M.T.; Berdel, B.; Iskar, M.; Faessler, E.; Reuter, F.; Kirst, I.; Kalter, V.; Foerster, K.I.; Jäger, E.; Guevara, C.R.; Sobeh, M.; Hielscher, T.; Poschet, G.; Reinhardt, A.; Hassel, J.C.; Zapatka, M.; Hahn, U.; von Deimling, A.; Hopf, C.; Schlichting, R.; Escher, B.I.; Burhenne, J.; Haefeli, W.E.; Ishaque, N.; Böhme, A.; Schäuble, S.; Thedieck, K.; Trump, S.; Seiffert, M.; Opitz, C.A. IL4I1 is a metabolic immune checkpoint that activates the ahr and promotes tumor progression. Cell, 2020, 182(5), 1252-1270.e34.
[http://dx.doi.org/10.1016/j.cell.2020.07.038] [PMID: 32818467]
[83]
Roth, M.J.; Wei, W.Q.; Baer, J.; Abnet, C.C.; Wang, G.Q.; Sternberg, L.R.; Warner, A.C.; Johnson, L.L.; Lu, N.; Giffen, C.A.; Dawsey, S.M.; Qiao, Y.L.; Cherry, J. Aryl hydrocarbon receptor expression is associated with a family history of upper gastrointestinal tract cancer in a high-risk population exposed to aromatic hydrocarbons. Cancer Epidemiol. Biomarkers Prev., 2009, 18(9), 2391-2396.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-1098] [PMID: 19690180]
[84]
Zhu, P.; Yu, H.; Zhou, K.; Bai, Y.; Qi, R.; Zhang, S. 3,3′-Diindolylmethane modulates aryl hydrocarbon receptor of esophageal squamous cell carcinoma to reverse epithelial-mesenchymal transition through repressing RhoA/ROCK1-mediated COX2/PGE2 pathway. J. Exp. Clin. Cancer Res., 2020, 39(1), 113.
[http://dx.doi.org/10.1186/s13046-020-01618-7] [PMID: 32546278]
[85]
To, K.K.W.; Yu, L.; Liu, S.; Fu, J.; Cho, C.H. Constitutive AhR activation leads to concomitant ABCG2-mediated multidrug resistance in cisplatin-resistant esophageal carcinoma cells. Mol. Carcinog., 2012, 51(6), 449-464.
[http://dx.doi.org/10.1002/mc.20810] [PMID: 21678497]
[86]
Chen, C.; Gong, X.; Yang, X.; Shang, X.; Du, Q.; Liao, Q.; Xie, R.; Chen, Y.; Xu, J. The roles of estrogen and estrogen receptors in gastrointestinal disease (Review). Oncol. Lett., 2019, 18(6), 5673-5680.
[http://dx.doi.org/10.3892/ol.2019.10983] [PMID: 31788039]
[87]
Nilsson, S.; Gustafsson, J-Å. Estrogen receptors: Therapies targeted to receptor subtypes. Clin. Pharmacol. Ther., 2011, 89(1), 44-55.
[http://dx.doi.org/10.1038/clpt.2010.226] [PMID: 21124311]
[88]
Rusidzé, M.; Adlanmérini, M.; Chantalat, E.; Raymond-Letron, I.; Cayre, S.; Arnal, J.F.; Deugnier, M.A.; Lenfant, F. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell. Mol. Life Sci., 2021, 78(15), 5681-5705.
[http://dx.doi.org/10.1007/s00018-021-03860-4] [PMID: 34156490]
[89]
Jeffreys, S.A.; Powter, B.; Balakrishnar, B.; Mok, K.; Soon, P.; Franken, A.; Neubauer, H.; de Souza, P.; Becker, T.M. Endocrine resistance in breast cancer: The role of estrogen receptor stability. Cells, 2020, 9(9), 2077.
[http://dx.doi.org/10.3390/cells9092077] [PMID: 32932819]
[90]
Heldring, N.; Pike, A.; Andersson, S.; Matthews, J.; Cheng, G.; Hartman, J.; Tujague, M.; Ström, A.; Treuter, E.; Warner, M.; Gustafsson, J.Å. Estrogen receptors: How do they signal and what are their targets. Physiol. Rev., 2007, 87(3), 905-931.
[http://dx.doi.org/10.1152/physrev.00026.2006] [PMID: 17615392]
[91]
Langdon, S.P.; Herrington, C.S.; Hollis, R.L.; Gourley, C. Estrogen signaling and its potential as a target for therapy in ovarian cancer. Cancers, 2020, 12(6), 1647.
[http://dx.doi.org/10.3390/cancers12061647] [PMID: 32580290]
[92]
Nozoe, T.; Oyama, T.; Takenoyama, M.; Hanagiri, T.; Sugio, K.; Yasumoto, K. Significance of immunohistochemical expression of estrogen receptors alpha and beta in squamous cell carcinoma of the esophagus. Clin. Cancer Res., 2007, 13(14), 4046-4050.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0449] [PMID: 17634528]
[93]
Zhang, Z.; He, Q.; Fu, S.; Zheng, Z. Estrogen receptors in regulating cell proliferation of esophageal squamous cell carcinoma: Involvement of intracellular Ca2+ signaling. Pathol. Oncol. Res., 2017, 23(2), 329-334.
[http://dx.doi.org/10.1007/s12253-016-0105-2] [PMID: 27595756]
[94]
Kim, K.; Lee, D.; Ahn, C.; Kang, H.Y.; An, B.S.; Seong, Y.H.; Jeung, E.B. Effects of estrogen on esophageal function through regulation of Ca2+-related proteins. J. Gastroenterol., 2017, 52(8), 929-939.
[http://dx.doi.org/10.1007/s00535-016-1305-y] [PMID: 28078471]
[95]
Al-Khyatt, W.; Tufarelli, C.; Khan, R.; Iftikhar, S.Y. Selective oestrogen receptor antagonists inhibit oesophageal cancer cell proliferation in vitro. BMC Cancer, 2018, 18(1), 121.
[http://dx.doi.org/10.1186/s12885-018-4030-5] [PMID: 29390981]
[96]
Noureddine, L.M.; Trédan, O.; Hussein, N.; Badran, B.; Le Romancer, M.; Poulard, C. Glucocorticoid receptor: A multifaceted actor in breast cancer. Int. J. Mol. Sci., 2021, 22(9), 4446.
[http://dx.doi.org/10.3390/ijms22094446] [PMID: 33923160]
[97]
Escoter-Torres, L.; Caratti, G.; Mechtidou, A.; Tuckermann, J.; Uhlenhaut, N.H.; Vettorazzi, S. Fighting the fire: Mechanisms of inflammatory gene regulation by the glucocorticoid receptor. Front. Immunol., 2019, 10, 1859.
[http://dx.doi.org/10.3389/fimmu.2019.01859] [PMID: 31440248]
[98]
Mayayo-Peralta, I.; Zwart, W.; Prekovic, S. Duality of glucocorticoid action in cancer: Tumor-suppressor or oncogene? Endocr. Relat. Cancer, 2021, 28(6), R157-R171.
[http://dx.doi.org/10.1530/ERC-20-0489] [PMID: 33852423]
[99]
Desmet, S.J.; De Bosscher, K. Glucocorticoid receptors: Finding the middle ground. J. Clin. Invest., 2017, 127(4), 1136-1145.
[http://dx.doi.org/10.1172/JCI88886] [PMID: 28319043]
[100]
Ueki, S.; Fujishima, F.; Kumagai, T.; Ishida, H.; Okamoto, H.; Takaya, K.; Sato, C.; Taniyma, Y.; Kamei, T.; Sasano, H. GR, Sgk1, and NDRG1 in esophageal squamous cell carcinoma: Their correlation with therapeutic outcome of neoadjuvant chemotherapy. BMC Cancer, 2020, 20(1), 161.
[http://dx.doi.org/10.1186/s12885-020-6652-7] [PMID: 32106831]
[101]
Gokon, Y.; Fujishima, F.; Taniyama, Y.; Ishida, H.; Yamagata, T.; Sawai, T.; Uzuki, M.; Ichikawa, H.; Itakura, Y.; Takahashi, K.; Yajima, N.; Hagiwara, M.; Nishida, A.; Ozawa, Y.; Sakuma, T.; Sakamoto, K.; Zuguchi, M.; Saito, M.; Kamei, T.; Sasano, H. Glucocorticoid receptor and serum‐ and glucocorticoid-induced kinase-1 in esophageal adenocarcinoma and adjacent Barrett’s esophagus. Pathol. Int., 2020, 70(6), 355-363.
[http://dx.doi.org/10.1111/pin.12922] [PMID: 32173971]
[102]
Aesoy, R.; Clyne, C.D.; Chand, A.L. Insights into orphan nuclear receptors as prognostic markers and novel therapeutic targets for breast cancer. Front. Endocrinol., 2015, 6, 115.
[http://dx.doi.org/10.3389/fendo.2015.00115] [PMID: 26300846]
[103]
Kelly, M.E.; Mohan, H.M.; Baird, A.W.; Ryan, E.J.; Winter, D.C. Orphan nuclear receptors in colorectal cancer. Pathol. Oncol. Res., 2018, 24(4), 815-819.
[http://dx.doi.org/10.1007/s12253-018-0440-6] [PMID: 29956064]
[104]
Zhou, J.; Wang, Y.; Wu, D.; Wang, S.; Chen, Z.; Xiang, S.; Chan, F.L. Orphan nuclear receptors as regulators of intratumoral androgen biosynthesis in castration-resistant prostate cancer. Oncogene, 2021, 40(15), 2625-2634.
[http://dx.doi.org/10.1038/s41388-021-01737-1] [PMID: 33750894]
[105]
Babeu, J.P.; Boudreau, F. Hepatocyte nuclear factor 4-alpha involvement in liver and intestinal inflammatory networks. World J. Gastroenterol., 2014, 20(1), 22-30.
[http://dx.doi.org/10.3748/wjg.v20.i1.22] [PMID: 24415854]
[106]
Chang, H.; Liu, Y.; Xue, M.; Liu, H.; Du, S.; Zhang, L.; Wang, P. Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition. Nucleic Acids Res., 2016, 44(6), 2514-2527.
[http://dx.doi.org/10.1093/nar/gkw126] [PMID: 26926107]
[107]
Colleypriest, B.J.; Burke, Z.D.; Griffiths, L.P.; Chen, Y.; Yu, W.Y.; Jover, R.; Bock, M.; Biddlestone, L.; Quinlan, J.M.; Ward, S.G.; Mark Farrant, J.; Slack, J.M.W.; Tosh, D. Hnf4α is a key gene that can generate columnar metaplasia in oesophageal epithelium. Differentiation, 2017, 93, 39-49.
[http://dx.doi.org/10.1016/j.diff.2016.11.001] [PMID: 27875772]
[108]
Sun, J.; Li, X.; Wang, W.; Li, W.; Gao, S.; Yan, J. Mir-483-5p promotes the malignant transformation of immortalized human esophageal epithelial cells by targeting HNF4A. Int. J. Clin. Exp. Pathol., 2017, 10(9), 9391-9399.
[PMID: 31966811]
[109]
Stein, S.; Schoonjans, K. Molecular basis for the regulation of the nuclear receptor LRH-1. Curr. Opin. Cell Biol., 2015, 33, 26-34.
[http://dx.doi.org/10.1016/j.ceb.2014.10.007] [PMID: 25463843]
[110]
Liu, R.; Yang, M.; Meng, Y.; Liao, J.; Sheng, J.; Pu, Y.; Yin, L.; Kim, S.J. Tumor-suppressive function of miR-139-5p in esophageal squamous cell carcinoma. PLoS One, 2013, 8(10), e77068.
[http://dx.doi.org/10.1371/journal.pone.0077068] [PMID: 24204738]
[111]
Bertacchi, M.; Parisot, J.; Studer, M. The pleiotropic transcriptional regulator COUP-TFI plays multiple roles in neural development and disease. Brain Res., 2019, 1705, 75-94.
[http://dx.doi.org/10.1016/j.brainres.2018.04.024] [PMID: 29709504]
[112]
Khalil, B.D.; Sanchez, R.; Rahman, T.; Rodriguez-Tirado, C.; Moritsch, S.; Martinez, A.R.; Miles, B.; Farias, E.; Mezei, M.; Nobre, A.R.; Singh, D.; Kale, N.; Sproll, K.C.; Sosa, M.S.; Aguirre-Ghiso, J.A. An NR2F1-specific agonist suppresses metastasis by inducing cancer cell dormancy. J. Exp. Med., 2022, 219(1), e20210836.
[http://dx.doi.org/10.1084/jem.20210836] [PMID: 34812843]
[113]
Bertacchi, M.; Romano, A.L.; Loubat, A.; Tran Mau-Them, F.; Willems, M.; Faivre, L.; Khau van Kien, P.; Perrin, L.; Devillard, F.; Sorlin, A.; Kuentz, P.; Philippe, C.; Garde, A.; Neri, F.; Di Giaimo, R.; Oliviero, S.; Cappello, S.; D’Incerti, L.; Frassoni, C.; Studer, M. NR2F1 regulates regional progenitor dynamics in the mouse neocortex and cortical gyrification in BBSOAS patients. EMBO J., 2020, 39(13), e104163.
[http://dx.doi.org/10.15252/embj.2019104163] [PMID: 32484994]
[114]
Zhang, Y.; Zheng, A.; Xu, R.; Zhou, F.; Hao, A.; Yang, H.; Yang, P. NR2F1-induced NR2F1-AS1 promotes esophageal squamous cell carcinoma progression via activating Hedgehog signaling pathway. Biochem. Biophys. Res. Commun., 2019, 519(3), 497-504.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.015] [PMID: 31530388]
[115]
Wang, W.; Wang, R.; Zhang, Z.; Li, D.; Yu, Y. Enhanced PPAR-gamma expression may correlate with the development of Barrett’s esophagus and esophageal adenocarcinoma. Oncol. Res., 2011, 19(3), 141-147.
[http://dx.doi.org/10.3727/096504011X12935427587849] [PMID: 21473290]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy