Generic placeholder image

Current Pharmacogenomics and Personalized Medicine

Editor-in-Chief

ISSN (Print): 1875-6921
ISSN (Online): 1875-6913

Review Article

Recent Advances in Nasopharyngeal Cancer Management: From Diagnosis to Theranostics

Author(s): Rajaa Benzeid, Amina Gihbid, Nadia Benchekroun, Nezha Tawfiq, Abdellatif Benider, Mohammed Attaleb, Abdelkarim Filali Maltouf, Mohammed El Mzibri, Meriem Khyatti and Imane Chaoui*

Volume 20, Issue 1, 2023

Published on: 03 March, 2023

Page: [13 - 26] Pages: 14

DOI: 10.2174/1875692120666230213111629

Price: $65

Abstract

Nasopharyngeal cancer (NPC) is one of the most common head and neck cancers. NPC differs significantly from other cancers in its etiology, epidemiology, clinical behavior, and treatment. Being highly radiosensitive, the standard treatment for NPC is radiotherapy. However, radioresistance hampers the success of treatment and may cause local recurrence and distant metastases in NPC patients. In this review, we discuss the updated protocols for NPC diagnosis and treatment based on recent literature with an emphasis on the mechanisms of radioresistance at the molecular level with a special focus on genetic and epigenetic events, affecting genes involved in xenobiotic detoxification and DNA repair. We also highlight the importance of some cellular and Epstein Barr viral miRNAs targeting specific DNA repair factors and consequently promoting NPC radioresistance. These molecular markers may serve as promising tools for diagnosis, prognosis, and radioresistance prediction to guide theranostics of patients with NPC in the future.

Keywords: Nasopharyngeal, cancer, radioresistance, detoxification, DNA reparation, theranostics.

[1]
Pan XX, Liu YJ, Yang W, Chen YF, Tang WB, Li CR. Histological subtype remains a prognostic factor for survival in nasopharyngeal carcinoma patients. Laryngoscope 2020; 130(3): E83-8.
[http://dx.doi.org/10.1002/lary.28099] [PMID: 31188486]
[2]
Lim SW, Kamalden TMIT. Radiation-induced sarcoma post radiotherapy treatment of nasopharyngeal carcinoma. Int J Health Sci Res 2021; 11: 111-3.
[3]
Aksoy A, Elkiran E, Harputluoglu H, Dagli A, Isikdogan A, Urakci Z. Is excision repair cross-complementation Group1 expression a biological marker in nasopharynx carcinoma? J Cancer Res Ther 2019; 15(3): 550-5.
[http://dx.doi.org/10.4103/0973-1482.206865] [PMID: 31169219]
[4]
Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet 2019; 394(10192): 64-80.
[http://dx.doi.org/10.1016/S0140-6736(19)30956-0] [PMID: 31178151]
[5]
Rickinson AB, Lo KW. Nasopharyngeal Carcinoma: A HistoryNasopharyngeal Carcinoma: From ethiology to practice. Academic Press 2019; pp. 1-16.
[http://dx.doi.org/10.1016/B978-0-12-814936-2.00001-8]
[6]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[7]
Wang HY, Chang YL, To KF, et al. A new prognostic histopathologic classification of nasopharyngeal carcinoma. Chin J Cancer 2016; 35(1): 41.
[http://dx.doi.org/10.1186/s40880-016-0103-5] [PMID: 27146632]
[8]
Tabuchi K, Nakayama M, Nishimura B, Hayashi K, Hara A. Early detection of nasopharyngeal carcinoma. Int J Otolaryngol 2011; 2011: 1-6.
[http://dx.doi.org/10.1155/2011/638058] [PMID: 21716698]
[9]
Verhoeven R, Tong S, Zong J, et al. NF-κB Signaling Regulates Epstein-Barr Virus BamHI-Q-Driven EBNA1 Expression. Cancers 2018; 10(4): 119.
[http://dx.doi.org/10.3390/cancers10040119] [PMID: 29659505]
[10]
Verhoeven RJA, Tong S, Zhang G, et al. NF-κB signaling regulates expression of epstein-barr virus bart micrornas and long noncoding rnas in nasopharyngeal carcinoma. J Virol 2016; 90(14): 6475-88.
[http://dx.doi.org/10.1128/JVI.00613-16] [PMID: 27147748]
[11]
Huang SH, Chen ZJ, O’Sullivan B. Nasopharyngeal carcinoma— clinical aspects. In: Nasopharyngeal Carcinoma. Academic Press 2019; pp. 359-68. b
[http://dx.doi.org/10.1016/B978-0-12-814936-2.00017-1]
[12]
Chen ZT, Liang ZG, Zhu XD. A review: proteomics in nasopharyngeal carcinoma. Int J Mol Sci 2015; 16(12): 15497-530.
[http://dx.doi.org/10.3390/ijms160715497] [PMID: 26184160]
[13]
Zanoni DK, Patel SG, Shah JP. Changes in the 8th Edition of the American Joint Committee on Cancer (AJCC) staging of head and neck cancer: Rationale and implications. Curr Oncol Rep. 2019; 21: p. (6)52.
[14]
Ouyang PY, Xiao Y, You KY, et al. Validation and comparison of the 7th and 8th edition of AJCC staging systems for non-metastatic nasopharyngeal carcinoma, and proposed staging systems from Hong Kong, Guangzhou, and Guangxi. Oral Oncol 2017; 72: 65-72.
[15]
Duan W, Xiong B, Tian T, Zou X, He Z, Zhang L. Radiomics in nasopharyngeal carcinoma. Clin Med Insights Oncol 2022; 16: 11795549221079186.
[http://dx.doi.org/10.1177/11795549221079186] [PMID: 35237090]
[16]
Tang LQ, Li CF, Li J, et al. Establishment and validation of prognostic nomograms for endemic nasopharyngeal carcinoma. J Natl Cancer Inst 2016; 108(1): djv291.
[http://dx.doi.org/10.1093/jnci/djv291] [PMID: 26467665]
[17]
Liu GY, Lv X, Wu YS, et al. Effect of induction chemotherapy with cisplatin, fluorouracil, with or without taxane on locoregionally advanced nasopharyngeal carcinoma: a retrospective, propensity score-matched analysis. Cancer Commun 2018; 38(1): 21.
[http://dx.doi.org/10.1186/s40880-018-0283-2] [PMID: 29764487]
[18]
Xu C, Zhang LH, Chen YP, et al. Chemoradiotherapy versus radiotherapy alone in stage II nasopharyngeal carcinoma: a systemic review and meta-analysis of 2138 patients. J Cancer 2017; 8(2): 287-97.
[http://dx.doi.org/10.7150/jca.17317] [PMID: 28243333]
[19]
Huang L, Hu C, Chao H, et al. Drug-resistant endothelial cells facilitate progression, EMT and chemoresistance in nasopharyngeal carcinoma via exosomes. Cell Signal 2019; 63: 109385.
[http://dx.doi.org/10.1016/j.cellsig.2019.109385] [PMID: 31394194]
[20]
Al Tamimi A, Zaheer S, Ng D, Osmany S. 18F-fluorodeoxyglucose-positron emission tomography/computed tomography imaging of metastatic nasopharyngeal cancer with emphasis on the distribution of bone metastases. World J Nucl Med 2017; 16(3): 192-6.
[http://dx.doi.org/10.4103/1450-1147.207273] [PMID: 28670176]
[21]
Feng Q, Liang J, Wang L, Ge X, Ding Z, Wu H. A diagnosis model in nasopharyngeal carcinoma based on PET/MRI radiomics and semiquantitative parameters. BMC Med Imaging 2022; 22(1): 150.
[http://dx.doi.org/10.1186/s12880-022-00883-6] [PMID: 36038819]
[22]
Xie C, Vardhanabhuti V. PET/CT: Nasopharyngeal cancers. PET Clin 2022; 17(2): 285-96.
[23]
Goh J, Lim K. Imaging of nasopharyngeal carcinoma. Ann Acad Med Singap 2009; 38(9): 809-16.
[http://dx.doi.org/10.47102/annals-acadmedsg.V38N9p809] [PMID: 19816641]
[24]
Cheng Y, Bai L, Shang J, et al. Preliminary clinical results for PET/MR compared with PET/CT in patients with nasopharyngeal carcinoma. Oncol Rep 2020; 43(1): 177-87.
[PMID: 31746412]
[25]
Liu Z, Chen Y, Su Y, Hu X, Peng X. Nasopharyngeal carcinoma: clinical achievements and considerations among treatment options. Front Oncol 2021; 11: 635737.
[http://dx.doi.org/10.3389/fonc.2021.635737] [PMID: 34912697]
[26]
Liang Z, Zhu X, Li L, et al. Concurrent chemoradiotherapy followed by adjuvant chemotherapy compared with concurrent chemoradiotherapy alone for the treatment of locally advanced nasopharyngeal carcinoma: a retrospective controlled study. Curr Oncol 2014; 21(3): 408-17.
[http://dx.doi.org/10.3747/co.21.1777] [PMID: 24940100]
[27]
Bossi P, Chan AT, Licitra L, et al. Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol 2021; 32(4): 452-65.
[http://dx.doi.org/10.1016/j.annonc.2020.12.007] [PMID: 33358989]
[28]
Zong J, Xu H, Chen B, et al. Maintenance chemotherapy using S-1 following definitive chemoradiotherapy in patients with N3 nasopharyngeal carcinoma. Radiat Oncol 2019; 14(1): 182.
[http://dx.doi.org/10.1186/s13014-019-1387-9] [PMID: 31640719]
[29]
Pow EHN, Kwong DLW, McMillan AS, et al. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: Initial report on a randomized controlled clinical trial. Int J Radiat Oncol Biol Phys 2006; 66(4): 981-91.
[http://dx.doi.org/10.1016/j.ijrobp.2006.06.013] [PMID: 17145528]
[30]
Co J, Mejia MB, Dizon JM. Evidence on effectiveness of intensity-modulated radiotherapy versus 2-dimensional radiotherapy in the treatment of nasopharyngeal carcinoma: Meta-analysis and a systematic review of the literature. Head Neck 2016; 38(S1): E2130-42.
[http://dx.doi.org/10.1002/hed.23977] [PMID: 25546181]
[31]
Peng G, Wang T, Yang K, et al. A prospective, randomized study comparing outcomes and toxicities of intensity-modulated radiotherapy vs. conventional two-dimensional radiotherapy for the treatment of nasopharyngeal carcinoma. Radiother Oncol 2012; 104(3): 286-93.
[http://dx.doi.org/10.1016/j.radonc.2012.08.013] [PMID: 22995588]
[32]
Zhang B, Mo Z, Du W, Wang Y, Liu L, Wei Y. Intensity-modulated radiation therapy versus 2D-RT or 3D-CRT for the treatment of nasopharyngeal carcinoma: A systematic review and meta-analysis. Oral Oncol 2015; 51(11): 1041-6.
[http://dx.doi.org/10.1016/j.oraloncology.2015.08.005] [PMID: 26296274]
[33]
Ebner DK, Kamada T. The emerging role of carbon-ion radiotherapy. Front Oncol 2016; 6: 140.
[http://dx.doi.org/10.3389/fonc.2016.00140] [PMID: 27376030]
[34]
Moreno AC, Frank SJ, Garden AS, et al. Intensity modulated proton therapy (IMPT) - The future of IMRT for head and neck cancer. Oral Oncol 2019; 88: 66-74.
[http://dx.doi.org/10.1016/j.oraloncology.2018.11.015] [PMID: 30616799]
[35]
Lewis GD, Holliday EB, Kocak-Uzel E, et al. Intensity-modulated proton therapy for nasopharyngeal carcinoma: Decreased radiation dose to normal structures and encouraging clinical outcomes. Head Neck 2016; 38(S1): E1886-95.
[http://dx.doi.org/10.1002/hed.24341] [PMID: 26705956]
[36]
Morgan HE, Sher DJ. Adaptive radiotherapy for head and neck cancer. Cancers Head Neck 2020; 5(1): 1-16.
[http://dx.doi.org/10.1186/s41199-019-0046-z] [PMID: 31938572]
[37]
Paiar F, Di Cataldo V, Zei G, et al. Role of chemotherapy in nasopharyngeal carcinoma. Oncol Rev 2012; 6(1): 1.
[http://dx.doi.org/10.4081/oncol.2012.e1] [PMID: 25992199]
[38]
Colevas AD, Yom SS, Pfister DG, et al. NCCN guidelines insights: head and neck cancers, version 1.2018. J Natl Compr Canc Netw 2018; 16(5): 479-90.
[http://dx.doi.org/10.6004/jnccn.2018.0026] [PMID: 29752322]
[39]
Bhattacharyya T, Babu G, Kainickal CT. Current role of chemotherapy in nonmetastatic nasopharyngeal cancer. J Oncol 2018; 2018: 3725837.
[40]
Prabhash K, Gairola M, Babu G, et al. Indian clinical practice consensus guidelines for the management of nasopharyngeal cancer. Indian J Cancer 2020; 57(5) (Suppl.): 9.
[http://dx.doi.org/10.4103/0019-509X.278974] [PMID: 32167065]
[41]
Chow JCH, Ngan RKC, Cheung KM, Cho WCS. Immunotherapeutic approaches in nasopharyngeal carcinoma. Expert Opin Biol Ther 2019; 19(11): 1165-72.
[http://dx.doi.org/10.1080/14712598.2019.1650910] [PMID: 31361154]
[42]
Feng XP, Yi H, Li MY, et al. Identification of biomarkers for predicting nasopharyngeal carcinoma response to radiotherapy by proteomics. Cancer Res 2010; 70(9): 3450-62.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4099] [PMID: 20406978]
[43]
Qu C, Liang Z, Huang J, et al. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle 2012; 11(4): 785-96.
[http://dx.doi.org/10.4161/cc.11.4.19228] [PMID: 22374676]
[44]
Li K, Zhu X, Li L, et al. Identification of non-invasive biomarkers for predicting the radiosensitivity of nasopharyngeal carcinoma from serum microRNAs. Sci Rep 2020; 10(1): 5161.
[http://dx.doi.org/10.1038/s41598-020-61958-4] [PMID: 32198434]
[45]
Li LN, Xiao T, Yi HM, et al. MiR-125b increases nasopharyngeal carcinoma radioresistance by targeting A20/NF-kB signaling pathway. Mol Cancer Ther 2017; 16(10): 2094-106.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0385] [PMID: 28698199]
[46]
Luftig M. Heavy LIFting: Tumor promotion and radioresistance in NPC. J Clin Invest 2013; 123(12): 4999-5001.
[http://dx.doi.org/10.1172/JCI73416] [PMID: 24270417]
[47]
Czarny P, Pawlowska E, Bialkowska-Warzecha J, Kaarniranta K, Blasiak J. Autophagy in DNA damage response. Int J Mol Sci 2015; 16(2): 2641-62.
[http://dx.doi.org/10.3390/ijms16022641] [PMID: 25625517]
[48]
Ameziane-El-Hassani R, Boufraqech M, Lagente-Chevallier O, et al. Role of H2O2 in RET/PTC1 chromosomal rearrangement produced by ionizing radiation in human thyroid cells. Cancer Res 2010; 70(10): 4123-32.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4336] [PMID: 20424115]
[49]
Davalli P, Marverti G, Lauriola A, D’Arca D. Targeting oxidatively induced DNA damage response in cancer: opportunities for novel cancer therapies. Oxid Med Cell Longev 2018; 2018: 1-21.
[http://dx.doi.org/10.1155/2018/2389523] [PMID: 29770165]
[50]
Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[51]
Tang L, Wei F, Wu Y, et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res 2018; 37(1): 87.
[http://dx.doi.org/10.1186/s13046-018-0758-7] [PMID: 29688867]
[52]
Zhan Y, Fan S. Multiple mechanisms involving in radioresistance of nasopharyngeal carcinoma. J Cancer 2020; 11(14): 4193-204.
[http://dx.doi.org/10.7150/jca.39354] [PMID: 32368302]
[53]
Allocati N, Masulli M, Di Ilio C, Federici L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 2018; 7(1): 8.
[http://dx.doi.org/10.1038/s41389-017-0025-3] [PMID: 29362397]
[54]
Bocedi A, Noce A, Marrone G, et al. Glutathione transferase p1-1 an enzyme useful in biomedicine and as biomarker in clinical practice and in environmental pollution. Nutrients 2019; 11(8): 1741.
[http://dx.doi.org/10.3390/nu11081741] [PMID: 31357662]
[55]
Harries L, Stubbins MJ, Forman D, Howard GC, Wolf CR. Identification of genetic polymorphisms at the glutathione S- transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 1997; 18(4): 641-4.
[http://dx.doi.org/10.1093/carcin/18.4.641] [PMID: 9111193]
[56]
Chen X, Liang L, Hu X, Chen Y. Glutathione S-transferase P1 gene Ile105Val polymorphism might be associated with lung cancer risk in the Chinese Han population. Tumour Biol 2012; 33(6): 1973-81.
[http://dx.doi.org/10.1007/s13277-012-0457-5] [PMID: 22797821]
[57]
AL-Eitan LN Rababa’h DM, Alghamdi MA, Khasawneh RH. Association of GSTM1, GSTT1 And GSTP1 polymorphisms with breast cancer among jordanian women. OncoTargets Ther 2019; 12: 7757-65.
[http://dx.doi.org/10.2147/OTT.S207255] [PMID: 31571925]
[58]
Huang S, Wu F, Luo M, et al. The glutathione S-transferase P1 341C>T polymorphism and cancer risk: A meta-analysis of 28 case-control studies. PLoS One 2013; 8(2): e56722.
[http://dx.doi.org/10.1371/journal.pone.0056722] [PMID: 23437223]
[59]
Ding F, Li JP, Zhang Y, Qi GH, Song ZC, Yu YH. Comprehensive analysis of the association between the rs1138272 polymorphism of the gstp1 gene and cancer susceptibility. Front Physiol 2019; 9: 1897.
[http://dx.doi.org/10.3389/fphys.2018.01897] [PMID: 30740061]
[60]
Ge J, Tian AX, Wang QS, et al. The GSTP1 105Val allele increases breast cancer risk and aggressiveness but enhances response to cyclophosphamide chemotherapy in North China. PLoS One 2013; 8(6): e67589.
[http://dx.doi.org/10.1371/journal.pone.0067589] [PMID: 23826324]
[61]
Tulsyan S, Chaturvedi P, Agarwal G, et al. Pharmacogenetic influence of GST polymorphisms on anthracycline-based chemotherapy responses and toxicity in breast cancer patients: A multi-analytical approach. Mol Diagn Ther 2013; 17(6): 371-9.
[http://dx.doi.org/10.1007/s40291-013-0045-4] [PMID: 23812950]
[62]
Deng X, Yang X, Cheng Y, et al. GSTP1 and GSTO1 single nucleotide polymorphisms and the response of bladder cancer patients to intravesical chemotherapy. Sci Rep 2015; 5(1): 14000.
[http://dx.doi.org/10.1038/srep14000]
[63]
Pincinato EC, Costa EFD, Lopes-Aguiar L, et al. GSTM1, GSTT1 and GSTP1 Ile105Val polymorphisms in outcomes of head and neck squamous cell carcinoma patients treated with cisplatin chemoradiation. Sci Rep 2019; 9(1): 9312.
[http://dx.doi.org/10.1038/s41598-019-45808-6] [PMID: 31249357]
[64]
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[65]
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5(1): 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[66]
Lee CH, Lee KY, Choe KH, et al. [Effects of oxidative DNA damage and genetic polymorphism of the glutathione peroxidase 1 (GPX1) and 8-oxoguanine glycosylase 1 (hOGG1) on lung cancer]. J Prev Med Public Health 2006; 39(2): 130-4.
[PMID: 16615267]
[67]
Paz-y-Miño C, Muñoz MJ, López-Cortés A, et al. Frequency of polymorphisms pro198leu in GPX-1 gene and ile58thr in MnSOD gene in the altitude Ecuadorian population with bladder cancer. Oncol Res 2009; 18(8): 395-400.
[http://dx.doi.org/10.3727/096504010X12644422320780] [PMID: 20441054]
[68]
Kucukgergin C, Sanli O. Amasyalı AS, Tefik T, Seckin S. Genetic variants of MnSOD and GPX1 and susceptibility to bladder cancer in a Turkish population. Med Oncol 2012; 29(3): 1928-34.
[http://dx.doi.org/10.1007/s12032-011-0057-z] [PMID: 21904836]
[69]
Trifa AP, Bănescu C, Dima D, et al. Among a panel of polymorphisms in genes related to oxidative stress, CAT -262 C>T, GPX1 Pro198Leu and GSTP1 Ile105Val influence the risk of developing BCR-ABL negative myeloproliferative neoplasms. Hematology 2016; 21(9): 520-5.
[http://dx.doi.org/10.1080/10245332.2016.1163889] [PMID: 27077777]
[70]
Coskun C, Verim A, Farooqi AA, et al. Are there possible associations between MnSOD and GPx1 gene variants for laryngeal cancer risk or disease progression? Cell Mol Biol 2016; 62(5): 25-30.
[PMID: 27188866]
[71]
Hadami K, Ameziane El Hassani R, Ameur A, et al. Association between GPX1 Pro189Leu polymorphism and the occurrence of bladder cancer in Morocco. Cell Mol Biol 2016; 62(14): 38-43.
[http://dx.doi.org/10.14715/cmb/2016.62.14.6] [PMID: 28145855]
[72]
Nikic P, Dragicevic D, Savic-Radojevic A, et al. Association between GPX1 and SOD2 genetic polymorphisms and overall survival in patients with metastatic urothelial bladder cancer: A single-center study in Serbia. J BUON 2018; 23(4): 1130-5.
[PMID: 30358222]
[73]
Yan J, Wang X, Tao H, Deng Z, Yang W, Lin F. Meta-Analysis of the Relationship between XRCC1-Arg399Gln and Arg280His Polymorphisms and the Risk of Prostate Cancer. Sci Rep 2015; 5(1): 1-9.
[74]
Singh SA, Ghosh SK. Polymorphisms of XRCC1 and XRCC2 DNA repair genes and interaction with environmental factors influence the risk of nasopharyngeal carcinoma in northeast India. Asian Pac J Cancer Prev 2016; 17(6): 2811-9.
[PMID: 27356695]
[75]
Chen H, Wu M, Li G, Hua L, Chen S, Huang H. Association between XRCC1 single-nucleotide polymorphism and acute radiation reaction in patients with nasopharyngeal carcinoma. Medicine 2017; 96(44): e8202.
[http://dx.doi.org/10.1097/MD.0000000000008202] [PMID: 29095251]
[76]
Lin J, Ye Q, Wang Y, Wang Y, Zeng Y. Association between XRCC1 single-nucleotide polymorphisms and susceptibility to nasopharyngeal carcinoma. Medicine 2018; 97(32): e11852.
[http://dx.doi.org/10.1097/MD.0000000000011852] [PMID: 30095663]
[77]
Jin ZY, Zhao XT, Zhang LN, Wang Y, Yue WT, Xu SF. Effects of polymorphisms in the XRCC1, XRCC3, and XPG genes on clinical outcomes of platinum-based chemotherapy for treatment of non-small cell lung cancer. Genet Mol Res 2014; 13(3): 7617-25.
[http://dx.doi.org/10.4238/2014.March.31.13] [PMID: 24737519]
[78]
Jin H, Xie X, Wang H, et al. ERCC1 Cys8092Ala and XRCC1 Arg399Gln polymorphisms predict progression-free survival after curative radiotherapy for nasopharyngeal carcinoma. PLoS One 2014; 9(7): e101256.
[http://dx.doi.org/10.1371/journal.pone.0101256] [PMID: 25025378]
[79]
Zhai XM, Hu QC, Gu K, Wang JP, Zhang JN, Wu YW. Significance of XRCC1 Codon399 polymorphisms in Chinese patients with locally advanced nasopharyngeal carcinoma treated with radiation therapy. Asia Pac J Clin Oncol 2016; 12(1): e125-32.
[http://dx.doi.org/10.1111/ajco.12117] [PMID: 23910235]
[80]
Du L, Yu W, Huang X, et al. GSTP1 Ile105Val polymorphism might be associated with the risk of radiation pneumonitis among lung cancer patients in Chinese population: A prospective study. J Cancer 2018; 9(4): 726-35.
[http://dx.doi.org/10.7150/jca.20643] [PMID: 29556330]
[81]
Tian X, Tian Y, Ma P, et al. Association between the XRCC3 C241T polymorphism and lung cancer risk in the Asian population. Tumour Biol 2013; 34(5): 2589-97.
[http://dx.doi.org/10.1007/s13277-013-0806-z] [PMID: 23749486]
[82]
Han S, Zhang HT, Wang Z, et al. DNA repair gene XRCC3 polymorphisms and cancer risk: A meta-analysis of 48 case-control studies. Eur J Hum Genet 2006; 14(10): 1136-44.
[http://dx.doi.org/10.1038/sj.ejhg.5201681] [PMID: 16791138]
[83]
Mao CF, Qian WY, Wu JZ, Sun DW, Tang JH. Association between the XRCC3 Thr241Met polymorphism and breast cancer risk: an updated meta-analysis of 36 case-control studies. Asian Pac J Cancer Prev 2014; 15(16): 6613-8.
[http://dx.doi.org/10.7314/APJCP.2014.15.16.6613] [PMID: 25169497]
[84]
Fan J, Liu W, Zhang M, Xing C. A literature review and systematic meta-analysis on XRCC3 Thr241Met polymorphism associating with susceptibility of oral cancer. Oncol Lett 2019; 18(3): 3265-73.
[http://dx.doi.org/10.3892/ol.2019.10609] [PMID: 31452804]
[85]
Dong Z, Wang Y, Wang G. Association of X-ray cross-complementing group 3 Thr241Met gene polymorphism with osteosarcoma risk and its development and prognosis. J Cancer Res Ther 2018; 14(7) (Suppl.): 1178.
[http://dx.doi.org/10.4103/0973-1482.199435] [PMID: 30539867]
[86]
Pei JS, Chang WS, Hsu PC, et al. The contribution of XRCC3 genotypes to childhood acute lymphoblastic leukemia. Cancer Manag Res 2018; 10: 5677-84.
[http://dx.doi.org/10.2147/CMAR.S178411] [PMID: 30532590]
[87]
Yan L, Li Q, Li X, Ji H, Zhang L. Association studies between XRCC1, XRCC2, XRCC3 polymorphisms and differentiated thyroid carcinoma. Cell Physiol Biochem 2016; 38(3): 1075-84.
[http://dx.doi.org/10.1159/000443058] [PMID: 26938431]
[88]
Kayani MA, Khan S, Baig RM, Mahjabeen I. Association of RAD 51 135 G/C, 172 G/T and XRCC3 Thr241Met gene polymorphisms with increased risk of head and neck cancer. Asian Pac J Cancer Prev 2015; 15(23): 10457-62.
[http://dx.doi.org/10.7314/APJCP.2014.15.23.10457] [PMID: 25556492]
[89]
Stur E, Agostini LP, Garcia FM, et al. Prognostic significance of head and neck squamous cell carcinoma repair gene polymorphism. Genet Mol Res 2015; 14(4): 12446-54.
[http://dx.doi.org/10.4238/2015.October.16.11] [PMID: 26505394]
[90]
Farnebo L, Stjernström A, Fredrikson M, Ansell A, Garvin S, Thunell LK. DNA repair genes XPC, XPD, XRCC1, and XRCC3 are associated with risk and survival of squamous cell carcinoma of the head and neck. DNA Repair 2015; 31: 64-72.
[http://dx.doi.org/10.1016/j.dnarep.2015.05.003] [PMID: 26001739]
[91]
de Almeida VH, de Melo AC, Meira DD, et al. Radiotherapy modulates expression of EGFR, ERCC1 and p53 in cervical cancer. Braz J Med Biol Res 2018; 51(1): e6822.
[http://dx.doi.org/10.1590/1414-431x20176822] [PMID: 29160417]
[92]
Mehra R, Zhu F, Yang DH, et al. Quantification of excision repair cross-complementing group 1 and survival in p16-negative squamous cell head and neck cancers. Clin Cancer Res 2013; 19(23): 6633-43.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0152] [PMID: 24088734]
[93]
Rao D, Mallick AB, Augustine T, et al. Excision repair cross-complementing group-1 (ERCC1) induction kinetics and polymorphism are markers of inferior outcome in patients with colorectal cancer treated with oxaliplatin. Oncotarget 2019; 10(53): 5510-22.
[http://dx.doi.org/10.18632/oncotarget.27140] [PMID: 31565185]
[94]
Dai P, Li J, Li W, et al. Genetic polymorphisms and pancreatic cancer risk. Medicine (Baltimore) 2019; 98(32): e16541.
[http://dx.doi.org/10.1097/MD.0000000000016541] [PMID: 31393355]
[95]
Cai L-M, Lyu X-M, Luo W-R, et al. EBV-miR-BART7-3p promotes the EMT and metastasis of nasopharyngeal carcinoma cells by suppressing the tumor suppressor PTEN. Oncogene 2015; 34(17): 2156-66.
[http://dx.doi.org/10.1038/onc.2014.341] [PMID: 25347742]
[96]
Fan C, Tang Y, Wang J, et al. The emerging role of Epstein-Barr virus encoded microRNAs in nasopharyngeal carcinoma. J Cancer 2018; 9(16): 2852-64.
[http://dx.doi.org/10.7150/jca.25460] [PMID: 30123354]
[97]
Wang S, Pan Y, Zhang R, et al. Hsa-miR-24-3p increases nasopharyngeal carcinoma radiosensitivity by targeting both the 3′UTR and 5′UTR of Jab1/CSN5. Oncogene 2016; 35(47): 6096-108.
[http://dx.doi.org/10.1038/onc.2016.147] [PMID: 27157611]
[98]
Zhang Y, Zheng L, Huang J, et al. MiR-124 Radiosensitizes human colorectal cancer cells by targeting PRRX1. PLoS One 2014; 9(4): e93917.
[http://dx.doi.org/10.1371/journal.pone.0093917] [PMID: 24705396]
[99]
Lung RWM, Hau PM, Yu KHO, et al. EBV-encoded miRNAs target ATM-mediated response in nasopharyngeal carcinoma. J Pathol 2018; 244(4): 394-407.
[http://dx.doi.org/10.1002/path.5018] [PMID: 29230817]
[100]
Wu Q, Han T, Sheng X, Zhang N, Wang P. Downregulation of EB virus miR-BART4 inhibits proliferation and aggressiveness while promoting radiosensitivity of nasopharyngeal carcinoma. Biomed Pharmacother 2018; 108: 741-51.
[http://dx.doi.org/10.1016/j.biopha.2018.08.146] [PMID: 30248542]
[101]
Chen ZX, Sun AM, Chen Y, et al. (Effects of radiosensitivity and X-ray dose on miR-7 expression in nasopharyngeal carcinoma). Nan Fang Yi Ke Da Xue Xue Bao 2010; 30(8): 1810-1812,1816.
[PMID: 20813671]
[102]
Tan G, Tang X, Tang F. The role of microRNAs in nasopharyngeal carcinoma. Tumour Biol 2015; 36(1): 69-79.
[http://dx.doi.org/10.1007/s13277-014-2847-3] [PMID: 25427638]
[103]
Xu J, Ai Q, Cao H, Liu Q. MiR-185-3p and miR-324-3p predict radiosensitivity of nasopharyngeal carcinoma and modulate cancer cell growth and apoptosis by targeting SMAD7. Med Sci Monit 2015; 21: 2828-36.
[http://dx.doi.org/10.12659/MSM.895660] [PMID: 26390174]
[104]
Tian Y, Yan M, Zheng J, et al. miR-483-5p decreases the radiosensitivity of nasopharyngeal carcinoma cells by targeting DAPK1. Lab Invest 2019; 99(5): 602-11.
[http://dx.doi.org/10.1038/s41374-018-0169-6] [PMID: 30664712]
[105]
Duan B, Shi S, Yue H, et al. Exosomal miR-17-5p promotes angiogenesis in nasopharyngeal carcinoma via targeting BAMBI. J Cancer 2019; 10(26): 6681-92.
[http://dx.doi.org/10.7150/jca.30757] [PMID: 31777597]
[106]
Ni J, Bucci J, Malouf D, Knox M, Graham P, Li Y. Exosomes in Cancer Radioresistance. Front Oncol 2019; 9: 869.
[http://dx.doi.org/10.3389/fonc.2019.00869] [PMID: 31555599]
[107]
Guo Y, Zhu XD, Qu S, et al. Identification of genes involved in radioresistance of nasopharyngeal carcinoma by integrating gene ontology and protein-protein interaction networks. Int J Oncol 2012; 40(1): 85-92.
[PMID: 21874234]
[108]
Zhang L, Su B, Sun W, et al. Twist1 promotes radioresistance in nasopharyngeal carcinoma. Oncotarget 2016; 7(49): 81332-40.
[http://dx.doi.org/10.18632/oncotarget.12875] [PMID: 27793033]
[109]
Zhang MX, Wang L, Zeng L, Tu ZW. LCN2 is a potential biomarker for radioresistance and recurrence in nasopharyngeal carcinoma. Front Oncol 2021; 10: 605777.
[http://dx.doi.org/10.3389/fonc.2020.605777] [PMID: 33604288]
[110]
Xiao J, He X. Involvement of non-coding RNAs in chemo- and radioresistance of nasopharyngeal carcinoma. Cancer Manag Res 2021; 13: 8781-94.
[http://dx.doi.org/10.2147/CMAR.S336265] [PMID: 34849030]
[111]
Zhang G, Zhang K, Li C, et al. Serum proteomics identify potential biomarkers for nasopharyngeal carcinoma sensitivity to radiotherapy. Biosci Rep 2019; 39(5): BSR20190027.
[http://dx.doi.org/10.1042/BSR20190027] [PMID: 31040200]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy