Generic placeholder image

Current Functional Foods

Editor-in-Chief

ISSN (Print): 2666-8629
ISSN (Online): 2666-8637

Mini-Review Article

Potential Oncotherapeutic Effects of Nutraceuticals against Hepatocellular Carcinoma: Recent Advancements

Author(s): Arghadip Das, Supravat Das, Sanchari Bhattacharya*, Debjeet Sur, Samrat Bose and Tilottama Mukherjee

Volume 1, Issue 2, 2023

Published on: 22 March, 2023

Article ID: e150223213694 Pages: 14

DOI: 10.2174/2666862901666230215115849

Abstract

Background: Worldwide, Hepatocellular carcinoma (HCC) is a frequently diagnosed cancer, having significant variations in its epidemiology. It ranks as the sixth prevailing neoplasm and is considered the third leading cause of mortality due to cancer. It accounts for 90% of primary liver cancers. Till date, an effective prevention or treatment is absent except for liver resection, chemotherapy and a frequently applied drug -sorafenib. Recently, various plant products and nutraceuticals are found to be effective in the treatment of HCC. ‘Nutraceuticals’ is a term that brings into light the two giants of health sciences - nutrient and pharmaceutical. Nutraceuticals provide medical or health benefits and include prevention or treatment of a disease. These are generally ‘functional foods’, which are whole, or ‘fortified, enriched and enhanced’ in nutritional value to satisfy the required amount of essential nutrients and to confer health benefits.

Objective: This study is based on the recent advancements achieved in the field of HCC treatment using a variety of emerging nutraceuticals that are effective, solely, or act as an adjuvant in its treatment. Nutraceuticals such as standardized extracts of ginger, fucoidan, curcumin, proanthocyanidins, epigallocatechin gallate, apigenin and other nutraceuticals are being studied extensively for their efficacy against HCC along with their proposed mechanism of action or potential targets for the treatment or prevention of HCC.

Keywords: Nutraceuticals, hepatocellular carcinoma, cell signaling, cytokines, apoptosis, curcumin.

Graphical Abstract
[1]
Kumar, A.; Konar, A.; Garg, S.; Kaul, S.C.; Wadhwa, R. Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochem. Int., 2021, 149(July), 105124.
[http://dx.doi.org/10.1016/j.neuint.2021.105124] [PMID: 34245808]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Bodzin, A.S.; Busuttil, R.W. Hepatocellular carcinoma: Advances in diagnosis, management, and long term outcome. World J. Hepatol., 2015, 7(9), 1157-1167.
[http://dx.doi.org/10.4254/wjh.v7.i9.1157] [PMID: 26019732]
[4]
Bhattacharya, S.; Mondal, L.; Mukherjee, B.; Dutta, L.; Ehsan, I.; Debnath, M.C.; Gaonkar, R.H.; Pal, M.M.; Majumdar, S. Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats. Nanomedicine, 2018, 14(6), 1905-1917.
[http://dx.doi.org/10.1016/j.nano.2018.05.011] [PMID: 29802937]
[5]
Akinyemiju, T.; Abera, S.; Ahmed, M. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: Results from the global burden of disease. Global Burden Liver Cancer, 2017, 3(12), 1683-1691.
[http://dx.doi.org/10.1001/jamaoncol.2017.3055] [PMID: 28983565]
[6]
Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 2014, 74(11), 2913-2921.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0155] [PMID: 24840647]
[7]
Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer, 2010, 127(12), 2893-2917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[8]
Kovac, J.D.; Ivanovic, A.; Milovanovic, T.; Micev, M.; Alessandrino, F.; Gore, R.M. An overview of hepatocellular carcinoma with atypical enhancement pattern: Spectrum of magnetic resonance imaging findings with pathologic correlation. Radiol. Oncol., 2021, 55(2), 130-143.
[http://dx.doi.org/10.2478/raon-2021-0004] [PMID: 33544992]
[9]
Forner, A.; Llovet, J.M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2012, 379(9822), 1245-1255.
[http://dx.doi.org/10.1016/S0140-6736(11)61347-0] [PMID: 22353262]
[10]
Estes, C.; Razavi, H.; Loomba, R.; Younossi, Z.; Sanyal, A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology, 2018, 67(1), 123-133.
[http://dx.doi.org/10.1002/hep.29466] [PMID: 28802062]
[11]
Zhou, Y.; Li, Y.; Zhou, T.; Zheng, J.; Li, S.; Nutrients, H.L. Dietary natural products for prevention and treatment of liver cancer. Nutrients, 2016, 8(3), 156.
[http://dx.doi.org/10.3390/nu8030156]
[12]
Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob. Health, 2016, 4(9), e609-e616.
[http://dx.doi.org/10.1016/S2214-109X(16)30143-7]
[13]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[14]
Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; Gerolami, R.; Masi, G.; Ross, P.J.; Song, T.; Bronowicki, J.P.; Ollivier-Hourmand, I.; Kudo, M.; Cheng, A.L.; Llovet, J.M.; Finn, R.S.; LeBerre, M.A.; Baumhauer, A.; Meinhardt, G.; Han, G. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2017, 389(10064), 56-66.
[http://dx.doi.org/10.1016/S0140-6736(16)32453-9] [PMID: 27932229]
[15]
Abou-Alfa, G.K.; Puig, O.; Daniele, B.; Kudo, M.; Merle, P.; Park, J.W.; Ross, P.; Peron, J.M.; Ebert, O.; Chan, S.; Poon, T.P.; Colombo, M.; Okusaka, T.; Ryoo, B.Y.; Minguez, B.; Tanaka, T.; Ohtomo, T.; Ukrainskyj, S.; Boisserie, F.; Rutman, O.; Chen, Y.C.; Xu, C.; Shochat, E.; Jukofsky, L.; Reis, B.; Chen, G.; Di Laurenzio, L.; Lee, R.; Yen, C.J. Randomized phase II placebo controlled study of codrituzumab in previously treated patients with advanced hepatocellular carcinoma. J. Hepatol., 2016, 65(2), 289-295.
[http://dx.doi.org/10.1016/j.jhep.2016.04.004] [PMID: 27085251]
[16]
Cheng, A.L.; Thongprasert, S.; Lim, H.Y.; Sukeepaisarnjaroen, W.; Yang, T.S.; Wu, C.C.; Chao, Y.; Chan, S.L.; Kudo, M.; Ikeda, M.; Kang, Y.K.; Pan, H.; Numata, K.; Han, G.; Balsara, B.; Zhang, Y.; Rodriguez, A.M.; Zhang, Y.; Wang, Y.; Poon, R.T.P. Randomized, open-label phase 2 study comparing frontline dovitinib versus sorafenib in patients with advanced hepatocellular carcinoma. Hepatology, 2016, 64(3), 774-784.
[http://dx.doi.org/10.1002/hep.28600] [PMID: 27082062]
[17]
Zhu, A.X.; Rosmorduc, O.; Evans, T.R.J.; Ross, P.J.; Santoro, A.; Carrilho, F.J.; Bruix, J.; Qin, S.; Thuluvath, P.J.; Llovet, J.M.; Leberre, M.A.; Jensen, M.; Meinhardt, G.; Kang, Y.K. SEARCH: A phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol., 2015, 33(6), 559-566.
[http://dx.doi.org/10.1200/JCO.2013.53.7746] [PMID: 25547503]
[18]
Zhu, A.X.; Kudo, M.; Assenat, E.; Cattan, S.; Kang, Y-K. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: The EVOLVE-1 randomized clinical trial. JAMA, 2014, 312(1), 57-67.
[http://dx.doi.org/10.1001/jama.2014.7189]
[19]
Cheng, A.; Kang, Y.; Lin, D. Sunitinib versus sorafenib in advanced hepatocellular cancer: Results of a randomized phase III trial. J. Clin. Oncol., 2013, 31(32), 4067-4075.
[http://dx.doi.org/10.1200/JCO.2012.45.8372]
[20]
Yen, C.J.; Kim, T.Y.; Feng, Y.H.; Chao, Y.; Lin, D.Y.; Ryoo, B.Y.; Huang, D.C.L.; Schnell, D.; Hocke, J.; Loembé, A.B.; Cheng, A.L. A phase I/Randomized Phase II study to evaluate the safety, pharmacokinetics, and efficacy of nintedanib versus sorafenib in asian patients with advanced hepatocellular carcinoma. Liver Cancer, 2018, 7(2), 165-178.
[http://dx.doi.org/10.1159/000486460] [PMID: 29888206]
[21]
Hsu, C.; Yang, T.; Huo, T.; Hsieh, R. Vandetanibin patients with inoperable hepatocellular carcinoma: A phase II, randomized, double-blind, placebo-controlled study. J. Hepatol., 2012, 56(5), 1097-1103.
[http://dx.doi.org/10.1016/j.jhep.2011.12.013] [PMID: 22245891]
[22]
Kang, Y.K.; Yau, T.; Park, J.W.; Lim, H.Y.; Lee, T.Y.; Obi, S.; Chan, S.L.; Qin, S.K.; Kim, R.D.; Casey, M.; Chen, C.; Bhattacharyya, H.; Williams, J.A.; Valota, O.; Chakrabarti, D.; Kudo, M. Randomized phase II study of axitinib versus placebo plus best supportive care in second-line treatment of advanced hepatocellular carcinoma. Ann. Oncol., 2015, 26(12), 2457-2463.
[http://dx.doi.org/10.1093/annonc/mdv388] [PMID: 26386123]
[23]
Johnson, P.J.; Qin, S.; Park, J-W.; Poon, R.T.P.; Raoul, J-L.; Philip, P.A.; Hsu, C-H.; Hu, T-H.; Heo, J.; Xu, J.; Lu, L.; Chao, Y.; Boucher, E.; Han, K-H.; Paik, S-W.; Robles-Aviña, J.; Kudo, M.; Yan, L.; Sobhonslidsuk, A.; Komov, D.; Decaens, T.; Tak, W-Y.; Jeng, L-B.; Liu, D.; Ezzeddine, R.; Walters, I.; Cheng, A-L.; John-Son, P.J. Brivanib and FOLFOX in hepatocellular carcinoma: Finding the common themes among negative trials. J. Clin. Oncol., 2013, 31(28), 3483-3486.
[http://dx.doi.org/10.1200/JCO.2013.49.7941]
[24]
Llovet, J.M.; Decaens, T.; Raoul, J.L.; Boucher, E.; Kudo, M.; Chang, C.; Kang, Y.K.; Assenat, E.; Lim, H.Y.; Boige, V.; Mathurin, P.; Fartoux, L.; Lin, D.Y.; Bruix, J.; Poon, R.T.; Sherman, M.; Blanc, J.F.; Finn, R.S.; Tak, W.Y.; Chao, Y.; Ezzeddine, R.; Liu, D.; Walters, I.; Park, J.W. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: Results from the randomized phase III BRISK-PS study. J. Clin. Oncol., 2013, 31(28), 3509-3516.
[http://dx.doi.org/10.1200/JCO.2012.47.3009] [PMID: 23980090]
[25]
Cainap, C.; Qin, S.; Huang, W.T.; Chung, I.J.; Pan, H.; Cheng, Y.; Kudo, M.; Kang, Y.K.; Chen, P.J.; Toh, H.C.; Gorbunova, V.; Eskens, F.A.L.M.; Qian, J.; McKee, M.D.; Ricker, J.L.; Carlson, D.M.; El-Nowiem, S. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: Results of a randomized phase III trial. J. Clin. Oncol., 2015, 33(2), 172-179.
[http://dx.doi.org/10.1200/JCO.2013.54.3298] [PMID: 25488963]
[26]
Sim, H.W.; Knox, J. Hepatocellular carcinoma in the era of immunotherapy. Curr. Probl. Cancer, 2018, 42(1), 40-48.
[http://dx.doi.org/10.1016/j.currproblcancer.2017.10.007] [PMID: 29150141]
[27]
Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the study of liver diseases. Hepatology, 2018, 68(2), 723-750.
[http://dx.doi.org/10.1002/hep.29913] [PMID: 29624699]
[28]
Li, J.; Wei, H.; Liu, Y.; Li, Q.; Guo, H.; Guo, Y.; Chang, Z. Curcumin inhibits hepatocellular carcinoma via regulating MiR-21/TIMP3 axis. Evidence-based Complement. Altern. Med., 2020, 2020
[http://dx.doi.org/10.1155/2020/2892917] [PMID: 32724322]
[29]
Kydd, J.; Jadia, R.; Velpurisiva, P.; Gad, A.; Paliwal, S.; Rai, P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics, 2017, 9(4), 46.
[http://dx.doi.org/10.3390/pharmaceutics9040046] [PMID: 29036899]
[30]
Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol., 2018, 15(10), 599-616.
[http://dx.doi.org/10.1038/s41571-018-0073-4] [PMID: 30061739]
[31]
Zhong, X.Z.; Deng, Y.; Chen, G.; Yang, H. Investigation of the clinical significance and molecular mechanism of miR-21-5p in hepatocellular carcinoma: A systematic review based on 24 studies and bioinformatics investigation. Oncol. Lett., 2018, 17(1), 230-246.
[http://dx.doi.org/10.3892/ol.2018.9627] [PMID: 30655760]
[32]
Zhou, C.; Hu, C.; Wang, B.; Fan, S.; Jin, W. Curcumin suppresses cell proliferation, migration, and invasion through modulating miR-21-5p/ SOX6 axis in hepatocellular carcinoma. Cancer Biother. Radiopharm., 2020, cbr.2020.3734.
[http://dx.doi.org/10.1089/cbr.2020.3734] [PMID: 32757994]
[33]
Wang, L.; Zhan, J.; Huang, W. Grape seed proanthocyanidins induce apoptosis and cell cycle arrest of HepG2 cells accompanied by induction of the MAPK pathway and NAG-1. Antioxidants, 2020, 9(12), 1200.
[http://dx.doi.org/10.3390/antiox9121200] [PMID: 33260632]
[34]
Sundarraj, K.; Raghunath, A.; Panneerselvam, L.; Perumal, E. Fisetin, a phytopolyphenol, targets apoptotic and necroptotic cell death in HepG2 cells. Biofactors, 2020, 46(1), 118-135.
[http://dx.doi.org/10.1002/biof.1577] [PMID: 31634424]
[35]
Liu, Z.; Lin, Y.; Zhang, J.; Zhang, Y.; Li, Y.; Liu, Z.; Li, Q.; Luo, M.; Liang, R.; Ye, J. Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2019, 38(1), 447.
[http://dx.doi.org/10.1186/s13046-019-1412-8] [PMID: 31684985]
[36]
Moenner, M.; Pluquet, O.; Bouchecareilh, M.; Chevet, E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res., 2007, 67(22), 10631-10634.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1705] [PMID: 18006802]
[37]
Feldman, D.; Chauhan, V. The Unfolded Protein Response: A Novel Component of the Hypoxic Stress Response in Tumors; AACR, 2005.
[http://dx.doi.org/10.1158/1541-7786.MCR-05-0221]
[38]
Hussein, R.H.; Khalifa, F.K. The protective role of ellagitannins flavonoids pretreatment against N-nitrosodiethylamine induced-hepatocellular carcinoma. Saudi J. Biol. Sci., 2014, 21(6), 589-596.
[http://dx.doi.org/10.1016/j.sjbs.2014.03.004] [PMID: 25473368]
[39]
Yapijakis, C. Hippocrates of Kos, the father of clinical medicine, and Asclepiades of Bithynia, the father of molecular medicine. In Vivo, 2009, 23(4), 507-514.
[40]
El Sohaimy, S. Functional foods and nutraceuticals-modern approach to food science. World Appl. Sci. J., 2012, 20(5), 691-708.
[http://dx.doi.org/10.5829/idosi.wasj.2012.20.05.66119]
[41]
Wierzejska, R.E. Dietary supplements-for whom? The current state of knowledge about the health effects of selected supplement use. Int. J. Environ. Res. Public Health, 2021, 18(17), 8897.
[http://dx.doi.org/10.3390/ijerph18178897] [PMID: 34501487]
[42]
Heber, D.; Li, Z. Nutrition intervention in cancer. Med. Clin. North Am., 2016, 100(6), 1329-1340.
[http://dx.doi.org/10.1016/j.mcna.2016.06.011] [PMID: 27745597]
[43]
DeFelice, S.L. The nutraceutical revolution: Its impact on food industry R&D. Trends Food Sci. Technol., 1995, 6(2), 59-61.
[http://dx.doi.org/10.1016/S0924-2244(00)88944-X]
[44]
Kalra, E.K. Nutraceutical-definition and introduction. AAPS PharmSci, 2003, 5(3), 27-28.
[http://dx.doi.org/10.1208/ps050325] [PMID: 14621960]
[45]
Brzezińska-Rojek, J.; Rutkowska, M.; Brzezicha, J.; Konieczka, P.; Prokopowicz, M.; Grembecka, M. Mineral composition of dietary supplements-analytical and chemometric approach. Nutrients, 2021, 14(1), 106.
[http://dx.doi.org/10.3390/nu14010106] [PMID: 35010980]
[46]
Melocchi, A.; Parietti, F.; Maccagnan, S.; Ortenzi, M.A.; Antenucci, S.; Briatico-Vangosa, F.; Maroni, A.; Gazzaniga, A.; Zema, L. Industrial development of a 3D-printed nutraceutical delivery platform in the form of a multicompartment HPC capsule. AAPS PharmSciTech, 2018, 19(8), 3343-3354.
[http://dx.doi.org/10.1208/s12249-018-1029-9] [PMID: 29872975]
[47]
Nirmala, L. Plant Secondary Metabolites as Nutraceuticals. In: Plant Metabolites; Methods, Applications and Prospects, 2020, pp. 239-253.
[http://dx.doi.org/10.1007/978-981-15-5136-9_11]
[48]
Sachdeva, V.; Roy, A.; Bharadvaja, N. Current prospects of nutraceuticals: A review. Curr. Pharm. Biotechnol., 2020, 21(10), 884-896.
[http://dx.doi.org/10.2174/1389201021666200130113441] [PMID: 32000642]
[49]
Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Chapter 13 - Health Benefits of n-3 Polyunsaturated Fatty Acids: Eicosapentaenoic Acid and Docosahexaenoic Acid. In: Advances in Food and Nutrition Research 1st ed; Elsevier Inc., 2012, 65, pp. 211-222.
[http://dx.doi.org/10.1016/B978-0-12-416003-3.00013-5]
[50]
Mirza, K.A.; Pereira, S.L.; Edens, N.K.; Tisdale, M.J. Attenuation of muscle wasting in murine C2 C12 myotubes by epigallocatechin-3-gallate. J. Cachexia Sarcopenia Muscle, 2014, 5(4), 339-345.
[http://dx.doi.org/10.1007/s13539-014-0139-9] [PMID: 24647719]
[51]
Kim, H.; Kim, W.; Nutrients, A.H. Effects of phytochemicals on blood pressure and neuroprotection mediated via brain renin-angiotensin system. Nutrients, 2019, 11(11), 2761.
[http://dx.doi.org/10.3390/nu11112761]
[52]
Bennett, B.T.; Mohamed, J.S.; Alway, S.E. Effects of resveratrol on the recovery of muscle mass following disuse in the plantaris muscle of aged rats. PLoS One, 2013, 8(12), e83518.
[http://dx.doi.org/10.1371/journal.pone.0083518] [PMID: 24349525]
[53]
Charles, A.L.; Meyer, A.; Dal-Ros, S.; Auger, C.; Keller, N.; Ramamoorthy, T.G.; Zoll, J.; Metzger, D.; Schini-Kerth, V.; Geny, B. Polyphenols prevent ageing-related impairment in skeletal muscle mitochondrial function through decreased reactive oxygen species production. Exp. Physiol., 2013, 98(2), 536-545.
[http://dx.doi.org/10.1113/expphysiol.2012.067496] [PMID: 22903980]
[54]
Annunziata, G.; Jimenez-García, M.; Tejada, S.; Moranta, D.; Arnone, A.; Ciampaglia, R.; Tenore, G.C.; Sureda, A.; Novellino, E.; Capó, X. Grape polyphenols ameliorate muscle decline reducing oxidative stress and oxidative damage in aged rats. Nutrients, 2020, 12(5), 1280.
[http://dx.doi.org/10.3390/nu12051280] [PMID: 32365992]
[55]
Lordan, R.; Rando, H.M.; Greene, C.S. Dietary supplements and nutraceuticals under investigation for COVID-19 prevention and treatment. mSystems, 2021, 6(3), e00122-e21.
[http://dx.doi.org/10.1128/mSystems.00122-21] [PMID: 33947804]
[56]
Zhang, X.; Hou, G.; Liu, A.; Xu, H.; Guan, Y.; Wu, Y.; Deng, J.; Cao, X. Matrine inhibits the development and progression of ovarian cancer by repressing cancer associated phosphorylation signaling pathways. Cell Death Dis., 2019, 10(10), 770.
[http://dx.doi.org/10.1038/s41419-019-2013-3] [PMID: 31601793]
[57]
Cvietusa, P.; Mascali, J.J.; Negri, J.; Borish, L. Anti-inflammatory effects of theophylline: Modulation of cytokine production. Ann. Allergy Asthma Immunol., 1996, 77(1), 34-38.
[http://dx.doi.org/10.1016/S1081-1206(10)63476-X] [PMID: 8705632]
[58]
Caliceti, C.; Franco, P.; Spinozzi, S.; Roda, A.; Cicero, A.F.; Berberine, A. Berberine: New insights from pharmacological aspects to clinical evidences in the management of metabolic disorders. Curr. Med. Chem., 2016, 23(14), 1460-1476.
[http://dx.doi.org/10.2174/0929867323666160411143314] [PMID: 27063256]
[59]
Seo, D.Y.; Lee, S.R.; Heo, J.W.; No, M.H.; Rhee, B.D.; Ko, K.S.; Kwak, H.B.; Han, J. Ursolic acid in health and disease. Korean J. Physiol. Pharmacol., 2018, 22(3), 235-248.
[http://dx.doi.org/10.4196/kjpp.2018.22.3.235] [PMID: 29719446]
[60]
Kim, Y.J.; Zhang, D.; Yang, D.C. Biosynthesis and biotechnological production of ginsenosides. Biotechnol. Adv., 2015, 33(6), 717-735.
[http://dx.doi.org/10.1016/j.biotechadv.2015.03.001] [PMID: 25747290]
[61]
Wang, Z.Y.; Nixon, D.W. Licorice and cancer. Nutr. Cancer, 2001, 39(1), 1-11.
[http://dx.doi.org/10.1207/S15327914nc391_1] [PMID: 11588889]
[62]
Sharma, R.; Padwad, Y. Nutraceuticals-based immunotherapeutic concepts and opportunities for the mitigation of cellular senescence and aging: A narrative review. Ageing Res. Rev., 2020, 63, 101141.
[http://dx.doi.org/10.1016/j.arr.2020.101141] [PMID: 32810647]
[63]
Aquila, G.; Marracino, L.; Martino, V.; Calabria, D.; Campo, G.; Caliceti, C.; Rizzo, P. The use of nutraceuticals to counteract atherosclerosis: The role of the notch pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1-30.
[http://dx.doi.org/10.1155/2019/5470470] [PMID: 31915510]
[64]
Ranzato, E.; Martinotti, S. Role of nutraceuticals in cancer therapy. J. Food Res., 2014, 3(4), 18-25.
[http://dx.doi.org/10.5539/jfr.v3n4p18]
[65]
Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part I-clinical trials legislation and good manufacturing practices (GMP) of nanotherapeutics in the EU. Pharmaceutics, 2020, 12(2), 146.
[http://dx.doi.org/10.3390/pharmaceutics12020146] [PMID: 32053962]
[66]
Gangadhar, K.N.; Rodrigues, M.J.; Pereira, H.; Gaspar, H.; Malcata, F.X.; Barreira, L.; Varela, J. Anti-Hepatocellular Carcinoma (HepG2) activities of monoterpene hydroxy lactones isolated from the marine microalga Tisochrysis Lutea. Mar. Drugs, 2020, 18(11), 567.
[http://dx.doi.org/10.3390/md18110567] [PMID: 33227960]
[67]
Giulitti, F.; Petrungaro, S.; Mandatori, S.; Tomaipitinca, L.; de Franchis, V.; D’Amore, A.; Filippini, A.; Gaudio, E.; Ziparo, E.; Giampietri, C. Anti-tumor effect of oleic acid in hepatocellular carcinoma cell lines via autophagy reduction. Front. Cell Dev. Biol., 2021, 9, 629182.
[http://dx.doi.org/10.3389/fcell.2021.629182] [PMID: 33614661]
[68]
Nogueira, M.L.; Lima, E.J.S.P.; Adrião, A.A.X.; Fontes, S.S.; Silva, V.R.; Santos, L.S.; Soares, M.B.P.; Dias, R.B.; Rocha, C.A.G.; Costa, E.V.; Silva, F.M.A.; Vannier-Santos, M.A.; Cardozo, N.M.D.; Koolen, H.H.F.; Bezerra, D.P. Cyperus articulatus L. (Cyperaceae) rhizome essential oil causes cell cycle arrest in the G2/M phase and cell death in HepG2 cells and inhibits the development of tumors in a xenograft model. Molecules, 2020, 25(11), 2687.
[http://dx.doi.org/10.3390/molecules25112687] [PMID: 32527068]
[69]
Munakarmi, S.; Shrestha, J.; Shin, H.B.; Lee, G.H.; Jeong, Y.J. 3,3′-diindolylmethane suppresses the growth of hepatocellular carcinoma by regulating its invasion, migration, and ER stress-mediated mitochondrial apoptosis. Cells, 2021, 10(5), 1178.
[http://dx.doi.org/10.3390/cells10051178] [PMID: 34066056]
[70]
Lima, E.J.S.P.; Fontes, S.S.; Nogueira, M.L.; Silva, V.R.; Santos, L.S.; D’Elia, G.M.A.; Dias, R.B.; Sales, C.B.S.; Rocha, C.A.G.; Vannier-Santos, M.A.; Soares, M.B.P.; Costa, E.V.; Silva, F.M.A.; Koolen, H.H.F.; Bezerra, D.P. Essential oil from leaves of Conobea scoparioides (Cham. & Schltdl.) Benth. (Plantaginaceae) causes cell death in HepG2 cells and inhibits tumor development in a xenograft model. Biomed. Pharmacother., 2020, 129(March), 110402.
[http://dx.doi.org/10.1016/j.biopha.2020.110402] [PMID: 32574969]
[71]
Cai, S.; Bi, Z.; Bai, Y.; Zhang, H.; Zhai, D.; Xiao, C.; Tang, Y.; Yang, L.; Zhang, X.; Li, K.; Yang, R.; Liu, Y.; Chen, S.; Sun, T.; Liu, H.; Yang, C. Glycyrrhizic acid-induced differentiation repressed stemness in hepatocellular carcinoma by targeting c-Jun N-Terminal Kinase 1. Front. Oncol., 2020, 9, 1431.
[http://dx.doi.org/10.3389/fonc.2019.01431]
[72]
Hamza, A.A.; Heeba, G.H.; Hamza, S.; Abdalla, A.; Amin, A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/inflammation pathway. Biomed. Pharmacother., 2021, 134, 111102.
[http://dx.doi.org/10.1016/j.biopha.2020.111102] [PMID: 33338743]
[73]
El-Far, Y.M.; Khodir, A.E.; Emarah, Z.A.; Ebrahim, M.A.; Al-Gayyar, M.M.H. Fucoidan ameliorates hepatocellular carcinoma induced in rats: Effect on miR143 and inflammation. Nutr. Cancer, 2021, 73(8), 1498-1510.
[http://dx.doi.org/10.1080/01635581.2020.1798478] [PMID: 32718197]
[74]
Sojoodi, M.; Wei, L.; Erstad, D.J.; Yamada, S.; Fujii, T.; Hirschfield, H.; Kim, R.S.; Lauwers, G.Y.; Lanuti, M.; Hoshida, Y.; Tanabe, K.K.; Fuchs, B.C. Epigallocatechin gallate induces hepatic stellate cell senescence and attenuates development of hepatocellular carcinoma. Cancer Prev. Res. (Phila.), 2020, 13(6), 497-508.
[http://dx.doi.org/10.1158/1940-6207.CAPR-19-0383] [PMID: 32253266]
[75]
Badroon, N.A.; Abdul Majid, N.; Alshawsh, M.A. Antiproliferative and apoptotic effects of cardamonin against hepatocellular carcinoma HepG2 cells. Nutrients, 2020, 12(6), 1757.
[http://dx.doi.org/10.3390/nu12061757] [PMID: 32545423]
[76]
Li, Y.; Cheng, X.; Chen, C.; Huijuan, W.; Zhao, H.; Liu, W.; Xiang, Z.; Wang, Q. Apigenin, a flavonoid constituent derived from P. villosa, inhibits hepatocellular carcinoma cell growth by CyclinD1/CDK4 regulation via p38 MAPK-p21 signaling. Pathol. Res. Pract., 2020, 216(1), 152701.
[http://dx.doi.org/10.1016/j.prp.2019.152701] [PMID: 31780054]
[77]
Kumar, Y.; Phaniendra, A.; Periyasamy, L. Bixin triggers apoptosis of human Hep3B hepatocellular carcinoma cells: An insight to molecular and in silico approach. Nutr. Cancer, 2018, 70(6), 971-983.
[http://dx.doi.org/10.1080/01635581.2018.1490445] [PMID: 30204479]
[78]
Zhang, X.; Chen, Y.; Cai, G.; Li, X.; Wang, D. Carnosic acid induces apoptosis of hepatocellular carcinoma cells via ROS-mediated mitochondrial pathway. Chem. Biol. Interact., 2017, 277, 91-100.
[http://dx.doi.org/10.1016/j.cbi.2017.09.005] [PMID: 28918123]
[79]
Yan, Y.; Liu, N.; Hou, N.; Dong, L.; Li, J. Chlorogenic acid inhibits hepatocellular carcinoma in vitro and in vivo. J. Nutr. Biochem., 2017, 46, 68-73.
[http://dx.doi.org/10.1016/j.jnutbio.2017.04.007] [PMID: 28458139]
[80]
Xia, H.; Liu, C.; Li, C.C.; Fu, M.; Takahashi, S.; Hu, K.Q.; Aizawa, K.; Hiroyuki, S.; Wu, G.; Zhao, L.; Wang, X.D. Dietary tomato powder inhibits high-fat diet-promoted hepatocellular carcinoma with alteration of gut microbiota in mice lacking carotenoid cleavage enzymes. Cancer Prev. Res., 2018, 11(12), 797-810.
[http://dx.doi.org/10.1158/1940-6207.CAPR-18-0188] [PMID: 30446518]
[81]
Lim, J.Y.; Liu, C.; Hu, K.Q.; Smith, D.E.; Wu, D.; Lamon-Fava, S.; Ausman, L.M.; Wang, X.D. Xanthophyll β-cryptoxanthin inhibits highly refined carbohydrate diet-promoted hepatocellular carcinoma progression in mice. Mol. Nutr. Food Res., 2020, 64(3), 1900949.
[http://dx.doi.org/10.1002/mnfr.201900949] [PMID: 31891208]
[82]
Al-Sheddi, E.S.; Al-Zaid, N.A.; Al-Oqail, M.M.; Al-Massarani, S.M.; El-Gamal, A.A.; Farshori, N.N. Evaluation of cytotoxicity, cell cycle arrest and apoptosis induced by Anethum graveolens L. essential oil in human hepatocellular carcinoma cell line. Saudi Pharm. J., 2019, 27(7), 1053-1060.
[http://dx.doi.org/10.1016/j.jsps.2019.09.001] [PMID: 31997913]
[83]
Emam, M.A.; Khattab, H.I.; Hegazy, M.G.A. Assessment of anticancer activity of Pulicaria undulata on hepatocellular carcinoma HepG2 cell line. Tumour Biol., 2019, 41(10), 1010428319880080.
[http://dx.doi.org/10.1177/1010428319880080] [PMID: 31603389]
[84]
Ranasinghe, K.N.K.; Premarathna, A.D.; Mahakapuge, T.A.N.; Wijesundera, K.K.; Ambagaspitiya, A.T.; Jayasooriya, A.P.; Kularatne, S.A.M.; Rajapakse, R.P.V.J. In vivo anticancer effects of Momordica charantia seed fat on hepatocellular carcinoma in a rat model. J. Ayurveda Integr. Med., 2021, 12(3), 435-442.
[http://dx.doi.org/10.1016/j.jaim.2021.03.001] [PMID: 34275705]
[85]
Yu, S.H.; Lee, C.M.; Ha, S.H.; Lee, J.; Jang, K.Y.; Park, S.H. Induction of cell cycle arrest and apoptosis by tomentosin in hepatocellular carcinoma HepG2 and Huh7 cells. Hum. Exp. Toxicol., 2021, 40(2), 231-244.
[http://dx.doi.org/10.1177/0960327120943935] [PMID: 32787465]
[86]
Tian, L.; Li, C.M.; Li, Y.F.; Huang, T.M.; Chao, N.X.; Luo, G.R.; Mo, F.R. Laminarin from seaweed (Laminaria japonica) inhibits hepatocellular carcinoma through upregulating senescence marker protein-30. Cancer Biother. Radiopharm., 2020, 35(4), 277-283.
[http://dx.doi.org/10.1089/cbr.2019.3179] [PMID: 32159381]
[87]
Qi, S.Z.; Zhang, X.X.; Jin, Y.; Wang, M.; Long, L.P.; Jing, W.H.; Song, K.R.; Wang, D.; Gao, H.Y. Phenylpropanoid-conjugated pentacyclic triterpenoids from the whole plants of Leptopus lolonum induced cell apoptosis via MAPK and Akt pathways in human hepatocellular carcinoma cells. Bioorg. Chem., 2021, 111, 104886.
[http://dx.doi.org/10.1016/j.bioorg.2021.104886] [PMID: 33836342]
[88]
Chang, Z.; Jian, P.; Zhang, Q.; Liang, W.; Zhou, K.; Hu, Q.; Liu, Y.; Liu, R.; Zhang, L. Tannins in Terminalia bellirica inhibit hepatocellular carcinoma growth by regulating EGFR-signaling and tumor immunity. Food Funct., 2021, 12(8), 3720-3739.
[http://dx.doi.org/10.1039/D1FO00203A] [PMID: 33900343]
[89]
Zein, N. The effect of Saffron. Aqueous. extract on hepatocellular carcinoma rat model. Biochemistry Letters, 2017, 12(1), 49-63.
[http://dx.doi.org/10.21608/blj.2017.47596]
[90]
Aly, S.M.; Fetaih, H.A.; Hassanin, A.A.I.; Abomughaid, M.M.; Ismail, A.A. Protective effects of garlic and cinnamon oils on hepatocellular carcinoma in albino rats. Anal. Cell. Pathol., 2019, 2019, 9895485.
[http://dx.doi.org/10.1155/2019/9895485] [PMID: 31781479]

© 2024 Bentham Science Publishers | Privacy Policy