Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

The Journey of iPSC-derived OPCs in Demyelinating Disorders: From In vitro Generation to In vivo Transplantation

Author(s): Fatemeh Lohrasbi, Maryam Ghasemi-Kasman*, Negar Soghli, Sobhan Ghazvini, Zahra Vaziri, Sadaf Abdi and Yasaman Mahdizadeh Darban

Volume 21, Issue 9, 2023

Published on: 24 February, 2023

Page: [1980 - 1991] Pages: 12

DOI: 10.2174/1570159X21666230220150010

Price: $65

Abstract

Loss of myelination is common among neurological diseases. It causes significant disability, even death, if it is not treated instantly. Different mechanisms involve the pathophysiology of demyelinating diseases, such as genetic background, infectious, and autoimmune inflammation. Recently, regenerative medicine and stem cell therapy have shown to be promising for the treatment of demyelinating disorders. Stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells (ASCs), can differentiate into oligodendrocyte progenitor cells (OPCs), which may convert to oligodendrocytes (OLs) and recover myelination. IPSCs provide an endless source for OPCs generation. However, the restricted capacity of proliferation, differentiation, migration, and myelination of iPSC-derived OPCs is a notable gap for future studies. In this article, we have first reviewed stem cell therapy in demyelinating diseases. Secondly, methods of different protocols have been discussed among in vitro and in vivo studies on iPSC-derived OPCs to contrast OPCs’ transplantation efficacy. Lastly, we have reviewed the results of iPSCs-derived OLs production in each demyelination model.

Keywords: Demyelination, stem cells, reprogramming, iPSCs, OPCs, repair.

Graphical Abstract
[1]
Hِftberger, R.; Lassmann, H. Inflammatory demyelinating diseases of the central nervous system. Handb. Clin. Neurol., 2018, 145, 263-283.
[http://dx.doi.org/10.1016/B978-0-12-802395-2.00019-5] [PMID: 28987175]
[2]
Lassmann, H. Stem cell and progenitor cell transplantation in multiple sclerosis: The discrepancy between neurobiological attraction and clinical feasibility. J. Neurol. Sci., 2005, 233(1-2), 83-86.
[http://dx.doi.org/10.1016/j.jns.2005.03.007] [PMID: 15949497]
[3]
Compston, A.; Coles, A. Multiple sclerosis. Lancet, 2008, 372(9648), 1502-1517.
[http://dx.doi.org/10.1016/S0140-6736(08)61620-7] [PMID: 18970977]
[4]
Freedman, M.S.; Devonshire, V.; Duquette, P.; Giacomini, P.S.; Giuliani, F.; Levin, M.C.; Montalban, X.; Morrow, S.A.; Oh, J.; Rotstein, D.; Yeh, E.A. Treatment optimization in multiple sclerosis: Canadian MS working group recommendations. Can. J. Neurol. Sci., 2020, 47(4), 437-455.
[http://dx.doi.org/10.1017/cjn.2020.66] [PMID: 32654681]
[5]
Dulamea, A.O. Role of oligodendrocyte dysfunction in demyelination, remyelination and neurodegeneration in multiple sclerosis.Multiple Sclerosis: Bench to Bedside; Springer: Berlin, 2017, pp. 91-127.
[http://dx.doi.org/10.1007/978-3-319-47861-6_7]
[6]
Prasad, A.; Manivannan, J.; Loong, D.T.B.; Chua, S.M.; Gharibani, P.M.; All, A.H. A review of induced pluripotent stem cell, direct conversion by trans-differentiation, direct reprogramming and oligodendrocyte differentiation. Regen. Med., 2016, 11(2), 181-191.
[http://dx.doi.org/10.2217/rme.16.5] [PMID: 26857809]
[7]
Alessandrini, M.; Preynat-Seauve, O.; De Briun, K.; Pepper, M.S. Stem cell therapy for neurological disorders. S. Afr. Med. J., 2019, 109(8b), 70-77.
[http://dx.doi.org/10.7196/SAMJ.2019.v109i8b.14009] [PMID: 31662153]
[8]
Genc, B.; Bozan, H.R.; Genc, S.; Genc, K. Stem cell therapy for multiple sclerosis. Adv. Exp. Med. Biol., 2019, 1084, 145-174.
[http://dx.doi.org/10.1007/5584_2018_247]
[9]
Buzhor, E.; Barash, H.; Warshawsky, D.; Shtrichman, R. Cell-based therapy approaches: The hope for incurable diseases. Regen. Med., 2014, 9, 649-672.
[http://dx.doi.org/10.2217/rme.14.35]
[10]
Khazaei, M.; Siddiqui, A.M.; Fehlings, M.G. The potential for iPS-derived stem cells as a therapeutic strategy for spinal cord injury: Opportunities and challenges. J. Clin. Med., 2014, 4(1), 37-65.
[http://dx.doi.org/10.3390/jcm4010037] [PMID: 26237017]
[11]
Heß, K.; Starost, L.; Kieran, N.W.; Thomas, C.; Vincenten, M.C.J.; Antel, J.; Martino, G.; Huitinga, I.; Healy, L.; Kuhlmann, T. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol., 2020, 140(3), 359-375.
[http://dx.doi.org/10.1007/s00401-020-02189-9] [PMID: 32710244]
[12]
Cuascut, F.; Hutton, G. Stem cell-based therapies for multiple sclerosis: Current perspectives. Biomedicines, 2019, 7(2), 26.
[http://dx.doi.org/10.3390/biomedicines7020026] [PMID: 30935074]
[13]
Barati, S.; Tahmasebi, F.; Faghihi, F. Effects of mesenchymal stem cells transplantation on multiple sclerosis patients. Neuropeptides, 2020, 84, 102095.
[14]
Atkins, H.L.; Freedman, M.S. Hematopoietic stem cell therapy for multiple sclerosis: Top 10 lessons learned. Neurotherapeutics, 2013, 68-76.
[15]
Muraro, P.A.; Martin, R.; Mancardi, G.L.; Nicholas, R.; Sormani, M.P.; Saccardi, R. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat. Rev. Neurol., 2017, 13(7), 391-405.
[http://dx.doi.org/10.1038/nrneurol.2017.81] [PMID: 28621766]
[16]
Merlini, A.; Feo, D.D.; Radaelli, M.; Laterza, C.; Ciceri, F.; Martino, G. In the Treatment of Multiple Sclerosis; Elsevier Inc: Amsterdam, 2016, pp. 415-439.
[17]
Martínez-Larrosa, J.; Matute-Blanch, C.; Montalban, X.; Comabella, M. Modelling multiple sclerosis using induced pluripotent stem cells. J. Neuroimmunol., 2020, 349, 577425.
[http://dx.doi.org/10.1016/j.jneuroim.2020.577425]
[18]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[19]
Xie, C.; Liu, Y.Q.; Guan, Y.T.; Zhang, G.X. Induced stem cells as a novel multiple sclerosis therapy. Curr. Stem Cell Res. Ther., 2016, 11(4), 313-320.
[http://dx.doi.org/10.2174/1574888X10666150302110013] [PMID: 25732737]
[20]
Ong, S.G.; Lee, W.H.; Kodo, K.; Wu, J.C. MicroRNA-mediated regulation of differentiation and trans-differentiation in stem cells. Adv. Drug Deliv. Rev., 2015, 88, 3-15.
[http://dx.doi.org/10.1016/j.addr.2015.04.004] [PMID: 25887992]
[21]
Jolanta Hybiak Filip Machaj, J.R.I.B.A.Ż.G.C.H.A.M.M.J.Ł.E.U.K.J.Invited contribution to the volume: “Stem cells & cancer stem cells, regenerative medicine & cancer” (VSI stem cells) reprogramming and transdifferentiation - two key processes for regenerative medicine; Elsevier B.V.: Amsterdam, 2020.
[22]
Jopling, C.; Boue, S.; Belmonte, J.C.I. Dedifferentiation, transdifferentiation and reprogramming: Three routes to regeneration. Nat. Rev. Mol. Cell Biol., 2011, 12(2), 79-89.
[http://dx.doi.org/10.1038/nrm3043] [PMID: 21252997]
[23]
Kim, D.S.; Jung, S.J.; Lee, J.S.; Lim, B.Y.; Kim, H.A.; Yoo, J.E.; Kim, D.W.; Leem, J.W. Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury. Exp. Mol. Med., 2017, 49(7), e361.
[http://dx.doi.org/10.1038/emm.2017.106] [PMID: 28751784]
[24]
Panopoulos, A.D.; Ruiz, S.; Belmonte, J.C.I. iPSCs: Induced back to controversy. Cell Stem Cell, 2011, 8(4), 347-348.
[http://dx.doi.org/10.1016/j.stem.2011.03.003] [PMID: 21474093]
[25]
Al Abbar, A.; Ngai, S.C.; Nograles, N.; Alhaji, S.Y.; Abdullah, S. Induced pluripotent stem cells: Reprogramming platforms and applications in cell replacement therapy. Biores. Open Access, 2020, 9(1), 121-136.
[http://dx.doi.org/10.1089/biores.2019.0046] [PMID: 32368414]
[26]
Singh, V.K.; Kumar, N.; Kalsan, M.; Saini, A.; Chandra, R. Mechanism of induction: Induced pluripotent stem cells (iPSCS). Stem Cells. Med. Regen., 2015, 10(1), 195-220.
[27]
Gabriele Bonaventura, MLBIR; Sebastiano, C Induced pluripotent stem cells: An innovative patient-specific neurodegenerative disease modeling. J. Stem Cell Transplantat. Biol., 2017.
[28]
Takahashi, K.; Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol., 2016, 17(3), 183-193.
[http://dx.doi.org/10.1038/nrm.2016.8] [PMID: 26883003]
[29]
Pagano, I. Complementary and alternative medicine. Hawaii Med. J., 2008, 67(5), 136-137.
[PMID: 18605281]
[30]
Stadtfeld, M.; Maherali, N.; Breault, D.T.; Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2008, 2(3), 230-240.
[http://dx.doi.org/10.1016/j.stem.2008.02.001] [PMID: 18371448]
[31]
Okita, K.; Nakagawa, M.; Hyenjong, H.; Ichisaka, T.; Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science, 2008, 322(5903), 949-953.
[http://dx.doi.org/10.1126/science.1164270] [PMID: 18845712]
[32]
Jia, F.; Wilson, K.D.; Sun, N.; Gupta, D.M.; Huang, M.; Li, Z.; Panetta, N.J.; Chen, Z.Y.; Robbins, R.C.; Kay, M.A.; Longaker, M.T.; Wu, J.C. A nonviral minicircle vector for deriving human iPS cells. Nat. Methods, 2010, 7(3), 197-199.
[http://dx.doi.org/10.1038/nmeth.1426] [PMID: 20139967]
[33]
Goldman, S.A.; Nedergaard, M.; Windrem, M.S. Modeling cognition and disease using human glial chimeric mice. Glia, 2015, 63(8), 1483-1493.
[http://dx.doi.org/10.1002/glia.22862] [PMID: 26010831]
[34]
Zhang, Y.; Lu, X.Y.; Casella, G.; Tian, J.; Ye, Z.Q.; Yang, T.; Han, J.J.; Jia, L.Y.; Rostami, A.; Li, X. Generation of oligodendrocyte progenitor cells from mouse bone marrow cells. Front. Cell. Neurosci., 2019, 13, 247.
[http://dx.doi.org/10.3389/fncel.2019.00247] [PMID: 31231194]
[35]
Liu, Z.; Yan, M.; Liang, Y.; Liu, M.; Zhang, K.; Shao, D.; Jiang, R.; Li, L.; Wang, C.; Nussenzveig, D.R.; Zhang, K.; Chen, S.; Zhong, C.; Mo, W.; Fontoura, B.M.A.; Zhang, L. Nucleoporin Seh1 interacts with Olig2/Brd7 to promote oligodendrocyte differentiation and myelination. Neuron, 2019, 102(3), 587-601.e7.
[http://dx.doi.org/10.1016/j.neuron.2019.02.018] [PMID: 30876848]
[36]
Najm, F.J.; Lager, A.M.; Zaremba, A.; Wyatt, K.; Caprariello, A.V.; Factor, D.C.; Karl, R.T.; Maeda, T.; Miller, R.H.; Tesar, P.J. Transcription factor–mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat. Biotechnol., 2013, 31(5), 426-433.
[http://dx.doi.org/10.1038/nbt.2561] [PMID: 23584611]
[37]
Ogawa, S.; Tokumoto, Y.; Miyake, J.; Nagamune, T. Induction of oligodendrocyte differentiation from adult human fibroblast-derived induced pluripotent stem cells. In Vitro Cell. Dev. Biol. Anim., 2011, 47(7), 464-469.
[http://dx.doi.org/10.1007/s11626-011-9435-2] [PMID: 21695581]
[38]
Tokumoto, Y.; Ogawa, S.; Nagamune, T.; Miyake, J. Comparison of efficiency of terminal differentiation of oligodendrocytes from induced pluripotent stem cells versus embryonic stem cells in vitro. J. Biosci. Bioeng., 2010, 109(6), 622-628.
[http://dx.doi.org/10.1016/j.jbiosc.2009.11.013] [PMID: 20471604]
[39]
Marcin Czepiel Sjef Copray, E.B. Human oligodendrocytes in remyelination research. Glia, 2014, 63(4), 513-530.
[PMID: 25421998]
[40]
Terzic, D.; Maxon, J.R.; Krevitt, L.; Dibartolomeo, C.; Goyal, T.; Low, W.C.; Dutton, J.R.; Parr, A.M. Directed differentiation of oligodendrocyte progenitor cells from mouse induced pluripotent stem cells. Cell Transplant., 2016, 25(2), 411-424.
[http://dx.doi.org/10.3727/096368915X688137] [PMID: 25955415]
[41]
Goldman, S.A.; Goldman, S.A. Progenitor cell-based treatment of glial disease. Prog. Brain Res., 2017, 231, 165-189.
[http://dx.doi.org/10.1016/bs.pbr.2017.02.010] [PMID: 28554396]
[42]
Liu, C.; Hu, X.; Li, Y.; Lu, W.; Li, W.; Cao, N.; Zhu, S.; Cheng, J.; Ding, S.; Zhang, M. Conversion of mouse fibroblasts into oligodendrocyte progenitor-like cells through a chemical approach. J. Mol. Cell Biol., 2019, 11(6), 489-495.
[http://dx.doi.org/10.1093/jmcb/mjy088] [PMID: 30629188]
[43]
Thiruvalluvan, A.; Czepiel, M.; Kap, Y.A.; Mantingh-Otter, I.; Vainchtein, I.; Kuipers, J.; Bijlard, M.; Baron, W.; Giepmans, B.; Brück, W.; ’t Hart, B.A.; Boddeke, E.; Copray, S. Survival and functionality of human induced pluripotent stem cell-derived oligodendrocytes in a nonhuman primate model for multiple sclerosis. Stem Cells Transl. Med., 2016, 5(11), 1550-1561.
[http://dx.doi.org/10.5966/sctm.2016-0024] [PMID: 27400790]
[44]
Lee, E.H.; Park, C.H. Comparison of reprogramming methods for generation of induced-oligodendrocyte precursor cells. Biomol. Ther. (Seoul), 2017, 25(4), 362-366.
[http://dx.doi.org/10.4062/biomolther.2017.066] [PMID: 28605832]
[45]
Hu, B.Y.; Du, Z.W.; Li, X.J.; Ayala, M.; Zhang, S.C. Human oligodendrocytes from embryonic stem cells: Conserved SHH signaling networks and divergent FGF effects. Development, 2009, 136(9), 1443-1452.
[http://dx.doi.org/10.1242/dev.029447] [PMID: 19363151]
[46]
Alsanie, W.F.; Niclis, J.C.; Petratos, S. Human embryonic stem cell-derived oligodendrocytes: Protocols and perspectives. Stem Cells Dev., 2013, 22(18), 2459-2476.
[http://dx.doi.org/10.1089/scd.2012.0520] [PMID: 23621561]
[47]
Najm, F.J.; Zaremba, A.; Caprariello, A.V.; Nayak, S.; Freundt, E.C.; Scacheri, P.C.; Miller, R.H.; Tesar, P.J. Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells. Nat. Methods, 2011, 8(11), 957-962.
[http://dx.doi.org/10.1038/nmeth.1712] [PMID: 21946668]
[48]
Ebrahimi-Barough, S.; Kouchesfahani, H.M.; Ai, J.; Massumi, M. Differentiation of human endometrial stromal cells into Oligodendrocyte Progenitor Cells (OPCs). J. Mol. Neurosci., 2013, 51(2), 265-273.
[http://dx.doi.org/10.1007/s12031-013-9957-z] [PMID: 23338937]
[49]
Czepiel, M.; Balasubramaniyan, V.; Schaafsma, W.; Stancic, M.; Mikkers, H.; Huisman, C.; Boddeke, E.; Copray, S. Differentiation of induced pluripotent stem cells into functional oligodendrocytes. Glia, 2011, 59(6), 882-892.
[http://dx.doi.org/10.1002/glia.21159] [PMID: 21438010]
[50]
Douvaras, P.; Wang, J.; Zimmer, M.; Hanchuk, S.; O’Bara, M.A.; Sadiq, S.; Sim, F.J.; Goldman, J.; Fossati, V. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports, 2014, 3(2), 250-259.
[http://dx.doi.org/10.1016/j.stemcr.2014.06.012] [PMID: 25254339]
[51]
Magnani, D.; Chandran, S.; Wyllie, D.J.A.; Livesey, M.R. In vitro generation and electrophysiological characterization of OPCs and oligodendrocytes from human pluripotent stem cells. Methods Mol. Biol., 2019, 1936, 65-77.
[http://dx.doi.org/10.1007/978-1-4939-9072-6_4] [PMID: 30820893]
[52]
Yao, L.; Phan, F.; Li, Y. Collagen microsphere serving as a cell carrier supports oligodendrocyte progenitor cell growth and differentiation for neurite myelination in vitro. Stem Cell Res. Ther., 2013, 4(5), 109.
[http://dx.doi.org/10.1186/scrt320] [PMID: 24018105]
[53]
Lopez-Caraballo, L.; Martorell-Marugan, J.; Carmona-Sáez, P.; Gonzalez-Munoz, E.; Gonzalez-Munoz, E. iPS-derived early oligodendrocyte progenitor cells from SPMS patients reveal deficient in vitro cell migration stimulation. Cells, 2020, 9(8), 1803.
[http://dx.doi.org/10.3390/cells9081803] [PMID: 32751289]
[54]
Li, P.; Li, M.; Tang, X.; Wang, S.; Zhang, Y.A.; Chen, Z. Accelerated generation of oligodendrocyte progenitor cells from human induced pluripotent stem cells by forced expression of Sox10 and Olig2. Sci. China Life Sci., 2016, 59(11), 1131-1138.
[http://dx.doi.org/10.1007/s11427-016-0165-3] [PMID: 27785726]
[55]
Angelo, H. All Siddharth Gupta FABNPB-KCSSLMRLCJD-GCLKPG. Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors. PLoS One, 2015, 10(1), e0116933.
[56]
Numasawa-Kuroiwa, Y.; Okada, Y.; Shibata, S.; Kishi, N.; Akamatsu, W.; Shoji, M.; Nakanishi, A.; Oyama, M.; Osaka, H.; Inoue, K.; Takahashi, K.; Yamanaka, S.; Kosaki, K.; Takahashi, T.; Okano, H. Involvement of ER stress in dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 missense mutations shown by iPSC-derived oligodendrocytes. Stem Cell Reports, 2014, 2(5), 648-661.
[http://dx.doi.org/10.1016/j.stemcr.2014.03.007] [PMID: 24936452]
[57]
Morales Pantoja, I.E.; Smith, M.D.; Rajbhandari, L.; Cheng, L.; Gao, Y.; Mahairaki, V.; Venkatesan, A.; Calabresi, P.A.; Fitzgerald, K.C.; Whartenby, K.A. iPSCs from people with MS can differentiate into oligodendrocytes in a homeostatic but not an inflammatory milieu. PLoS One, 2020, 15(6), e0233980.
[http://dx.doi.org/10.1371/journal.pone.0233980] [PMID: 32511247]
[58]
Dugas, J.C.; Emery, B. Purification and culture of oligodendrocyte lineage cells. Cold Spring Harb. Protoc., 2013, 2013(9), pdb.top074898.
[http://dx.doi.org/10.1101/pdb.top074898] [PMID: 24003197]
[59]
Barateiro, A.; Fernandes, A. Temporal oligodendrocyte lineage progression: In vitro models of proliferation, differentiation and myelination. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(9), 1917-1929.
[http://dx.doi.org/10.1016/j.bbamcr.2014.04.018] [PMID: 24768715]
[60]
Niu, J.; Wang, L.; Liu, S.; Li, C.; Kong, J.; Shen, H.Y.; Xiao, L. An efficient and economical culture approach for the enrichment of purified oligodendrocyte progenitor cells. J. Neurosci. Methods, 2012, 209(1), 241-249.
[http://dx.doi.org/10.1016/j.jneumeth.2012.05.032] [PMID: 22687939]
[61]
Dugas, J.C.; Emery, B. Purification of oligodendrocyte precursor cells from rat cortices by immunopanning. Cold Spring Harb. Protoc., 2013, 2013(8), pdb.prot070862.
[http://dx.doi.org/10.1101/pdb.prot070862] [PMID: 23906908]
[62]
Medina-Rodríguez, E.M.; Arenzana, F.J.; Bribián, A.; de Castro, F. Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans. PLoS One, 2013, 8(11), e81620.
[http://dx.doi.org/10.1371/journal.pone.0081620] [PMID: 24303061]
[63]
Power, J. Mayer-Prِschel, M.; Smith, J.; Noble, M. Oligodendrocyte precursor cells from different brain regions express divergent properties consistent with the differing time courses of myelination in these regions. Dev. Biol., 2002, 245(2), 362-375.
[http://dx.doi.org/10.1006/dbio.2002.0610] [PMID: 11977987]
[64]
Sandoe, J.; Eggan, K. Opportunities and challenges of microinsurance. Nat. Neuroscienc, 2013, 16.
[65]
Boyd, A.; Zhang, H.; Williams, A. Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol., 2013, 125(6), 841-859.
[http://dx.doi.org/10.1007/s00401-013-1112-y] [PMID: 23595275]
[66]
Bin, J.M.; Rajasekharan, S.; Kuhlmann, T.; Hanes, I.; Marcal, N.; Han, D.; Rodrigues, S.P.; Leong, S.Y.; Newcombe, J.; Antel, J.P.; Kennedy, T.E. Full-length and fragmented netrin-1 in multiple sclerosis plaques are inhibitors of oligodendrocyte precursor cell migration. Am. J. Pathol., 2013, 183(3), 673-680.
[http://dx.doi.org/10.1016/j.ajpath.2013.06.004] [PMID: 23831296]
[67]
Tepavčević, V.; Kerninon, C.; Aigrot, M.S.; Meppiel, E.; Mozafari, S.; Arnould-Laurent, R.; Ravassard, P.; Kennedy, T.E.; Nait- Oumesmar, B.; Lubetzki, C. Early netrin-1 expression impairs central nervous system remyelination. Ann. Neurol., 2014, 76(2), 252-268.
[http://dx.doi.org/10.1002/ana.24201] [PMID: 24942777]
[68]
Cayre, M.; Courtès, S.; Martineau, F.; Giordano, M.; Arnaud, K.; Zamaron, A.; Durbec, P. Netrin 1 contributes to vascular remodeling in the subventricular zone and promotes progenitor emigration after demyelination. Development, 2013, 140(15), 3107-3117.
[http://dx.doi.org/10.1242/dev.092999] [PMID: 23824572]
[69]
Czepiel, M.; Leicher, L.; Becker, K.; Boddeke, E.; Copray, S. Overexpression of polysialylated neural cell adhesion molecule improves the migration capacity of induced pluripotent stem cell-derived oligodendrocyte precursors. Stem Cells Transl. Med., 2014, 3(9), 1100-1109.
[http://dx.doi.org/10.5966/sctm.2014-0041] [PMID: 25069776]
[70]
Garcia-Leon, J.A.; Vitorica, J.; Gutierrez, A. Use of human pluripotent stem cell-derived cells for neurodegenerative disease modeling and drug screening platform. Future Med. Chem., 2019, 11(11), 1305-1322.
[http://dx.doi.org/10.4155/fmc-2018-0520] [PMID: 31161803]
[71]
Pluchino, S.; Smith, J.A.; Peruzzotti-Jametti, L. Promises and limitations of neural stem cell therapies for progressive multiple sclerosis. Trends Mol. Med., 2020, 26(10), 898-912.
[http://dx.doi.org/10.1016/j.molmed.2020.04.005] [PMID: 32448751]
[72]
Gacem, N.; Nait-Oumesmar, B. Oligodendrocyte development and regenerative therapeutics in multiple sclerosis. Life (Basel), 2021, 11(4), 327.
[http://dx.doi.org/10.3390/life11040327] [PMID: 33918664]
[73]
Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in development, myelin generation and beyond. Cells, 2019, 8(11), 1424.
[http://dx.doi.org/10.3390/cells8111424] [PMID: 31726662]
[74]
Lopez Juarez, A.; He, D.; Richard Lu, Q. Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration. Brain Res., 2016, 1638, 209-220.
[http://dx.doi.org/10.1016/j.brainres.2015.10.051] [PMID: 26546966]
[75]
Elbaz, B.; Popko, B. Molecular control of oligodendrocyte development. Trends Neurosci., 2019, 42(4), 263-277.
[http://dx.doi.org/10.1016/j.tins.2019.01.002] [PMID: 30770136]
[76]
Hou, X.; Zhang, R.; Wang, J.; Li, Y.; Li, F.; Zhang, Y.; Zheng, X.; Shen, Y.; Wang, Y.; Zhou, L. CLC-2 is a positive modulator of oligodendrocyte precursor cell differentiation and myelination. Mol. Med. Rep., 2018, 17(3), 4515-4523.
[http://dx.doi.org/10.3892/mmr.2018.8439] [PMID: 29344669]
[77]
Tiane, A.; Schepers, M.; Rombaut, B.; Hupperts, R.; Prickaerts, J.; Hellings, N.; van den Hove, D.; Vanmierlo, T. From OPC to Oligodendrocyte: An epigenetic journey. Cells, 2019, 8(10), 1236.
[http://dx.doi.org/10.3390/cells8101236] [PMID: 31614602]
[78]
Yavarpour-Bali, H.; Nakhaei-Nejad, M.; Yazdi, A.; Ghasemi-Kasman, M. Direct conversion of somatic cells towards oligodendroglial lineage cells: A novel strategy for enhancement of myelin repair. J. Cell. Physiol., 2020, 235(3), 2023-2036.
[http://dx.doi.org/10.1002/jcp.29195] [PMID: 31523820]
[79]
Nazari, B.; Soleimanifar, F.; Kazemi, M.; Nazari, B.; Enderami, S.E.; Ai, A.; Sadroddiny, E.; Ebrahimi-Barough, S.; Ai, J. Derivation of preoligodendrocytes from human-induced pluripotent stem cells through overexpression of microRNA 338. J. Cell. Biochem., 2019, 120(6), 9700-9708.
[http://dx.doi.org/10.1002/jcb.28248] [PMID: 30582206]
[80]
Chanoumidou, K.; Mozafari, S.; Baron-Van Evercooren, A.; Kuhlmann, T. Stem cell derived oligodendrocytes to study myelin diseases. Glia, 2020, 68(4), 705-720.
[http://dx.doi.org/10.1002/glia.23733] [PMID: 31633852]
[81]
Ehrlich, M.; Mozafari, S.; Glatza, M.; Starost, L.; Velychko, S.; Hallmann, A.L.; Cui, Q.L.; Schambach, A.; Kim, K.P.; Bachelin, C.; Marteyn, A.; Hargus, G.; Johnson, R.M.; Antel, J.; Sterneckert, J.; Zaehres, H. Schِler, H.R.; Baron-Van Evercooren, A.; Kuhlmann, T. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc. Natl. Acad. Sci. USA, 2017, 114(11), E2243-E2252.
[http://dx.doi.org/10.1073/pnas.1614412114] [PMID: 28246330]
[82]
Egawa, N.; Chung, K.K.; Takahashi, R.; Lo, E.H.; Inoue, H.; Arai, K. Brief review: Can modulating DNA methylation state help the clinical application of oligodendrocyte precursor cells as a source of stem cell therapy? Brain Res., 2019, 1723, 146386.
[http://dx.doi.org/10.1016/j.brainres.2019.146386] [PMID: 31419426]
[83]
Wang, S.; Bates, J.; Li, X.; Schanz, S.; Chandler-Militello, D.; Levine, C.; Maherali, N.; Studer, L.; Hochedlinger, K.; Windrem, M.; Goldman, S.A. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell, 2013, 12(2), 252-264.
[http://dx.doi.org/10.1016/j.stem.2012.12.002] [PMID: 23395447]
[84]
Pouya, A.; Satarian, L.; Kiani, S.; Javan, M.; Baharvand, H. Human induced pluripotent stem cells differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination. PLoS One, 2011, 6(11), e27925.
[http://dx.doi.org/10.1371/journal.pone.0027925] [PMID: 22125639]
[85]
Cosmi, L.; Santarlasci, V.; Maggi, L.; Liotta, F.; Annunziato, F. Th17 plasticity: Pathophysiology and treatment of chronic inflammatory disorders. Curr. Opin. Pharmacol., 2014, 17(1), 12-16.
[http://dx.doi.org/10.1016/j.coph.2014.06.004] [PMID: 24980083]
[86]
Kawabata, S.; Takano, M.; Numasawa-Kuroiwa, Y.; Itakura, G.; Kobayashi, Y.; Nishiyama, Y.; Sugai, K.; Nishimura, S.; Iwai, H.; Isoda, M.; Shibata, S.; Kohyama, J.; Iwanami, A.; Toyama, Y.; Matsumoto, M.; Nakamura, M.; Okano, H. Grafted Human iPS cell-derived oligodendrocyte precursor cells contribute to robust remyelination of demyelinated axons after spinal cord injury. Stem Cell Reports, 2016, 6(1), 1-8.
[http://dx.doi.org/10.1016/j.stemcr.2015.11.013] [PMID: 26724902]
[87]
Sachiyo, M.; Ruriko, N.; Yoshitomo, U.; Yoko, W.; Yuko, S.; Akimasa, I. ChaGyun, J.; Hideki, H. Differentiation of oligodendrocytes from mouse induced pluripotent stem cells without serum. Transl. Stroke Res., 2013, 4(2), 149-157.
[88]
Lizhao, F.; Jianfei, C. Tian, E.; Li, L.; Peng, Y.; Mi, Z.; Xianwei, C.; Qi, C.; Guihua, S.; Tao, Z.; Gerardo, F.; Yue, Q.; Wendong, L.; Edward, D. M.; Jeremy, K.; Lucy, G.; Weidong, H.; Yonglun, L.; Wei, D.; David, H.; Joseph, G.; Steven, A. G.; Reuben, M.; Yanhong, S. Cell-based therapy for canavan disease using human iPSC-Derived NPCs and OPCs. Adv. Sci., 2020, 7(23), 2002155.
[89]
Natalie, L.P.; Aude, S. Carmel, O’Brien.; Daniella, H.; Guizhi, S.; Claude, C.A.B. Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. N. Biotechnol., 2015, 32(2), 212-228.
[PMID: 24815224]
[90]
Nagoshi, N.; Okano, H. Applications of induced pluripotent stem cell technologies in spinal cord injury. J. Neurochem., 2017, 141(6), 848-860.
[http://dx.doi.org/10.1111/jnc.13986] [PMID: 28199003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy