Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Mini-Review Article

Recent Advances in N-Heterocycles for COVID-19 Treatment - A Mini Review

Author(s): Monica Dinodia*

Volume 19, Issue 8, 2023

Published on: 27 March, 2023

Page: [717 - 729] Pages: 13

DOI: 10.2174/1573406419666230228115410

Price: $65

Abstract

Severe emergencies occurred across the globe, beginning with the outbreak of SARSCoV in 2002, followed by MERS-CoV in 2012. In December 2019, an acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Wuhan, China as the agent responsible for the recent COVID-19 pandemic outbreak. The virus rapidly spread throughout the world due to its high transmissibility, leading to enormous health problems and complexities. The COVID-19 pandemic has affected public health, the weak persons were severely affected by this virus. To stop the disease from spreading further, effective remedies are the need of the hour. Although SARS-CoV-2 vaccination campaigns are being carried out all over the globe, several new SARS-CoV-2 variants have emerged, and each has caused a wave of infections, highlighting an urgent need for therapeutics targeting SARS-CoV-2. Heterocyclic compounds have been explored extensively for a very long time for their biological activities, namely, anti-inflammatory, antimalarial, antitubercular, anticancer, antiviral, antimicrobial, antidiabetic, and many more bio-activities. Through this review, the author has tried to report the heterocyclic compounds synthesized all over the world over the last 2 years to fight against the SARS CoV-2 coronaviruses. The heterocyclic motifs mentioned in the review can serve as important resources for the development of COVID-19 treatment methods.

Keywords: Biological activities, COVID-19, drug, heterocyclic scaffolds, pandemic, SARS-CoV-2.

Next »
Graphical Abstract
[1]
Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; Penzar, D.; Perlman, S.; Poon, L.L.M.; Samborskiy, D.V.; Sidorov, I.A.; Sola, I.; Ziebuhr, J. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[2]
Rota, P.A.; Oberste, M.S.; Monroe, S.S.; Nix, W.A.; Campagnoli, R.; Icenogle, J.P.; Peñaranda, S.; Bankamp, B.; Maher, K.; Chen, M.; Tong, S.; Tamin, A.; Lowe, L.; Frace, M.; DeRisi, J.L.; Chen, Q.; Wang, D.; Erdman, D.D.; Peret, T.C.T.; Burns, C.; Ksiazek, T.G.; Rollin, P.E.; Sanchez, A.; Liffick, S.; Holloway, B.; Limor, J.; McCaustland, K.; Olsen-Rasmussen, M.; Fouchier, R.; Günther, S.; Osterhaus, A.D.M.E.; Drosten, C.; Pallansch, M.A.; Anderson, L.J.; Bellini, W.J. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 2003, 300(5624), 1394-1399.
[http://dx.doi.org/10.1126/science.1085952] [PMID: 12730500]
[3]
Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820.
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[4]
Page, J.; Hinshaw, D.; McKay, B. In Hunt for Covid-19 Origin, Patient Zero Points to Second Wuhan Market – The man with the first confirmed infection of the new coronavirus told the WHO team that his parents had shopped there. The Wall Street Journal, 2022.https://www.wsj.com/articles/in-hunt-for-covid-19-origin-patient-zero-points-to-second-wuhan-market-11614335404
[5]
Islam, M.A.; Kundu, S.; Alam, S.S.; Hossan, T.; Kamal, M.A.; Hassan, R. Prevalence and characteristics of fever in adult and paediatric patients with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis of 17515 patients. PLoS One, 2021, 16(4), e0249788.
[http://dx.doi.org/10.1371/journal.pone.0249788] [PMID: 33822812]
[6]
Islam, M.A.; Alam, S.S.; Kundu, S.; Hossan, T.; Kamal, M.A.; Cavestro, C. Prevalence of headache in patients With Coronavirus Disease 2019 (COVID-19): A systematic review and meta-analysis of 14,275 patients. Front. Neurol., 2020, 11, 562634.
[http://dx.doi.org/10.3389/fneur.2020.562634] [PMID: 33329305]
[7]
Saniasiaya, J.; Islam, M.A.; Abdullah, B. Prevalence of olfactory dysfunction in coronavirus disease 2019 (COVID-19): A meta-analysis of 27,492 patients. Laryngoscope, 2021, 131(4), 865-878.
[http://dx.doi.org/10.1002/lary.29286] [PMID: 33219539]
[8]
Saniasiaya, J.; Islam, M.A.; Abdullah, B. Prevalence and characteristics of taste disorders in cases of covid-19: A meta-analysis of 29,349 patients. Otolaryngol. Head Neck Surg., 2021, 165(1), 33-42.
[http://dx.doi.org/10.1177/0194599820981018] [PMID: 33320033]
[9]
Oran, D.P.; Topol, E.J. The proportion of SARS-CoV-2 infections that are asymptomatic. Ann. Intern. Med., 2021, 174(5), 655-662.
[http://dx.doi.org/10.7326/M20-6976] [PMID: 33481642]
[10]
a) Bell, T.D. COVID-19 in the critically Ill patient. Infect. Dis. Clin. North Am., 2022, 36(2), 365-377.
[http://dx.doi.org/10.1016/j.idc.2022.02.005] [PMID: 35636905];
b) Gavriatopoulou, M.; Korompoki, E.; Fotiou, D.; Ntanasis-Stathopoulos, I.; Psaltopoulou, T.; Kastritis, E.; Terpos, E.; Dimopoulos, M.A. Organ-specific manifestations of COVID-19 infection. Clin. Exp. Med., 2020, 20(4), 493-506.
[http://dx.doi.org/10.1007/s10238-020-00648-x] [PMID: 32720223]
[11]
a) Raveendran, A.V.; Jayadevan, R.; Sashidharan, S. Long COVID: An overview. Diabetes Metab. Syndr., 2021, 15(3), 869-875.
[http://dx.doi.org/10.1016/j.dsx.2021.04.007] [PMID: 33892403];
b) Alkodaymi, M.S.; Omrani, O.A.; Fawzy, N.A.; Shaar, B.A.; Almamlouk, R.; Riaz, M.; Obeidat, M.; Obeidat, Y.; Gerberi, D.; Taha, R.M.; Kashour, Z.; Kashour, T.; Berbari, E.F.; Alkattan, K.; Tleyjeh, I.M. Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: a systematic review and meta-analysis. Clin. Microbiol. Infect., 2022, 28(5), 657-666.
[http://dx.doi.org/10.1016/j.cmi.2022.01.014] [PMID: 35124265]
[12]
Naming the coronavirus disease (COVID-19) and the virus that causes it. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 [Accesssed on: 7 July 2022].
[13]
WHO. Coronavirus disease. Weekly epidemiological update on COVID-19 - 6 July 2022. 2019. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus2019/situation-reports(Accessed on: 7 July, 2022).
[14]
Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet, 2020, 395(10225), 689-697.
[http://dx.doi.org/10.1016/S0140-6736(20)30260-9] [PMID: 32014114]
[15]
Nile, S.H.; Nile, A.; Jalde, S.; Kai, G. Recent advances in potential drug therapies combating COVID-19 and related coronaviruses-A perspective. Food Chem. Toxicol., 2021, 154, 112333.
[http://dx.doi.org/10.1016/j.fct.2021.112333] [PMID: 34118347]
[16]
Coronavirus disease (COVID-19) advice for the public. 2022. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-forpublic
[17]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[18]
Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov., 2020, 6(1), 14.
[http://dx.doi.org/10.1038/s41421-020-0153-3] [PMID: 32194980]
[19]
Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Agoramoorthy, G.; Lee, S.S. The drug repurposing for covid-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Front. Pharmacol., 2021, 12, 704205.
[http://dx.doi.org/10.3389/fphar.2021.704205] [PMID: 34867318]
[20]
Krammer, F. SARS-CoV-2 vaccines in development. Nature, 2020, 586(7830), 516-527.
[http://dx.doi.org/10.1038/s41586-020-2798-3] [PMID: 32967006]
[21]
Karim, S.S.A.; Karim, Q.A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet, 2021, 398(10317), 2126-2128.
[http://dx.doi.org/10.1016/S0140-6736(21)02758-6] [PMID: 34871545]
[22]
a) Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E.J.; Msomi, N.; Mlisana, K.; von Gottberg, A.; Walaza, S.; Allam, M.; Ismail, A.; Mohale, T.; Glass, A.J.; Engelbrecht, S.; Van Zyl, G.; Preiser, W.; Petruccione, F.; Sigal, A.; Hardie, D.; Marais, G.; Hsiao, N.; Korsman, S.; Davies, M.A.; Tyers, L.; Mudau, I.; York, D.; Maslo, C.; Goedhals, D.; Abrahams, S.; Laguda-Akingba, O.; Alisoltani-Dehkordi, A.; Godzik, A.; Wibmer, C.K.; Sewell, B.T.; Lourenço, J.; Alcantara, L.C.J.; Kosakovsky Pond, S.L.; Weaver, S.; Martin, D.; Lessells, R.J.; Bhiman, J.N.; Williamson, C.; de Oliveira, T. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature, 2021, 592(7854), 438-443.
[http://dx.doi.org/10.1038/s41586-021-03402-9] [PMID: 33690265];
b) Nonaka, C.K.V.; Franco, M.M.; Gräf, T.; de Lorenzo Barcia, C.A.; de Ávila Mendonça, R.N.; de Sousa, K.A.F.; Neiva, L.M.C.; Fosenca, V.; Mendes, A.V.A.; de Aguiar, R.S.; Giovanetti, M.; de Freitas Souza, B.S. Genomic evidence of SARS-CoV-2 reinfection involving E484K spike mutation, Brazil. Emerg. Infect. Dis., 2021, 27(5), 1522-1524.
[http://dx.doi.org/10.3201/eid2705.210191] [PMID: 33605869]
[23]
NIH: U.S. National Library of medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?cond=COVID-19(Accessed on: 7 July 2022).
[24]
a) Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep., 2020, 72(6), 1479-1508.
[http://dx.doi.org/10.1007/s43440-020-00155-6] [PMID: 32889701];
b) Rosa, S.G.V.; Santos, W.C. Clinical trials on drug repositioning for COVID-19 treatment. Rev. Panam. Salud Publica, 2020, 44, 1.
[http://dx.doi.org/10.26633/RPSP.2020.40] [PMID: 32256547]
[25]
Erlanson, D.A. Many small steps towards a COVID-19 drug. Nat. Commun., 2020, 11(1), 5048.
[http://dx.doi.org/10.1038/s41467-020-18710-3] [PMID: 33028832]
[26]
Chary, M.A.; Barbuto, A.F.; Izadmehr, S.; Hayes, B.D.; Burns, M.M. COVID-19: Therapeutics and their toxicities. J. Med. Toxicol., 2020, 16(3), 284-294.
[http://dx.doi.org/10.1007/s13181-020-00777-5] [PMID: 32356252]
[27]
Sabe, M.; Dorsaz, O.; Huguelet, P.; Kaiser, S. Toxicity of psychotropic drugs in patients with COVID-19: A systematic review. Gen. Hosp. Psychiatry, 2021, 70, 1-9.
[http://dx.doi.org/10.1016/j.genhosppsych.2021.02.006] [PMID: 33631694]
[28]
a) Kochi, A.N.; Tagliari, A.P.; Forleo, G.B.; Fassini, G.M.; Tondo, C. Cardiac and arrhythmic complications in patients with COVID-19. J. Cardiovasc. Electrophysiol., 2020, 31(5), 1003-1008.
[http://dx.doi.org/10.1111/jce.14479] [PMID: 32270559];
b) Stevenson, A.; Kirresh, A.; Conway, S.; White, L.; Ahmad, M.; Little, C. Hydroxychloroquine use in COVID-19: is the risk of cardiovascular toxicity justified? Open Heart, 2020, 7(2), e001362.
[http://dx.doi.org/10.1136/openhrt-2020-001362] [PMID: 32817375]
[29]
Ambrus, C.; Bakos, É.; Sarkadi, B.; Özvegy-Laczka, C.; Telbisz, Á. Interactions of anti-COVID-19 drug candidates with hepatic transporters may cause liver toxicity and affect pharmacokinetics. Sci. Rep., 2021, 11(1), 17810.
[http://dx.doi.org/10.1038/s41598-021-97160-3] [PMID: 34497279]
[30]
Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043.
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[31]
Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Design of carbon-carbon and carbon-heteroatom bond formation reactions under green conditions. Curr. Org. Chem., 2020, 23(28), 3154-3190.
[http://dx.doi.org/10.2174/1385272823666191202105820]
[32]
Ju, Y.; Varma, R.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J. Org. Chem., 2006, 71(1), 135-141.
[http://dx.doi.org/10.1021/jo051878h] [PMID: 16388628]
[33]
Zárate-Zárate, D.; Aguilar, R.; Hernández-Benitez, R.I.; Labarrios, E.M.; Delgado, F.; Tamariz, J. Synthesis of α-ketols by functionalization of captodative alkenes and divergent preparation of heterocycles and natural products. Tetrahedron, 2015, 71(38), 6961-6978.
[http://dx.doi.org/10.1016/j.tet.2015.07.010]
[34]
De, A.; Sarkar, S.; Majee, A. Recent advances on heterocyclic compounds with antiviral properties. Chem. Heterocycl. Compd., 2021, 57(4), 410-416.
[http://dx.doi.org/10.1007/s10593-021-02917-3] [PMID: 33994556]
[35]
Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Advances, 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843]
[36]
a) Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P.K.; Bhutani, H.; Paul, A.T.; Kumar, R.U.S. FDA Approved Drugs from 2015–June 2020: A Perspective. J. Med. Chem., 2021, 64(5), 2339-2381.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01786];
b) U.S. Food and Drug Administration (FDA). Coronavirus (COVID-19) Update: FDA Authorizes First Oral Antiviral for Treatment of COVID-19 (December 22, 2021). [News release]. https://www.fda.gov/news-events/pressannouncements/coronavirus-covid-19-update-fda-authorizes-firstoral-antiviral-treatmentcovid-19 (Accessed on: December 19, 2022).;
c) U.S. Food and Drug Administration (FDA). Merck and Ridgeback’s Molnupiravir Receives U.S. FDA Emergency Use Authorization for the Treatment of High-Risk Adults With Mild to Moderate COVID-19. (December 23, 2021 11:08 am ET). [News release] https://www.merck.com/news/merck-andridgebacks-molnupiravir-receives-u-s-fda-emergency-useauthorization-for-the-treatment-of-high-risk-adults-with-mild-tomoderate-covid-19/(Accessed on: December 19, 2022).
[37]
a) Galochkina, A.V.; Bollikanda, R.K.; Zarubaev, V.V.; Tentler, D.G.; Lavrenteva, I.N.; Slita, A.V.; Chirra, N.; Kantevari, S. Synthesis of novel derivatives of 7,8-dihydro-6 H -imidazo[2,1- b][1,3]benzothiazol-5-one and their virus-inhibiting activity against influenza A virus. Arch. Pharm., 2019, 352(2), 1800225.
[http://dx.doi.org/10.1002/ardp.201800225] [PMID: 30520524];
b) Wu, H.; Bock, S.; Snitko, M.; Berger, T.; Weidner, T.; Holloway, S.; Kanitz, M.; Diederich, W.E.; Steuber, H.; Walter, C.; Hofmann, D.; Weißbrich, B.; Spannaus, R.; Acosta, E.G.; Bartenschlager, R.; Engels, B.; Schirmeister, T.; Bodem, J. Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob. Agents Chemother., 2015, 59(2), 1100-1109.
[http://dx.doi.org/10.1128/AAC.03543-14] [PMID: 25487800]
[38]
Salgın-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, Ö.; Köysal, Y.; Kılıç, E.; Işık, Ş.; Aktay, G.; Özalp, M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: Synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg. Med. Chem., 2007, 15(17), 5738-5751.
[http://dx.doi.org/10.1016/j.bmc.2007.06.006] [PMID: 17587585]
[39]
Plech, T.; Wujec, M.; Kosikowska, U.; Malm, A.; Rajtar, B.; Polz-Dacewicz, M. Synthesis and in vitro activity of 1,2,4-triazole-ciprofloxacin hybrids against drug-susceptible and drug-resistant bacteria. Eur. J. Med. Chem., 2013, 60, 128-134.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.040] [PMID: 23287058]
[40]
a) Yurttaş, L.; Özkay, Y.; Duran, M.; Turan-Zitouni, G.; Özdemir, A.; Cantürk, Z.; Küçükoğlu, K.; Kaplancıklı, Z.A. Synthesis and antimicrobial activity evaluation of new dithiocarbamate derivatives bearing thiazole/benzothiazole rings. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(8), 1166-1173.
[http://dx.doi.org/10.1080/10426507.2016.1150277];
b) Kumar, V.; Sharma, S.; Husain, A. Synthesis and in vivo anti-inflammatory and analgesic activities of oxadiazoles clubbed with benzothiazole nucleus. Int. Curr. Pharm. J., 2015, 4(12), 457-461.
[http://dx.doi.org/10.3329/icpj.v4i12.25597]
[41]
a) Tariq, S.; Alam, O.; Amir, M. Synthesis, p38α MAP kinase inhibition, anti-inflammatory activity, and molecular docking studies of 1,2,4-triazole-based benzothiazole-2-amines. Arch. Pharm., 2018, 351(3-4), 1700304.
[http://dx.doi.org/10.1002/ardp.201700304] [PMID: 29611883];
b) Tariq, S.; Kamboj, P.; Alam, O.; Amir, M. 1,2,4-Triazole-Based Benzothiazole/Benzoxazole Derivatives: Design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorg. Chem., 2018, 81, 630-641.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.015] [PMID: 30253336]
[42]
a) Ibrahim, D.A.; Lasheen, D.S.; Zaky, M.Y.; Ibrahim, A.W.; Vullo, D.; Ceruso, M.; Supuran, C.T.; Abou El Ella, D.A. Design and synthesis of benzothiazole-6-sulfonamides acting as highly potent inhibitors of carbonic anhydrase isoforms I, II, IX and XII. Bioorg. Med. Chem., 2015, 23(15), 4989-4999.
[http://dx.doi.org/10.1016/j.bmc.2015.05.019] [PMID: 26048024];
b) Hassan, A.Y.; Sarg, M.T.; Hussein, E.M. Design, synthesis, and anticancer activity of novel benzothiazole analogues. J. Heterocycl. Chem., 2019, 56(4), 1437-1457.
[http://dx.doi.org/10.1002/jhet.3524];
c) Narva, S.; Chitti, S.; Amaroju, S.; Goud, S.; Alvala, M.; Bhattacharjee, D.; Jain, N.; Kondapalli Venkata Gowri, C.S. Design, synthesis, and biological evaluation of 2-(4-aminophenyl)benzothiazole analogues as antiproliferative agents. J. Heterocycl. Chem., 2019, 56(2), 520-532.
[http://dx.doi.org/10.1002/jhet.3427];
d) Yang, M.L.; Zhang, H.; Wang, W.W.; Wang, X.J. Design, synthesis, and evaluation of bis-benzothiazole derivatives as DNA minor groove binding agents. J. Heterocycl. Chem., 2018, 55(1), 360-365.
[http://dx.doi.org/10.1002/jhet.3041];
e) Hu, X.; Li, S.; He, Y.; Ai, P.; Wu, S.; Su, Y.; Li, X.; Cai, L.; Peng, X. Antitumor and antimetastatic activities of a novel benzothiazole-2-thiol derivative in a murine model of breast cancer. Oncotarget, 2017, 8(7), 11887-11895.
[http://dx.doi.org/10.18632/oncotarget.14431] [PMID: 28060755]
[43]
a) Demir Özkay, Ü.; Kaya, C.; Acar Çevik, U.; Can, Ö. Synthesis and antidepressant activity profile of some novel benzothiazole derivatives. Molecules, 2017, 22(9), 1490.
[http://dx.doi.org/10.3390/molecules22091490] [PMID: 28880242];
b) Demir Özkay, Ü.; Can, Ö.D. Sağlık, B.N.; Acar Çevik, U.; Levent, S.; Özkay, Y.; Ilgın, S.; Atlı, Ö. Design, synthesis, and AChE inhibitory activity of new benzothiazole–piperazines. Bioorg. Med. Chem. Lett., 2016, 26(22), 5387-5394.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.041] [PMID: 27789142]
[44]
Gediz Erturk, A.; Sahin, A.; Bati Ay, E.; Pelit, E.; Bagdatli, E.; Kulu, I.; Gul, M.; Mesci, S.; Eryilmaz, S.; Oba Ilter, S.; Yildirim, T. A multidisciplinary approach to Coronavirus Disease (COVID-19). Molecules, 2021, 26(12), 3526.
[http://dx.doi.org/10.3390/molecules26123526] [PMID: 34207756]
[45]
Alzahrani, A.Y.; Shaaban, M.M.; Elwakil, B.H.; Hamed, M.T.; Rezki, N.; Aouad, M.R.; Zakaria, M.A.; Hagar, M. Anti-COVID-19 activity of some benzofused 1,2,3-triazolesulfonamide hybrids using in silico and in vitro analyses. Chemom. Intell. Lab. Syst., 2021, 217, 104421.
[http://dx.doi.org/10.1016/j.chemolab.2021.104421] [PMID: 34538993]
[46]
Haribabu, J.; Garisetti, V.; Malekshah, R.E.; Srividya, S.; Gayathri, D.; Bhuvanesh, N.; Mangalaraja, R.V.; Echeverria, C.; Karvembu, R. Design and synthesis of heterocyclic azole based bioactive compounds: Molecular structures, quantum simulation, and mechanistic studies through docking as multi-target inhibitors of SARS-CoV-2 and cytotoxicity. J. Mol. Struct., 2022, 1250, 131782.
[http://dx.doi.org/10.1016/j.molstruc.2021.131782] [PMID: 34697505]
[47]
a) Balakrishnan, N.; Haribabu, J.; Anantha Krishnan, D.; Swaminathan, S.; Mahendiran, D.; Bhuvanesh, N.S.P.; Karvembu, R. Zinc(II) complexes of indole thiosemicarbazones: DNA/protein binding, molecular docking and in vitro cytotoxicity studies. Polyhedron, 2019, 170, 188-201.
[http://dx.doi.org/10.1016/j.poly.2019.05.039];
b) Haribabu, J.; Jeyalakshmi, K.; Arun, Y.; Bhuvanesh, N.S.P.; Perumal, P.T.; Karvembu, R. Synthesis of Ni(II) complexes bearing indole-based thiosemicarbazone ligands for interaction with biomolecules and some biological applications. J. Biol. Inorg. Chem., 2017, 22(4), 461-480.
[http://dx.doi.org/10.1007/s00775-016-1424-1] [PMID: 27995332]
[48]
Muhammad, Z.A.; Farghaly, T.A.; Althagafi, I.; Al-Hussain, S.A.; Zaki, M.E.A.; Harras, M.F. Synthesis of antimicrobial azoloazines and molecular docking for inhibiting COVID -19. J. Heterocycl. Chem., 2021, 58(6), 1286-1301.
[http://dx.doi.org/10.1002/jhet.4257] [PMID: 34230687]
[49]
Verma, V.A.; Saundane, A.R.; Meti, R.S.; Vennapu, D.R. Synthesis of novel indolo[3,2-c]isoquinoline derivatives bearing pyrimidine, piperazine rings and their biological evaluation and docking studies against COVID-19 virus main protease. J. Mol. Struct., 2021, 1229, 129829.
[http://dx.doi.org/10.1016/j.molstruc.2020.129829] [PMID: 33390613]
[50]
Rajamanickam, R.; Mannangatty, R.; Sampathkumar, J.; Senthamaraikannan, K.; Diravidamani, B. Synthesis, crystal structure, DFT and molecular docking studies of N-acetyl-2,4-[diaryl-3- azabicyclo[3.3.1]nonan-9-yl]-9-spiro-4′-acetyl-2′-(acetylamino)- 4′,9-dihydro-[1′,3′,4′]-thiadiazoles: A potential SARS-nCoV-2 Mpro (COVID-19) inhibitor. J. Mol. Struct., 2022, 1259, 132747.
[http://dx.doi.org/10.1016/j.molstruc.2022.132747] [PMID: 35250091]
[51]
Ramachandran, R.; Rani, M.; Kabilan, S. Synthesis, structure and conformational analysis of 2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-one thiosemicarbazones and semicarbazones. J. Mol. Struct., 2010, 970(1-3), 42-50.
[http://dx.doi.org/10.1016/j.molstruc.2010.02.005]
[52]
Rani, M.; Ramachandran, R.; Kabilan, S. Efficient synthesis, spectral analysis and antimicrobial studies of nitrogen and sulfur containing spiro heterocycles from 2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-ones. Bioorg. Med. Chem. Lett., 2010, 20(22), 6637-6643.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.021] [PMID: 20933408]
[53]
Almalki, S.A.; Bawazeer, T.M.; Asghar, B.; Alharbi, A.; Aljohani, M.M.; Khalifa, M.E.; El-Metwaly, N. Synthesis and characterization of new thiazole-based Co(II) and Cu(II) complexes; therapeutic function of thiazole towards COVID-19 in comparing to current antivirals in treatment protocol. J. Mol. Struct., 2021, 1244, 130961.
[http://dx.doi.org/10.1016/j.molstruc.2021.130961] [PMID: 34188314]
[54]
Chhetri, A.; Chettri, S.; Rai, P.; Mishra, D.K.; Sinha, B.; Brahman, D. Synthesis, characterization and computational study on potential inhibitory action of novel azo imidazole derivatives against COVID-19 main protease (Mpro: 6LU7). J. Mol. Struct., 2021, 1225, 129230.
[http://dx.doi.org/10.1016/j.molstruc.2020.129230] [PMID: 32963413]
[55]
a) Jarrahpour, A.; Esmaeilbeig, A.; Zarei, M. Synthesis of 2-hydroxy-3-methoxy-5-(4-methoxyphenylazo) benzaldehyde. A new aldehyde for the preparation of biologically active molecules. Molbank, 2004, 2004(1), M371.
[http://dx.doi.org/10.3390/M371];
b) Kumar, V.S.; Mary, Y.S.; Pradhan, K.; Brahman, D.; Mary, Y.S.; Thomas, R.; Roxy, M.S.; Alsenoy, C.V. Synthesis, spectral properties, chemical descriptors and light harvesting studies of a new bioactive azo imidazole compound. J. Mol. Struct., 2020, 1199, 127035.
[http://dx.doi.org/10.1016/j.molstruc.2019.127035]
[56]
Mudi, P.K.; Mahato, R.K.; Verma, H.; Panda, S.J.; Purohit, C.S.; Silakari, O.; Biswas, B. In silico anti-SARS-CoV-2 activities of five-membered heterocycle-substituted benzimidazoles. J. Mol. Struct., 2022, 1261, 132869.
[http://dx.doi.org/10.1016/j.molstruc.2022.132869] [PMID: 35340531]
[57]
Mohan, B.; Choudhary, M. Synthesis, crystal structure, computational study and anti-virus effect of mixed ligand copper (II) complex with ONS donor Schiff base and 1, 10-phenanthroline. J. Mol. Struct., 2021, 1246, 131246.
[http://dx.doi.org/10.1016/j.molstruc.2021.131246] [PMID: 34658419]
[58]
Farghaly, T.A.; Althagafi, I.; Ibrahim, M.H.; Al-Qurashi, N.T.; Farooq, U. Synthesis under microwaves irradiation, structure elucidation, docking study for inhibiting COVID-19 and DFT calculations of novel azoles incorporated indole moiety. J. Mol. Struct., 2021, 1244, 131263.
[http://dx.doi.org/10.1016/j.molstruc.2021.131263]
[59]
Domínguez-Villa, F.X.; Durán-Iturbide, N.A.; Ávila-Zárraga, J.G. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorg. Chem., 2021, 106, 104497.
[http://dx.doi.org/10.1016/j.bioorg.2020.104497] [PMID: 33261847]
[60]
Satyanarayana, M.V.; Reddy, A.G.; Yedukondalu, M.; Tej, M.B.; Hossain, K.A.; Rao, M.V.B.; Pal, M. In silico assessment and sonochemical synthesis of 2-alkynyl 3-chloropyrazines as prospective ligands for SARS-CoV-2. J. Mol. Struct., 2021, 1231, 129981.
[http://dx.doi.org/10.1016/j.molstruc.2021.129981] [PMID: 33518802]
[61]
Chidambaram, S.; El-Sheikh, M.A.; Alfarhan, A.H.; Radhakrishnan, S.; Akbar, I. Synthesis of novel coumarin analogues: Investigation of molecular docking interaction of SARS-CoV-2 proteins with natural and synthetic coumarin analogues and their pharmacokinetics studies. Saudi J. Biol. Sci., 2021, 28(1), 1100-1108.
[http://dx.doi.org/10.1016/j.sjbs.2020.11.038] [PMID: 33199969]
[62]
Al-Janabi, A.S.M.; Elzupir, A.O.; Yousef, T.A. Synthesis, anti-bacterial evaluation, DFT study and molecular docking as a potential 3-chymotrypsin-like protease (3CLpro) of SARS-CoV-2 inhibitors of a novel Schiff bases. J. Mol. Struct., 2021, 1228, 129454.
[http://dx.doi.org/10.1016/j.molstruc.2020.129454] [PMID: 33100378]
[63]
Özkan, H. Adem, Ş. Synthesis, spectroscopic characterizations of novel norcantharimides, Their ADME properties and docking studies against COVID-19 Mpro. ChemistrySelect, 2020, 5(18), 5422-5428.
[http://dx.doi.org/10.1002/slct.202001123] [PMID: 32518817]
[64]
Chemboli, R.; Kapavarapu, R.; Deepti, K.; Prasad, K.R.S.; Reddy, A.G.; Kumar, A.V.D.N.; Rao, M.V.B.; Pal, M. Pyrrolo[2,3-b]quinoxalines in attenuating cytokine storm in COVID-19: their sonochemical synthesis and in silico/in vitro assessment. J. Mol. Struct., 2021, 1230, 129868.
[http://dx.doi.org/10.1016/j.molstruc.2020.129868] [PMID: 33424034]
[65]
Missioui, M.; Said, M.A. Demirtaş, G.; Mague, J.T.; Al-Sulami, A.; Al-Kaff, N.S.; Ramli, Y. A possible potential COVID-19 drug candidate: Diethyl 2-(2-(2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)acetyl)hydrazono)malonate: Docking of disordered independent molecules of a novel crystal structure, HSA/DFT/XRD and cytotoxicity. Arab. J. Chem., 2022, 15(2), 103595.
[http://dx.doi.org/10.1016/j.arabjc.2021.103595] [PMID: 34909067]
[66]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[67]
Dai, W.; Zhang, B.; Jiang, X.M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Cheng, X.; Cen, X.; Hu, S.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L.K.; Xu, Y.; Yang, H.; Liu, H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368(6497), 1331-1335.
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[68]
Zhang, L.; Lin, D.; Kusov, Y.; Nian, Y.; Ma, Q.; Wang, J.; von Brunn, A.; Leyssen, P.; Lanko, K.; Neyts, J.; de Wilde, A.; Snijder, E.J.; Liu, H.; Hilgenfeld, R. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. J. Med. Chem., 2020, 63(9), 4562-4578.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01828] [PMID: 32045235]
[69]
Tiwari, V.; Beer, J.C.; Sankaranarayanan, N.V.; Swanson-Mungerson, M.; Desai, U.R. Discovering small-molecule therapeutics against SARS-CoV-2. Drug Discov. Today, 2020, 25(8), 1535-1544.
[http://dx.doi.org/10.1016/j.drudis.2020.06.017] [PMID: 32574699]
[70]
Rashdan, H.R.M.; Abdelmonsef, A.H. Towards Covid-19 TMPRSS2 enzyme inhibitors and antimicrobial agents: Synthesis, antimicrobial potency, molecular docking, and drug-likeness prediction of thiadiazole-triazole hybrids. In: J. Mol. Struct; , 2022; 1268, p. 133659.
[http://dx.doi.org/10.1016/j.molstruc.2022.133659] [PMID: 35818577]
[71]
(a) Wikipedia contributors. (2023, February 24). Baricitinib. In: Wikipedia, The Free Encyclopedia. Retrieved 09:52,, (Accessed on: December 19, 2022), https://en.wikipedia.org/w/index.php?title=Baricitinib&oldid=1141260458;
(b) U.S. Food and drug administration (FDA). Coronavirus (COVID-19) Update:FDA Authorizes First Oral Antiviral for Treatment of COVID-19.[News release] (Accessed on: December 19, 2022) https://www.fda.gov/drugs/emergencypreparedness-drugs/ coronavirus-covid-19-drugs;
(c) U.S. Food and drug administration (FDA).(2022, May 10) FDA Roundup: May 10, 2022. [Press release]. (Accessed on: December 19, 2022), https://www.fda.gov/newsevents/press-announcements/fda-roundup-may-10-2022

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy