Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Serum Irisin is Associated with Bone Mineral Density in Postmenopausal T2dm Patients Complicated with Osteoporosis and in Mice with Diabetic Osteoporosis

Author(s): Xiuxiu Hou, Baorui Xing*, Guochen Zhang, Hao Wu, Nana Feng, Yunmei Li and Guangpu Han

Volume 24, Issue 4, 2023

Published on: 10 April, 2023

Page: [355 - 363] Pages: 9

DOI: 10.2174/1389203724666230228140808

Price: $65

Abstract

Background: Osteoporosis is a systemic bone disease with low bone mass, destruction of bone microstructure, and increased bone fragility. Gender and metabolic status are well-known risk factors for osteoporosis. Irisin is a newly discovered myokine that is secreted by skeletal muscle and adipose tissue. Serum Irisin was reported to be decreased in type 2 diabetes mellitus (T2DM) and/or osteoporosis patients, and it is correlated with bone mineral density (BMD) of neck bone, but its role in postmenopausal T2DM with osteoporosis remains largely unknown.

Methods: Postmenopausal T2DM patients with or without osteoporosis were recruited, and 50 agematched healthy postmenopausal women were employed as healthy control. C57BL/6J mice were intraperitoneally injected with 65 mg/kg Streptozotocin (STZ) daily for consecutive 5 days to induce diabetes, and 1 mg/kg recombinant Irisin protein was injected into diabetic mice through the tail vein once a week for 4 months.

Results: Compared to that of healthy control, serum Irisin levels and BMD in L1–L4 lumbar spine, femoral neck, total hip, and Wards were decreased in postmenopausal T2DM patients and further decreased in T2DM patients with osteoporosis. Moreover, serum Irisin levels were also correlated with BMD in the above body parts in T2DM patients. Furthermore, recombinant Irisin protein improved diabetic osteoporosis and inflammation in STZ-induced diabetic mice with osteoporosis.

Conclusion: Serum Irisin levels in postmenopausal T2DM patients with osteoporosis were significantly decreased, which may be related to the decreased BMD and the occurrence of osteoporosis in postmenopausal T2DM patients. The combined measurement of serum Irisin levels and BMD in patients with T2DM in the early stage has a certain effect on the diagnosis and treatment of osteoporosis.

Keywords: T2DM, osteoporosis, irisin, mice, patients, BMD, streptozotocin.

« Previous
Graphical Abstract
[1]
Lane, J.M.; Russell, L.; Khan, S.N. Osteoporosis. Clin. Orthop. Relat. Res., 2000, 372(372), 139-150.
[http://dx.doi.org/10.1097/00003086-200003000-00016] [PMID: 10738423]
[2]
Lamichhane, A.P. Osteoporosis-an update. JNMA J. Nepal Med. Assoc., 2005, 44(158), 60-66.
[http://dx.doi.org/10.31729/jnma.404] [PMID: 16568580]
[3]
Srivastava, M.; Deal, C. Osteoporosis in elderly: prevention and treatment. Clin. Geriatr. Med., 2002, 18(3), 529-555.
[http://dx.doi.org/10.1016/S0749-0690(02)00022-8] [PMID: 12424871]
[4]
Coughlan, T.; Dockery, F. Osteoporosis and fracture risk in older people. Clin. Med., 2014, 14(2), 187-191.
[http://dx.doi.org/10.7861/clinmedicine.14-2-187] [PMID: 24715132]
[5]
Kelsey, J.L. Risk factors for osteoporosis and associated fractures. Public Health Rep., 1989, 104(Suppl.), 14-20.
[6]
Armas, L.A.G.; Recker, R.R. Pathophysiology of osteoporosis. Endocrinol. Metab. Clin. North Am., 2012, 41(3), 475-486.
[http://dx.doi.org/10.1016/j.ecl.2012.04.006] [PMID: 22877425]
[7]
Gosset, A.; Pouillès, J.M.; Trémollieres, F. Menopausal hormone therapy for the management of osteoporosis. Best Pract. Res. Clin. Endocrinol. Metab., 2021, 35(6), 101551.
[http://dx.doi.org/10.1016/j.beem.2021.101551] [PMID: 34119418]
[8]
Mysiw, W.; Jackson, R. Insights into the epidemiology of postmenopausal osteoporosis: The Women’s Health Initiative. Semin. Reprod. Med., 2014, 32(6), 454-462.
[http://dx.doi.org/10.1055/s-0034-1384629] [PMID: 25321423]
[9]
László, A. Postmenopausal osteoporosis. Orv. Hetil., 2004, 145(1), 3-13.
[PMID: 15222134]
[10]
Xie, W.; Burke, B. Nuclear lamins and diabetes mellitus. STEMedicine, 2020, 2(5), e73.
[http://dx.doi.org/10.37175/stemedicine.v2i5.73]
[11]
Napoli, N.; Chandran, M.; Pierroz, D.D.; Abrahamsen, B.; Schwartz, A.V.; Ferrari, S.L. Mechanisms of diabetes mellitus-induced bone fragility. Nat. Rev. Endocrinol., 2017, 13(4), 208-219.
[http://dx.doi.org/10.1038/nrendo.2016.153] [PMID: 27658727]
[12]
Wang, X.; Jiang, L.; Shao, X. Association analysis of insulin resistance and osteoporosis risk in chinese patients with T2DM. Ther. Clin. Risk Manag., 2021, 17, 909-916.
[http://dx.doi.org/10.2147/TCRM.S328510] [PMID: 34511917]
[13]
Poiana, C.; Capatina, C. Osteoporosis and fracture risk in patients with type 2 diabetes mellitus. Acta Endocrinol., 2019, 15(2), 231-236.
[http://dx.doi.org/10.4183/aeb.2019.231] [PMID: 31508182]
[14]
Polyzos, S.A.; Anastasilakis, A.D.; Efstathiadou, Z.A.; Makras, P.; Perakakis, N.; Kountouras, J.; Mantzoros, C.S. Irisin in metabolic diseases. Endocrine, 2018, 59(2), 260-274.
[http://dx.doi.org/10.1007/s12020-017-1476-1] [PMID: 29170905]
[15]
Panati, K.; Narala, V.R.; Narasimha, V.R.; Derangula, M.; Arva Tatireddigari, V.R.R.; Yeguvapalli, S. Expression, purification and biological characterisation of recombinant human irisin (12.5 kDa). J. Genet. Eng. Biotechnol., 2018, 16(2), 459-466.
[http://dx.doi.org/10.1016/j.jgeb.2018.06.007] [PMID: 30733760]
[16]
Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; Kajimura, S.; Zingaretti, M.C.; Vind, B.F.; Tu, H.; Cinti, S.; Højlund, K.; Gygi, S.P.; Spiegelman, B.M.A. PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 2012, 481(7382), 463-468.
[http://dx.doi.org/10.1038/nature10777] [PMID: 22237023]
[17]
Arhire, L.I.; Mihalache, L.; Covasa, M. Irisin: A hope in understanding and managing obesity and metabolic syndrome. Front. Endocrinol., 2019, 10, 524.
[http://dx.doi.org/10.3389/fendo.2019.00524] [PMID: 31428053]
[18]
Zhang, Y.; Li, R.; Meng, Y.; Li, S.; Donelan, W.; Zhao, Y.; Qi, L.; Zhang, M.; Wang, X.; Cui, T.; Yang, L.J.; Tang, D. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes, 2014, 63(2), 514-525.
[http://dx.doi.org/10.2337/db13-1106] [PMID: 24150604]
[19]
Jeremic, N.; Chaturvedi, P.; Tyagi, S.C. Browning of white fat: Novel insight into factors, mechanisms, and therapeutics. J. Cell. Physiol., 2017, 232(1), 61-68.
[http://dx.doi.org/10.1002/jcp.25450] [PMID: 27279601]
[20]
Chen, Y.; Ding, J.; Zhao, Y.; Ju, S.; Mao, H.; Peng, X.G. Irisin induces white adipose tissue browning in mice as assessed by magnetic resonance imaging. Exp. Biol. Med., 2021, 246(14), 1597-1606.
[http://dx.doi.org/10.1177/15353702211006049] [PMID: 33882700]
[21]
Bargut, T.C.L.; Souza-Mello, V.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. Browning of white adipose tissue: lessons from experimental models. Horm. Mol. Biol. Clin. Investig., 2017, 31(1)
[http://dx.doi.org/10.1515/hmbci-2016-0051] [PMID: 28099124]
[22]
Xin, C.; Zhang, Z.; Gao, G.; Ding, L.; Yang, C.; Wang, C.; Liu, Y.; Guo, Y.; Yang, X.; Zhang, L.; Zhang, L.; Liu, Y.; Jin, Z.; Tao, L. Irisin attenuates myocardial ischemia/reperfusion injury and improves mitochondrial function through AMPK pathway in diabetic mice. Front. Pharmacol., 2020, 11, 565160.
[http://dx.doi.org/10.3389/fphar.2020.565160] [PMID: 33013403]
[23]
Badr Roomi, A.; Nori, W.; Mokram Hamed, R. Lower serum irisin levels are associated with increased osteoporosis and oxidative stress in postmenopausal. Rep. Biochem. Mol. Biol., 2021, 10(1), 13-19.
[http://dx.doi.org/10.52547/rbmb.10.1.13] [PMID: 34277864]
[24]
Morgan, E.N.; Alsharidah, A.S.; Mousa, A.M.; Edrees, H.M. Irisin has a protective role against osteoporosis in ovariectomized rats. BioMed Res. Int., 2021, 5570229.
[http://dx.doi.org/10.1155/2021/5570229]
[25]
Kim, H.; Wrann, C.D.; Jedrychowski, M.; Vidoni, S.; Kitase, Y.; Nagano, K.; Zhou, C.; Chou, J.; Parkman, V.J.A.; Novick, S.J.; Strutzenberg, T.S.; Pascal, B.D.; Le, P.T.; Brooks, D.J.; Roche, A.M.; Gerber, K.K.; Mattheis, L.; Chen, W.; Tu, H.; Bouxsein, M.L.; Griffin, P.R.; Baron, R.; Rosen, C.J.; Bonewald, L.F.; Spiegelman, B.M. Irisin mediates effects on bone and fat via αV integrin receptors. Cell, 2018, 175(7), 1756-1768.e17.
[http://dx.doi.org/10.1016/j.cell.2018.10.025] [PMID: 30550785]
[26]
Yao, C.; Guo, X.; Yao, W.X.; Zhang, C. Cereblon (CRBN) deletion reverses streptozotocin induced diabetic osteoporosis in mice. Biochem. Biophys. Res. Commun., 2018, 496(3), 967-974.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.095] [PMID: 29353038]
[27]
Issa, C.; Zantout, M.S.; Azar, S.T. Osteoporosis in men with diabetes mellitus. J. Osteoporos., 2011, 2011, 1-7.
[http://dx.doi.org/10.4061/2011/651867] [PMID: 21772974]
[28]
Colaianni, G.; Cuscito, C.; Mongelli, T.; Pignataro, P.; Buccoliero, C.; Liu, P.; Lu, P.; Sartini, L.; Di Comite, M.; Mori, G.; Di Benedetto, A.; Brunetti, G.; Yuen, T.; Sun, L.; Reseland, J.E.; Colucci, S.; New, M.I.; Zaidi, M.; Cinti, S.; Grano, M. The myokine irisin increases cortical bone mass. Proc. Natl. Acad. Sci. USA, 2015, 112(39), 12157-12162.
[http://dx.doi.org/10.1073/pnas.1516622112] [PMID: 26374841]
[29]
Teufel, A.; Malik, N.; Mukhopadhyay, M.; Westphal, H. Frcp1 and Frcp2, two novel fibronectin type III repeat containing genes. Gene, 2002, 297(1-2), 79-83.
[http://dx.doi.org/10.1016/S0378-1119(02)00828-4] [PMID: 12384288]
[30]
Roca-Rivada, A.; Castelao, C.; Senin, L.L.; Landrove, M.O.; Baltar, J.; Crujeiras, A.B.; Seoane, L.M.; Casanueva, F.F.; Pardo, M. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One, 2013, 8(4), e60563.
[http://dx.doi.org/10.1371/journal.pone.0060563] [PMID: 23593248]
[31]
Choi, Y.K.; Kim, M.K.; Bae, K.H.; Seo, H.A.; Jeong, J.Y.; Lee, W.K.; Kim, J.G.; Lee, I.K.; Park, K.G. Serum irisin levels in new-onset type 2 diabetes. Diabetes Res. Clin. Pract., 2013, 100(1), 96-101.
[http://dx.doi.org/10.1016/j.diabres.2013.01.007] [PMID: 23369227]
[32]
Qiao, X.; Nie, Y.; Ma, Y.; Chen, Y.; Cheng, R.; Yin, W. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci. Rep., 2016, 6(1), 1-12.
[PMID: 28442746]
[33]
Maciorkowska, M.; Musiałowska, D.; Małyszko, J. Adropin and irisin in arterial hypertension, diabetes mellitus and chronic kidney disease. Adv. Clin. Exp. Med., 2019, 28(11), 1571-1575.
[http://dx.doi.org/10.17219/acem/104551] [PMID: 31756066]
[34]
Briganti, S.I.; Gaspa, G.; Tabacco, G.; Naciu, A.M.; Cesareo, R.; Manfrini, S.; Palermo, A. Irisin as a regulator of bone and glucose metabolism. Minerva Endocrinol., 2018, 43(4), 489-500.
[PMID: 29160051]
[35]
Colaianni, G.; Sanesi, L.; Storlino, G.; Brunetti, G.; Colucci, S.; Grano, M. Irisin and Bone: From preclinical studies to the evaluation of its circulating levels in different populations of human subjects. Cells, 2019, 8(5), 451.
[http://dx.doi.org/10.3390/cells8050451] [PMID: 31091695]
[36]
Timmons, J.A.; Baar, K.; Davidsen, P.K.; Atherton, P.J. Is irisin a human exercise gene? Nature, 2012, 488(7413), E9-E10.
[http://dx.doi.org/10.1038/nature11364] [PMID: 22932392]
[37]
Scharhag-Rosenberger, F.; Meyer, T.; Wegmann, M.; Ruppenthal, S.; Kaestner, L.; Morsch, A.; Hecksteden, A. Irisin does not mediate resistance training-induced alterations in resting metabolic rate. Med. Sci. Sports Exerc., 2014, 46(9), 1736-1743.
[http://dx.doi.org/10.1249/MSS.0000000000000286] [PMID: 24566753]
[38]
Ou-Yang, W.L.; Guo, B.; Xu, F.; Lin, X.; Li, F.X.Z.; Shan, S.K.; Wu, F.; Wang, Y.; Zheng, M.H.; Xu, Q.S.; Yuan, L.Q. The controversial role of irisin in clinical management of coronary heart disease. Front. Endocrinol., 2021, 12, 678309.
[http://dx.doi.org/10.3389/fendo.2021.678309] [PMID: 34276559]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy