Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Mini-Review Article

Minireview on the Mechanism for the Production of 5-hydroxymethylfurfural from Biomass

Author(s): Yongjian Zeng, Zhiwei Jiang, Di Hu, Ruichao Guo and Kai Yan*

Volume 10, Issue 2, 2023

Published on: 12 May, 2023

Page: [109 - 117] Pages: 9

DOI: 10.2174/2213346110666230228141023

Price: $65

Abstract

The synthesis of fuels and fine chemicals from lignocellulosic biomass is the most widely envisioned approach toward the implementation of renewable feedstocks. Significant advances have been made in the selective conversion of biomass-derived platform chemicals. This minireview mainly elucidates the mechanism of biomass-derived 5-hydroxymethylfurfural (HMF) synthesis, including the dehydration of carbohydrates via acyclic and cyclic mechanisms as well as the Maillard reactions. It also highlights the fundamental aspects of reaction mechanisms, recent progress, and challenges.

Keywords: Lignocellulosic biomass, 5-hydroxymethylfurfural, renewable feedstocks, maillard reactions, acyclic and cyclic mechanisms, biomass-derived platform chemicals.

Graphical Abstract
[1]
Son Le, H.; Said, Z.; Tuan Pham, M.; Hieu Le, T.; Veza, I.; Nhanh Nguyen, V.; Deepanraj, B.; Huong Nguyen, L. Production of HMF and DMF biofuel from carbohydrates through catalytic pathways as a sustainable strategy for the future energy sector. Fuel, 2022, 324, 124474.
[http://dx.doi.org/10.1016/j.fuel.2022.124474]
[2]
Jiang, Z.; Zeng, Y.; Hu, D.; Guo, R.; Yan, K.; Luque, R. Chemical transformations of 5-hydroxymethylfurfural to highly added value products: Present and future. Green Chem., 2023.
[http://dx.doi.org/10.1039/D2GC03444A]
[3]
Zhang, Z.; Song, J.; Han, B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem. Rev., 2017, 117(10), 6834-6880.
[http://dx.doi.org/10.1021/acs.chemrev.6b00457]
[4]
Turkin, A.A.; Makshina, E.V.; Sels, B.F. Catalytic hydroconversion of 5-HMF to value-added chemicals: Insights into the role of catalyst properties and feedstock purity. ChemSusChem, 2022, 15(13), e202200412.
[http://dx.doi.org/10.1002/cssc.202200412] [PMID: 35348300]
[5]
Hu, D.; Zhang, M.; Xu, H.; Wang, Y.; Yan, K. Recent advance on the catalytic system for efficient production of biomass-derived 5-hydroxymethylfurfural. Renew. Sustain. Energy Rev., 2021, 147, 111253.
[http://dx.doi.org/10.1016/j.rser.2021.111253]
[6]
Luo, H.; Yu, P.; Li, G.; Yan, K. Topological quantum materials for energy conversion and storage. Nat. Rev. Phys., 2022, 4(9), 611-624.
[http://dx.doi.org/10.1038/s42254-022-00477-9]
[7]
Wang, T.; Nolte, M.W.; Shanks, B.H. Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem., 2014, 16(2), 548-572.
[http://dx.doi.org/10.1039/C3GC41365A]
[8]
Zhang, M.; Hu, D.; Chen, Y.; Jin, Y.; Liu, B.; Lam, C.H.; Yan, K. Electrocatalytic reductive amination and simultaneous oxidation of biomass-derived 5-Hydroxymethylfurfural. Ind. Eng. Chem. Res., 2022, 61(4), 1912-1919.
[http://dx.doi.org/10.1021/acs.iecr.1c04508]
[9]
Li, X.; Xu, R.; Yang, J.; Nie, S.; Liu, D.; Liu, Y.; Si, C. Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind. Crops Prod., 2019, 130, 184-197.
[http://dx.doi.org/10.1016/j.indcrop.2018.12.082]
[10]
Li, X.; Yang, Z.; Wu, G.; Huang, Y.; Zheng, Z.; Garces, H.F.; Yan, K. Fabrication of ultrathin lily-like NiCo2O4 nanosheets via mooring NiCo bimetallic oxide on waste biomass-derived carbon for highly efficient removal of phenolic pollutants. Chem. Eng. J., 2022, 441, 136066.
[http://dx.doi.org/10.1016/j.cej.2022.136066]
[11]
Bicker, M.; Kaiser, D.; Ott, L.; Vogel, H. Dehydration of d-fructose to hydroxymethylfurfural in sub- and supercritical fluids. J. Supercrit. Fluids, 2005, 36(2), 118-126.
[http://dx.doi.org/10.1016/j.supflu.2005.04.004]
[12]
Hu, K.; Zhang, M.; Liu, B.; Yang, Z.; Li, R.; Yan, K. Efficient electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using the facilely synthesized 3D porous WO3/Ni electrode. Mol. Catal., 2021, 504, 111459.
[http://dx.doi.org/10.1016/j.mcat.2021.111459]
[13]
Li, K.; Sun, Y. Electrocatalytic upgrading of biomass-derived intermediate compounds to value-added products. Chemistry, 2018, 24(69), 18258-18270.
[http://dx.doi.org/10.1002/chem.201803319] [PMID: 30125404]
[14]
Liu, B.; Xu, S.; Zhang, M.; Li, X.; Decarolis, D.; Liu, Y.; Wang, Y.; Gibson, E.K.; Catlow, C.R.A.; Yan, K. Electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural and furfural over oxygen vacancy-rich NiCoMn-layered double hydroxides nanosheets. Green Chem., 2021, 23(11), 4034-4043.
[http://dx.doi.org/10.1039/D1GC00901J]
[15]
Teong, S.P.; Yi, G.; Zhang, Y. Hydroxymethylfurfural production from bioresources: past, present and future. Green Chem., 2014, 16(4), 2015-2026.
[http://dx.doi.org/10.1039/c3gc42018c]
[16]
Werpy, T.; Petersen, G.E. Top value added chemicals from biomass; National Renewable Energy Laboratory, 2004, Vol. 1, .
[17]
El Fergani, M.; Candu, N.; Granger, P.; Coman, S.M.; Parvulescu, V.I. Hierarchically MOx@Nb-zeolites for the selective oxidation of HMF to HMFCA. Catal. Today, 2022, 405-406, 267-276.
[http://dx.doi.org/10.1016/j.cattod.2022.04.033]
[18]
Li, Z.; Zhao, L.; Li, B.; Bian, S.; Wang, J.; Zhang, H.; Zhao, C. Base metal catalyzed oxidation of 5-hydroxy-methyl-furfural to 2,5-furan-dicarboxylic acid: A review. Catal. Today, 2023, 408, 64-72.
[http://dx.doi.org/10.1016/j.cattod.2022.09.002]
[19]
Zhang, M.; Liu, Y.; Liu, B.; Chen, Z.; Xu, H.; Yan, K. Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-Hydroxymethylfurfural. ACS Catal., 2020, 10(9), 5179-5189.
[http://dx.doi.org/10.1021/acscatal.0c00007]
[20]
Mukherjee, A.; Dumont, M.J.; Raghavan, V. Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass Bioenergy, 2015, 72, 143-183.
[http://dx.doi.org/10.1016/j.biombioe.2014.11.007]
[21]
Wang, Y.; Shi, J.; Chen, X.; Chen, M.; Wang, J.; Yao, J. Ethyl levulinate production from cellulose conversion in ethanol medium over high-efficiency heteropoly acids. Fuel, 2022, 324, 124642.
[http://dx.doi.org/10.1016/j.fuel.2022.124642]
[22]
Liu, B.; Zheng, Z.; Liu, Y.; Zhang, M.; Wang, Y.; Wan, Y.; Yan, K. Efficient electrooxidation of biomass-derived aldehydes over ultrathin NiV-layered double hydroxides films. J. Energy Chem., 2023, 78, 412-421.
[http://dx.doi.org/10.1016/j.jechem.2022.11.041]
[23]
Chien Truong, C.; Kumar Mishra, D.; Hyeok Ko, S.; Jin Kim, Y.; Suh, Y.W. Sustainable catalytic transformation of biomass-derived 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)tetrahydrofuran. ChemSusChem, 2022, 15(13), e202200178.
[http://dx.doi.org/10.1002/cssc.202200178] [PMID: 35286783]
[24]
Xu, H.; Hu, D.; Lin, L.; Zhang, M.; Li, X.; Zeng, Y.; Amer, M.; Luo, W.; Yan, K. MOF‐derived bimetallic NiCo nanoalloys for the hydrogenation of biomass‐derived levulinic acid to γ‐valerolactone. AIChE J., 2023, 69(2), e17973.
[http://dx.doi.org/10.1002/aic.17973]
[25]
Yang, Z.Z.; Deng, J.; Pan, T.; Guo, Q.X.; Fu, Y. A one-pot approach for conversion of fructose to 2,5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2. Green Chem., 2012, 14(11), 2986-2989.
[http://dx.doi.org/10.1039/c2gc35947b]
[26]
Nie, Y.; Hou, Q.; Qian, H.; Bai, X.; Xia, T.; Lai, R.; Yu, G.; Rehman, M.L.U.; Ju, M. Synthesis of mesoporous sulfonated carbon from chicken bones to boost rapid conversion of 5-hydroxymethylfurfural and carbohydrates to 5-ethoxymethylfurfural. Renew. Energy, 2022, 192, 279-288.
[http://dx.doi.org/10.1016/j.renene.2022.04.105]
[27]
van Putten, R.J.; van der Waal, J.C.; de Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev., 2013, 113(3), 1499-1597.
[http://dx.doi.org/10.1021/cr300182k] [PMID: 23394139]
[28]
Zhou, J.; Xia, Z.; Huang, T.; Yan, P.; Xu, W.; Xu, Z.; Wang, J.; Zhang, Z.C. An ionic liquid–organics–water ternary biphasic system enhances the 5-hydroxymethylfurfural yield in catalytic conversion of glucose at high concentrations. Green Chem., 2015, 17(8), 4206-4216.
[http://dx.doi.org/10.1039/C5GC01039J]
[29]
Caes, B.R.; Teixeira, R.E.; Knapp, K.G.; Raines, R.T. Biomass to furanics: Renewable routes to chemicals and fuels. ACS Sustain. Chem.& Eng., 2015, 3(11), 2591-2605.
[http://dx.doi.org/10.1021/acssuschemeng.5b00473]
[30]
Esteban, J.; Vorholt, A.J.; Leitner, W. An overview of the biphasic dehydration of sugars to 5-hydroxymethylfurfural and furfural: a rational selection of solvents using COSMO-RS and selection guides. Green Chem., 2020, 22(7), 2097-2128.
[http://dx.doi.org/10.1039/C9GC04208C]
[31]
Yu, I.K.M.; Tsang, D.C.W. Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresour. Technol., 2017, 238, 716-732.
[http://dx.doi.org/10.1016/j.biortech.2017.04.026] [PMID: 28434789]
[32]
Abdul Rani, M.A.A.B.; Karim, N.A.; Kamarudin, S.K. Recent reaction systems for the synthesis of 5‐hydroxymethylfurfural (HMF) from carbohydrates with process development analysis: A review. Int. J. Energy Res., 2022, 46(13), 18996-19050.
[http://dx.doi.org/10.1002/er.8545]
[33]
Chen, S.S.; Maneerung, T.; Tsang, D.C.W.; Ok, Y.S.; Wang, C.H. Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chem. Eng. J., 2017, 328, 246-273.
[http://dx.doi.org/10.1016/j.cej.2017.07.020]
[34]
Wan, Y.; Lee, J.M. Recent advances in reductive upgrading of 5-Hydroxymethylfurfural via heterogeneous thermocatalysis. ChemSusChem, 2022, 15(13), e202102041.
[http://dx.doi.org/10.1002/cssc.202102041] [PMID: 34786865]
[35]
Zhang, M.; Xu, S.; Boubeche, M.; Decarolis, D.; Huang, Y.; Liu, B.; Gibson, E.K.; Li, X.; Wang, Y.; Luo, H.; Catlow, C.R.A.; Yan, K. Designed TiS2 nanosheets for efficient electrocatalytic reductive amination of biomass-derived furfurals. Green Chem., 2022, 24(24), 9570-9578.
[http://dx.doi.org/10.1039/D2GC03234A]
[36]
Xu, H.; Li, X.; Hu, W.; Lu, L.; Chen, J.; Zhu, Y.; Zhou, H.; Zhou, H.; Si, C. Recent advances on solid acid catalyic systems for production of 5-Hydroxymethylfurfural from biomass derivatives. Fuel Process. Technol., 2022, 234, 107338.
[http://dx.doi.org/10.1016/j.fuproc.2022.107338]
[37]
Zhao, Y.; Lu, K.; Xu, H.; Zhu, L.; Wang, S. A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renew. Sustain. Energy Rev., 2021, 139, 110706.
[http://dx.doi.org/10.1016/j.rser.2021.110706]
[38]
Wang, Q.; Wang, S.; Li, J.; Ruan, L.; Wei, N.; Huang, L.; Dong, Z.; Cheng, Q.; Xiong, Y.; Zeng, W. A novel aqueous zinc-ion hybrid supercapacitor based on TiS2 (de)intercalation battery-type anode. Adv. Electron. Mater., 2020, 6(10), 2000388.
[http://dx.doi.org/10.1002/aelm.202000388]
[39]
Kuster, B.F.M. 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Stärke, 1990, 42(8), 314-321.
[http://dx.doi.org/10.1002/star.19900420808]
[40]
Qian, X.; Nimlos, M.R.; Davis, M.; Johnson, D.K.; Himmel, M.E. Ab initio molecular dynamics simulations of β-d-glucose and β-d-xylose degradation mechanisms in acidic aqueous solution. Carbohydr. Res., 2005, 340(14), 2319-2327.
[http://dx.doi.org/10.1016/j.carres.2005.07.021] [PMID: 16095579]
[41]
Assary, R.S.; Kim, T.; Low, J.J.; Greeley, J.; Curtiss, L.A. Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods. Phys. Chem. Chem. Phys., 2012, 14(48), 16603-16611.
[http://dx.doi.org/10.1039/c2cp41842h] [PMID: 22932938]
[42]
Kabyemela, B.M.; Adschiri, T.; Malaluan, R.M.; Arai, K. Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction pathway, mechanisms, and kinetics. Ind. Eng. Chem. Res., 1999, 38(8), 2888-2895.
[http://dx.doi.org/10.1021/ie9806390]
[43]
Qian, X. Mechanisms and energetics for Brønsted acid-catalyzed glucose condensation, dehydration and isomerization reactions. Top. Catal., 2012, 55(3-4), 218-226.
[http://dx.doi.org/10.1007/s11244-012-9790-6]
[44]
Moreau, C.; Durand, R.; Razigade, S.; Duhamet, J.; Faugeras, P.; Rivalier, P.; Ros, P.; Avignon, G. Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl. Catal. A Gen., 1996, 145(1-2), 211-224.
[http://dx.doi.org/10.1016/0926-860X(96)00136-6]
[45]
Moreau, C.; Durand, R.; Duhamet, J.; Rivalier, P. Hydrolysis of fructose and glucose precursors in the presence of H-form zeolites. J. Carbohydr. Chem., 1997, 16(4-5), 709-714.
[http://dx.doi.org/10.1080/07328309708007350]
[46]
Moreau, C.; Durand, R.; Roux, A.; Tichit, D. Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites. Appl. Catal. A Gen., 2000, 193(1-2), 257-264.
[http://dx.doi.org/10.1016/S0926-860X(99)00435-4]
[47]
Kuster, B.F.M.; van der Baan, S.H. The influence of the initial and catalyst concentrations on the dehydration of -fructose. Carbohydr. Res., 1977, 54(2), 165-176.
[http://dx.doi.org/10.1016/S0008-6215(00)84806-5]
[48]
Huang, R.D.; Feather, M.S. Carbon-13 NMR study of some Maillard reaction products arising from D-glucose-DL-alanine interactions. J. Agric. Food Chem., 1988, 36(4), 673-676.
[http://dx.doi.org/10.1021/jf00082a001]
[49]
Wolfrom, M.L.; Wallace, E.G.; Metcalf, E.A. The transformation of tetramethylglucoseen-1,2 into 5-(Methoxymethyl)-2-furaldehyde. J. Am. Chem. Soc., 1942, 64(2), 265-269.
[http://dx.doi.org/10.1021/ja01254a017]
[50]
Yan, K.; Wu, G.; Lafleur, T.; Jarvis, C. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew. Sustain. Energy Rev., 2014, 38, 663-676.
[http://dx.doi.org/10.1016/j.rser.2014.07.003]
[51]
Ståhlberg, T.; Fu, W.; Woodley, J.M.; Riisager, A. Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals. ChemSusChem, 2011, 4(4), 451-458.
[http://dx.doi.org/10.1002/cssc.201000374] [PMID: 21275065]
[52]
Ståhlberg, T.; Rodriguez-Rodriguez, S.; Fristrup, P.; Riisager, A. Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter. Chem. Eur. J., 2011, 17(5), 1456-1464.
[http://dx.doi.org/10.1002/chem.201002171] [PMID: 21268148]
[53]
Antal, M.J., Jr; Mok, W.S.L.; Richards, G.N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr. Res., 1990, 199(1), 91-109.
[http://dx.doi.org/10.1016/0008-6215(90)84096-D] [PMID: 2379202]
[54]
Qi, L.; Mui, Y.F.; Lo, S.W.; Lui, M.Y.; Akien, G.R.; Horváth, I.T. Catalytic conversion of fructose, glucose, and sucrose to 5-(Hydroxymethyl)furfural and levulinic and formic acids in γ-valerolactone as a green solvent. ACS Catal., 2014, 4(5), 1470-1477.
[http://dx.doi.org/10.1021/cs401160y]
[55]
Zhang, J.; Weitz, E. An in situ NMR study of the mechanism for the catalytic conversion of fructose to 5-Hydroxymethylfurfural and then to levulinic acid using 13C labeled D-fructose. ACS Catal., 2012, 2(6), 1211-1218.
[http://dx.doi.org/10.1021/cs300045r]
[56]
Yan, K.; Lafleur, T.; Wu, X.; Chai, J.; Wu, G.; Xie, X. Cascade upgrading of γ-valerolactone to biofuels. Chem. Commun., 2015, 51(32), 6984-6987.
[http://dx.doi.org/10.1039/C5CC01463H] [PMID: 25797827]
[57]
Yan, K.; Yang, Y.; Chai, J.; Lu, Y. Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals. Appl. Catal. B, 2015, 179, 292-304.
[http://dx.doi.org/10.1016/j.apcatb.2015.04.030]
[58]
Akien, G.R.; Qi, L.; Horváth, I.T. Molecular mapping of the acid catalysed dehydration of fructose. Chem. Commun., 2012, 48(47), 5850-5852.
[http://dx.doi.org/10.1039/c2cc31689g] [PMID: 22573141]
[59]
Mika, L.T.; Cséfalvay, E.; Németh, Á. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability. Chem. Rev., 2018, 118(2), 505-613.
[http://dx.doi.org/10.1021/acs.chemrev.7b00395]
[60]
Schneider, B.; Lichtenthaler, F.W.; Steinle, G.; Schiweck, H. Studies on ketoses, 1 distribution of furanoid and pyranoid tautomers of D-fructose in water, dimethyl sulfoxide, and pyridine via 1H NMR intensities of anomeric hydroxy groups in [D6]DMSO. Liebigs Ann. Chem., 1985, 1985(12), 2443-2453.
[http://dx.doi.org/10.1002/jlac.198519851213]
[61]
Audemar, M.; Atencio-Genes, L.; Ortiz Mellet, C.; Jérôme, F.; Garcia, F. J.M.; De Oliveira Vigier, K. Carbon dioxide as a traceless caramelization promotor: Preparation of prebiotic difructose dianhydrides (DFAs)-enriched caramels from D-fructose. J. Agric. Food Chem., 2017, 65(30), 6093-6099.
[http://dx.doi.org/10.1021/acs.jafc.7b01601] [PMID: 28557424]
[62]
Wang, J.; Xi, J.; Xia, Q.; Liu, X.; Wang, Y. Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes. Sci. China Chem., 2017, 60(7), 870-886.
[http://dx.doi.org/10.1007/s11426-016-9035-1]
[63]
Girisuta, B.; Janssen, L.P.B.M.; Heeres, H.J. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind. Eng. Chem. Res., 2007, 46(6), 1696-1708.
[http://dx.doi.org/10.1021/ie061186z]
[64]
Girisuta, B.; Danon, B.; Manurung, R.; Janssen, L.P.B.M.; Heeres, H.J. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresour. Technol., 2008, 99(17), 8367-8375.
[http://dx.doi.org/10.1016/j.biortech.2008.02.045] [PMID: 18417339]
[65]
Wang, J.; Cui, H.; Wang, J.; Li, Z.; Wang, M.; Yi, W. Kinetic insight into glucose conversion to 5-hydroxymethyl furfural and levulinic acid in LiCl⋅3H2O without additional catalyst. Chem. Eng. J., 2021, 415, 128922.
[http://dx.doi.org/10.1016/j.cej.2021.128922]
[66]
Ishida, H.; Seri, K. Catalytic activity of lanthanoide(III) ions for dehydration of d-glucose to 5-(hydroxymethyl) furfural. J. Mol. Catal. Chem., 1996, 112(2), L163-L165.
[http://dx.doi.org/10.1016/1381-1169(96)00285-3]
[67]
Pidko, E.A.; Degirmenci, V.; van Santen, R.A.; Hensen, E.J.M. Glucose activation by transient Cr2+ dimers. Angew. Chem. Int. Ed., 2010, 49(14), 2530-2534.
[http://dx.doi.org/10.1002/anie.201000250] [PMID: 20232433]
[68]
Hu, S.; Zhang, Z.; Song, J.; Zhou, Y.; Han, B. Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chem., 2009, 11(11), 1746-1749.
[http://dx.doi.org/10.1039/b914601f]
[69]
Peterson, A.A.; Lachance, R.P.; Tester, J.W. Kinetic evidence of the Maillard reaction in hydrothermal biomass processing: Glucose−glycine interactions in high-temperature, high-pressure water. Ind. Eng. Chem. Res., 2010, 49(5), 2107-2117.
[http://dx.doi.org/10.1021/ie9014809]
[70]
Nikolov, P.Y.; Yaylayan, V.A. Reversible and covalent binding of 5-(hydroxymethyl)-2-furaldehyde (HMF) with lysine and selected amino acids. J. Agric. Food Chem., 2011, 59(11), 6099-6107.
[http://dx.doi.org/10.1021/jf200735c] [PMID: 21557617]
[71]
Martins, S.I.F.S. Unravelling the Maillard reaction network by multiresponse kinetic modelling. PhD Dissertation; Wageningen University: The Netherlands, 2003.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy