Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

Endometrial Cancer Stem Cells Related Signaling Pathways

Author(s): Fatemeh Khojasteh Pour, Mona Keivan, Farhoodeh Ghaedrahmati, Najmieh Saadati, Farideh Moramezi, Roshan Nikbakht and Maryam Farzaneh*

Volume 19, Issue 4, 2023

Published on: 05 May, 2023

Page: [284 - 291] Pages: 8

DOI: 10.2174/1573394719666230306145642

Price: $65

Abstract

Endometrial cancer is gynecologic cancer that occurs in the uterus. Endometrial cancer stem cells (ECSC) are a small population of cancer cells that represent a crucial role in the metastasis of endometrial cancer cells to other organs in the body. ECSC can proliferate and give rise to mature cancer cells, which are found to participate in the aggressiveness of metastatic lesions. Therefore, targeting ECSC can be a valuable strategy for drug development against the metastasis of endometrial cancer. Previous studies have demonstrated that several signaling pathways, including Wnt, mTOR, EGFR, NOTCH, STAT3, VEGF, and SHH show modest effects and regulate the growth, epithelial-to-mesenchymal transition (EMT), and tumorigenesis of ECSC. Non-coding RNAs (ncRNAs) also play an important role in ECSC self-renewal, progression, and drug resistance. Hence, targeting these pathways might be a novel therapeutic approach for endometrial cancer diagnosis and therapy. This mini-review aims to characterize the main signaling pathways involved in the stimulation of ECSCs proliferation and tumorigenesis.

Keywords: Endometrial cancer, endometrial cancer stem cells, signaling pathways, miRNAs, metastasis, tumorigenesis.

Graphical Abstract
[1]
Leskela S, Pérez-Mies B, Rosa-Rosa JM, et al. Molecular basis of tumor heterogeneity in endometrial carcinosarcoma. Cancers 2019; 11(7): 964.
[http://dx.doi.org/10.3390/cancers11070964] [PMID: 31324031]
[2]
Fridrichova I, Kalinkova L, Karhanek M, et al. miR-497-5p decreased expression associated with high-risk endometrial cancer. Int J Mol Sci 2020; 22(1): 127.
[http://dx.doi.org/10.3390/ijms22010127] [PMID: 33374439]
[3]
SANTORO A, Inzani F, Pesci A, et al. Current prognostic and predictive biomarkers for endometrial cancer in clinical practice: Recommendations/proposal from the italian group of study. Front Oncol 2022; 12: 805613.
[http://dx.doi.org/10.3389/fonc.2022.805613] [PMID: 35463299]
[4]
Dong P, Kaneuchi M, Konno Y, Watari H, Sudo S, Sakuragi N. Emerging therapeutic biomarkers in endometrial cancer. Biomed Res Int 2013; 2013: 130362.
[http://dx.doi.org/10.1155/2013/130362]
[5]
Marnitz S, Walter T, Schömig-Markiefka B, Engler T, Kommoss S, Brucker SY. A modern approach to endometrial carcinoma: Will molecular classification improve precision medicine in the future? Cancers 2020; 12(9): 2577.
[http://dx.doi.org/10.3390/cancers12092577] [PMID: 32927671]
[6]
Talhouk A, McAlpine JN. New classification of endometrial cancers: The development and potential applications of genomic-based classification in research and clinical care. Gynecol Oncol Res Pract 2016; 3(1): 14.
[http://dx.doi.org/10.1186/s40661-016-0035-4] [PMID: 27999680]
[7]
Bosse T, Nout RA, McAlpine JN, et al. Molecular classification of grade 3 endometrioid endometrial cancers identifies distinct prognostic subgroups. Am J Surg Pathol 2018; 42(5): 561-8.
[http://dx.doi.org/10.1097/PAS.0000000000001020] [PMID: 29505428]
[8]
Haruma T, Nagasaka T, Nakamura K, et al. Clinical impact of endometrial cancer stratified by genetic mutational profiles, POLE mutation, and microsatellite instability. PLoS One 2018; 13(4): e0195655.
[http://dx.doi.org/10.1371/journal.pone.0195655] [PMID: 29659608]
[9]
León-Castillo A, Britton H, McConechy MK, et al. Interpretation of somatic POLE mutations in endometrial carcinoma. J Pathol 2020; 250(3): 323-35.
[http://dx.doi.org/10.1002/path.5372] [PMID: 31829442]
[10]
Liu P, Long P, Huang Y, Sun F, Wang Z. CXCL12/CXCR4 axis induces proliferation and invasion in human endometrial cancer. Am J Transl Res 2016; 8(4): 1719-29.
[PMID: 27186295]
[11]
Bhat AA, Nisar S, Maacha S, et al. Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Mol Cancer 2021; 20(1): 2.
[http://dx.doi.org/10.1186/s12943-020-01294-3] [PMID: 33390169]
[12]
Adekoya TO, Richardson RM. Cytokines and chemokines as mediators of prostate cancer metastasis. Int J Mol Sci 2020; 21(12): 4449.
[http://dx.doi.org/10.3390/ijms21124449] [PMID: 32585812]
[13]
Maheshwari A, Gupta S, Prat J. A proposal for updating the staging of endometrial cancer. Int J Gynaecol Obstet 2019; 145(2): 245-52.
[http://dx.doi.org/10.1002/ijgo.12789] [PMID: 30776091]
[14]
Casadio P, Magnarelli G, Alletto A, et al. Endometrial cancer. In: Atlas of Hysteroscopy. Springer 2020; pp. 125-152.
[http://dx.doi.org/10.1007/978-3-030-29466-3_15]
[15]
van den Heerik ASV, Horeweg N, de Boer SM, Bosse T, Creutzberg CL. Adjuvant therapy for endometrial cancer in the era of molecular classification: Radiotherapy, chemoradiation and novel targets for therapy. Int J Gynecol Cancer 2020; 31(4): 594-604.
[http://dx.doi.org/10.1136/ijgc-2020-001822] [PMID: 33082238]
[16]
Chen JLY, Huang YS, Huang CY, et al. Impact of adjuvant radiotherapy on the survival of women with optimally resected stage III endometrial cancer in the era of modern radiotherapy: A retrospective study. Radiat Oncol 2020; 15(1): 72.
[http://dx.doi.org/10.1186/s13014-020-01523-5] [PMID: 32252781]
[17]
Bestvina CM, Fleming GF. Chemotherapy for endometrial cancer in adjuvant and advanced disease settings. Oncologist 2016; 21(10): 1250-9.
[http://dx.doi.org/10.1634/theoncologist.2016-0062] [PMID: 27412393]
[18]
El-Sahwi KS, Schwartz PE, Santin AD. Development of targeted therapy in uterine serous carcinoma, a biologically aggressive variant of endometrial cancer. Expert Rev Anticancer Ther 2012; 12(1): 41-9.
[http://dx.doi.org/10.1586/era.11.192] [PMID: 22149431]
[19]
Mitamura T, Dong P, Ihira K, Kudo M, Watari H. Molecular-targeted therapies and precision medicine for endometrial cancer. Jpn J Clin Oncol 2019; 49(2): 108-20.
[http://dx.doi.org/10.1093/jjco/hyy159] [PMID: 30423148]
[20]
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: A comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5(1): 137.
[http://dx.doi.org/10.1038/s41392-020-0199-6] [PMID: 32728057]
[21]
Giannone G, Attademo L, Scotto G, et al. Endometrial cancer stem cells: Role, characterization and therapeutic implications. Cancers 2019; 11(11): 1820.
[http://dx.doi.org/10.3390/cancers11111820] [PMID: 31752447]
[22]
Kato K. Stem cells in human normal endometrium and endometrial cancer cells: Characterization of side population cells. Kaohsiung J Med Sci 2012; 28(2): 63-71.
[http://dx.doi.org/10.1016/j.kjms.2011.06.028] [PMID: 22313532]
[23]
Ding Z, Wicha MS, Popel AS, Wallace T, Chen H, He X. Advances in Cancer Stem Cells. In: Advances in Cancer Stem Cells. 2020; p. 190.
[24]
Farzaneh M, Derakhshan Z, Hallajzadeh J, Sarani NH, Nejabatdoust A, Khoshnam SE. Suppression of TGF-β and ERK signaling pathways as a new strategy to provide rodent and non-rodent pluripotent stem cells. Curr Stem Cell Res Ther 2019; 14(6): 466-73.
[http://dx.doi.org/10.2174/1871527318666190314110529] [PMID: 30868962]
[25]
Farzaneh M, Anbiyaiee A, Khoshnam SE. Human pluripotent stem cells for spinal cord injury. Curr Stem Cell Res Ther 2020; 15(2): 135-43.
[http://dx.doi.org/10.2174/1574362414666191018121658] [PMID: 31656156]
[26]
Wang XJ, Jiang FZ, Tong H, et al. Dicer1 dysfunction promotes stemness and aggression in endometrial carcinoma. Tumour Biol 2017; 39(4): 1010428317695967.
[http://dx.doi.org/10.1177/1010428317695967] [PMID: 28381177]
[27]
Du FY, Zhou QF, Sun WJ, Chen GL. Targeting cancer stem cells in drug discovery: Current state and future perspectives. World J Stem Cells 2019; 11(7): 398-420.
[http://dx.doi.org/10.4252/wjsc.v11.i7.398] [PMID: 31396368]
[28]
Kato K. Endometrial cancer stem cells: A new target for cancer therapy. Anticancer Res 2012; 32(6): 2283-93.
[PMID: 22641664]
[29]
Gao Y, Liu T, Cheng W, Wang H. Isolation and characterization of proliferative, migratory and multidrug-resistant endometrial carcinoma-initiating cells from human type II endometrial carcinoma cell lines. Oncol Rep 2012; 28(2): 527-32.
[http://dx.doi.org/10.3892/or.2012.1807] [PMID: 22581025]
[30]
Wang J, Zhang L, Jiang W, et al. MicroRNA-135a promotes proliferation, migration, invasion and induces chemoresistance of endometrial cancer cells. Eur J Obstet Gynecol Reprod Biol X 2020; 5: 100103.
[http://dx.doi.org/10.1016/j.eurox.2019.100103] [PMID: 32021975]
[31]
Zhang S, Yang X, Wang L, Zhang C. Interplay between inflammatory tumor microenvironment and cancer stem cells (Review). Oncol Lett 2018; 16(1): 679-86.
[http://dx.doi.org/10.3892/ol.2018.8716] [PMID: 29963133]
[32]
Sabah A, Hourani S, Therachiyil L, et al. Epigenetic regulations of cancer stem cells by the aryl hydrocarbon receptor pathway. Semin Cancer Biol 2020; 83: 177-96.
[http://dx.doi.org/10.1016/j.semcancer.2020.08.014] [PMID: 32877761]
[33]
Liu H, Wan J, Chu J. Long non-coding RNAs and endometrial cancer. Biomed Pharmacother 2019; 119: 109396.
[http://dx.doi.org/10.1016/j.biopha.2019.109396] [PMID: 31505425]
[34]
Chen G, Liu B, Yin S, et al. Hypoxia induces an endometrial cancer stem-like cell phenotype via HIF-dependent demethylation of SOX2 mRNA. Oncogenesis 2020; 9(9): 81.
[http://dx.doi.org/10.1038/s41389-020-00265-z] [PMID: 32913192]
[35]
Kato M, Onoyama I, Yoshida S, et al. Dual‐specificity phosphatase 6 plays a critical role in the maintenance of a cancer stem‐like cell phenotype in human endometrial cancer. Int J Cancer 2020; 147(7): 1987-99.
[http://dx.doi.org/10.1002/ijc.32965] [PMID: 32159851]
[36]
Xu Y, Li N. Endometrial regenerative cells and endometria cancer stem cells: New insights may provide novel therapeutic targets. Int J Clin Exp Med 2019; 12: 9607-15.
[37]
Hubbard SA, Gargett CE. A cancer stem cell origin for human endometrial carcinoma? Reproduction 2010; 140(1): 23-32.
[http://dx.doi.org/10.1530/REP-09-0411] [PMID: 20089663]
[38]
Hubbard SA, Friel AM, Kumar B, Zhang L, Rueda BR, Gargett CE. Evidence for cancer stem cells in human endometrial carcinoma. Cancer Res 2009; 69(21): 8241-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4808] [PMID: 19843861]
[39]
Yetkin-Arik B, Kastelein AW, Klaassen I, et al. Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy. Biochim Biophys Acta Rev Cancer 2021; 1875(1): 188446.
[http://dx.doi.org/10.1016/j.bbcan.2020.188446] [PMID: 33058997]
[40]
Quintero-Fabián S, Arreola R, Becerril-Villanueva E, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 2019; 9: 1370.
[http://dx.doi.org/10.3389/fonc.2019.01370] [PMID: 31921634]
[41]
Nallanthighal S, Heiserman JP, Cheon DJ. The role of the extracellular matrix in cancer stemness. Front Cell Dev Biol 2019; 7: 86-6.
[http://dx.doi.org/10.3389/fcell.2019.00086] [PMID: 31334229]
[42]
Savage P. Chemotherapy curable malignancies and cancer stem cells: A biological review and hypothesis. BMC Cancer 2016; 16(1): 906.
[http://dx.doi.org/10.1186/s12885-016-2956-z] [PMID: 27871274]
[43]
Phi LTH, Sari IN, Yang YG, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int 2018; 2018: 1-16.
[http://dx.doi.org/10.1155/2018/5416923] [PMID: 29681949]
[44]
Kyo S. Endometrial cancer stem cells: Are they a possible therapeutic target? Curr Obstet Gynecol Rep 2013; 2(1): 1-10.
[http://dx.doi.org/10.1007/s13669-012-0030-7]
[45]
Tabuchi Y, Hirohashi Y, Hashimoto S, et al. Clonal analysis revealed functional heterogeneity in cancer stem-like cell phenotypes in uterine endometrioid adenocarcinoma. Exp Mol Pathol 2019; 106: 78-88.
[http://dx.doi.org/10.1016/j.yexmp.2018.11.013] [PMID: 30503404]
[46]
Carvalho MJ, Laranjo M, Abrantes AM, et al. Endometrial cancer spheres show cancer stem cells phenotype and preference for oxidative metabolism. Pathol Oncol Res 2019; 25(3): 1163-74.
[http://dx.doi.org/10.1007/s12253-018-0535-0] [PMID: 30499076]
[47]
Sun Y, Yoshida T, Okabe M, et al. Isolation of stem-like cancer cells in primary endometrial cancer using cell surface markers CD133 and CXCR4. Transl Oncol 2017; 10(6): 976-87.
[http://dx.doi.org/10.1016/j.tranon.2017.07.007] [PMID: 29096246]
[48]
Nakamura M, Zhang X, Mizumoto Y, et al. Molecular characterization of CD133+ cancer stem-like cells in endometrial cancer. Int J Oncol 2014; 44(3): 669-77.
[http://dx.doi.org/10.3892/ijo.2013.2230] [PMID: 24366104]
[49]
Bokhari AA, Baker TM, Dorjbal B, et al. Nestin suppression attenuates invasive potential of endometrial cancer cells by downregulating TGF-β signaling pathway. Oncotarget 2016; 7(43): 69733-48.
[http://dx.doi.org/10.18632/oncotarget.11947] [PMID: 27626172]
[50]
Mendoza-Almanza G, Ortíz-Sánchez E, Rocha-Zavaleta L, Rivas-Santiago C, Esparza-Ibarra E, Olmos J. Cervical cancer stem cells and other leading factors associated with cervical cancer development. Oncol Lett 2019; 18(4): 3423-32.
[http://dx.doi.org/10.3892/ol.2019.10718] [PMID: 31516560]
[51]
Rodriguez-Torres M, Allan AL. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin Exp Metastasis 2016; 33(1): 97-113.
[http://dx.doi.org/10.1007/s10585-015-9755-9] [PMID: 26445849]
[52]
Ciccone V, Morbidelli L, Ziche M, Donnini S. How to conjugate the stemness marker ALDH1A1 with tumor angiogenesis, progression, and drug resistance. Cancer Drug Resist 2020; 3(1): 26-37.
[PMID: 35582039]
[53]
Kiyohara MH, Dillard C, Tsui J, et al. EMP2 is a novel therapeutic target for endometrial cancer stem cells. Oncogene 2017; 36(42): 5793-807.
[http://dx.doi.org/10.1038/onc.2017.142] [PMID: 28604744]
[54]
Yoshida S, Asanoma K, Yagi H, et al. Fibronectin mediates activation of stromal fibroblasts by SPARC in endometrial cancer cells. BMC Cancer 2021; 21(1): 156.
[http://dx.doi.org/10.1186/s12885-021-07875-9] [PMID: 33579227]
[55]
Yusuf N, Inagaki T, Kusunoki S, et al. SPARC was overexpressed in human endometrial cancer stem-like cells and promoted migration activity. Gynecol Oncol 2014; 134(2): 356-63.
[http://dx.doi.org/10.1016/j.ygyno.2014.04.009] [PMID: 24769035]
[56]
Suzuki I, Yoshida S, Tabu K, et al. YBX2 and cancer testis antigen 45 contribute to stemness, chemoresistance and a high degree of malignancy in human endometrial cancer. Sci Rep 2021; 11(1): 4220.
[http://dx.doi.org/10.1038/s41598-021-83200-5] [PMID: 33602962]
[57]
Markowska A. Pawałowska M, Lubin J, Markowska J. Reviews signalling pathways in endometrial cancer. Contemp Oncol 2014; 3(3): 143-8.
[http://dx.doi.org/10.5114/wo.2014.43154] [PMID: 25520571]
[58]
Mirantes C, Espinosa I, Ferrer I, Dolcet X, Prat J, Matias-Guiu X. Epithelial-to-mesenchymal transition and stem cells in endometrial cancer. Hum Pathol 2013; 44(10): 1973-81.
[http://dx.doi.org/10.1016/j.humpath.2013.04.009] [PMID: 23845467]
[59]
Coopes A, Henry CE, Llamosas E, Ford CE. An update of Wnt signalling in endometrial cancer and its potential as a therapeutic target. Endocr Relat Cancer 2018; 25(12): R647-62.
[http://dx.doi.org/10.1530/ERC-18-0112] [PMID: 30093601]
[60]
Kusunoki S, Kato K, Tabu K, et al. The inhibitory effect of salinomycin on the proliferation, migration and invasion of human endometrial cancer stem-like cells. Gynecol Oncol 2013; 129(3): 598-605.
[http://dx.doi.org/10.1016/j.ygyno.2013.03.005] [PMID: 23500085]
[61]
Lu H, Ju D, Yang G, et al. Targeting cancer stem cell signature gene SMOC-2 Overcomes chemoresistance and inhibits cell proliferation of endometrial carcinoma. EBioMedicine 2019; 40: 276-89.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.044] [PMID: 30594556]
[62]
Dewangan J, Srivastava S, Rath SK. Salinomycin: A new paradigm in cancer therapy. Tumour Biol 2017; 39(3)
[http://dx.doi.org/10.1177/1010428317695035] [PMID: 28349817]
[63]
Dong P, Konno Y, Watari H, Hosaka M, Noguchi M, Sakuragi N. The impact of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer. J Transl Med 2014; 12(1): 231.
[http://dx.doi.org/10.1186/s12967-014-0231-0] [PMID: 25141911]
[64]
van der Zee M, Sacchetti A, Cansoy M, et al. IL6/JAK1/STAT3 signaling blockade in endometrial cancer affects the ALDHhi/CD126+ stem-like component and reduces tumor burden. Cancer Res 2015; 75(17): 3608-22.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2498] [PMID: 26130650]
[65]
Moshapa FT, Riches-Suman K, Palmer TM. Therapeutic targeting of the proinflammatory IL-6-JAK/STAT signalling pathways responsible for vascular restenosis in type 2 diabetes mellitus. Cardiol Res Pract 2019; 2019: 1-15.
[http://dx.doi.org/10.1155/2019/9846312] [PMID: 30719343]
[66]
Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition. Cells 2020; 9(1): 217.
[http://dx.doi.org/10.3390/cells9010217] [PMID: 31952344]
[67]
Jonusiene V, Sasnauskiene A. Notch and endometrial cancer. In: Notch Signaling in Embryology and Cancer. Springer 2021; pp. 47-57.
[http://dx.doi.org/10.1007/978-3-030-55031-8_4]
[68]
Shang C, Lang B, Meng L. Blocking NOTCH pathway can enhance the effect of EGFR inhibitor through targeting CD133+ endometrial cancer cells. Cancer Biol Ther 2018; 19(2): 113-9.
[http://dx.doi.org/10.1080/15384047.2016.1250985] [PMID: 27791463]
[69]
Feng YZ, Shiozawa T, Miyamoto T, et al. Overexpression of hedgehog signaling molecules and its involvement in the proliferation of endometrial carcinoma cells. Clin Cancer Res 2007; 13(5): 1389-98.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1407] [PMID: 17332280]
[70]
Polychronidou G, Kotoula V, Manousou K, et al. Mismatch repair deficiency and aberrations in the Notch and Hedgehog pathways are of prognostic value in patients with endometrial cancer. PLoS One 2018; 13(12): e0208221.
[http://dx.doi.org/10.1371/journal.pone.0208221] [PMID: 30521558]
[71]
He Y, Guo Q, Cheng Y, et al. Abnormal activation of the sonic hedgehog signaling pathway in endometriosis and its diagnostic potency. Fertil Steril 2018; 110(1): 128-36.
[http://dx.doi.org/10.1016/j.fertnstert.2018.02.138] [PMID: 29980254]
[72]
Jin X, Wang J, Li Q, et al. SPOP targets oncogenic protein ZBTB3for destruction to suppress endometrial cancer. SSRN Electronic Journal 2019; 9(12): 2797-812.
[http://dx.doi.org/10.2139/ssrn.3491871]] [PMID: 31911863]
[73]
Wadehra M, Kiyohara M, Ashki N, Chan A. Effect of therapeutic targeting of EMP2 on breast and endometrial cancer stem cells. J Clin Oncol 2013; 31(S15): 3080.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.3080]
[74]
Ashki N, Gordon L, Wadehra M. Review of the GAS3 family of proteins and their relevance to cancer. Crit Rev Oncog 2015; 20(5-6): 435-47.
[http://dx.doi.org/10.1615/CritRevOncog.v20.i5-6.140] [PMID: 27279240]
[75]
Gordon LK, Kiyohara M, Fu M, et al. EMP2 regulates angiogenesis in endometrial cancer cells through induction of VEGF. Oncogene 2013; 32(46): 5369-76.
[http://dx.doi.org/10.1038/onc.2012.622] [PMID: 23334331]
[76]
Ahmat Amin MKB, Shimizu A, Ogita H. The pivotal roles of the epithelial membrane protein family in cancer invasiveness and metastasis. Cancers 2019; 11(11): 1620.
[http://dx.doi.org/10.3390/cancers11111620] [PMID: 31652725]
[77]
Qin Y, Fu M, Takahashi M, et al. Epithelial membrane protein-2 (EMP2) activates Src protein and is a novel therapeutic target for glioblastoma. J Biol Chem 2014; 289(20): 13974-85.
[http://dx.doi.org/10.1074/jbc.M113.543728] [PMID: 24644285]
[78]
Muralikrishnan V, Hurley TD, Nephew KP. Targeting aldehyde dehydrogenases to eliminate cancer stem cells in gynecologic malignancies. Cancers 2020; 12(4): 961.
[http://dx.doi.org/10.3390/cancers12040961] [PMID: 32295073]
[79]
Favier A, Rocher G, Larsen AK, et al. MicroRNA as epigenetic modifiers in endometrial cancer: A systematic review. Cancers 2021; 13(5): 1137.
[http://dx.doi.org/10.3390/cancers13051137] [PMID: 33800944]
[80]
Santosh B, Varshney A, Yadava PK. Non-coding RNAs: Biological functions and applications. Cell Biochem Funct 2015; 33(1): 14-22.
[http://dx.doi.org/10.1002/cbf.3079] [PMID: 25475931]
[81]
Sebastian-delaCruz M, Gonzalez-Moro I, Olazagoitia-Garmendia A, Castellanos-Rubio A, Santin I. The role of lncRNAs in gene expression regulation through mRNA stabilization. Noncoding RNA 2021; 7(1): 3.
[http://dx.doi.org/10.3390/ncrna7010003] [PMID: 33466464]
[82]
Gao Y, Liu T, Huang Y. MicroRNA-134 suppresses endometrial cancer stem cells by targeting POGLUT1 and Notch pathway proteins. FEBS Lett 2015; 589(2): 207-14.
[http://dx.doi.org/10.1016/j.febslet.2014.12.002] [PMID: 25528443]
[83]
Wang Z, Wang W, Huang K, Wang Y, Li J, Yang X. MicroRNA-34a inhibits cells proliferation and invasion by downregulating Notch1 in endometrial cancer. Oncotarget 2017; 8(67): 111258-70.
[http://dx.doi.org/10.18632/oncotarget.22770] [PMID: 29340051]
[84]
Gong B, Yue Y, Wang R, Zhang Y, Jin Q, Zhou X. Overexpression of microRNA-194 suppresses the epithelial-mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells. Tumour Biol 2017; 39(6): 1010428317706217.
[http://dx.doi.org/10.1177/1010428317706217] [PMID: 28618953]
[85]
Li Y, Huo J, He J. LncRNA MONC suppresses the malignant phenotype of endometrial cancer stem cells and endometrial carcinoma Cells by regulating the MiR-636/GLCE axis. Cancer Cell Int 2021; 21(1): 331.
[http://dx.doi.org/10.1186/s12935-021-01911-1] [PMID: 34193130]
[86]
Gao Y, Qian H, Tang X, et al. Superparamagnetic iron oxide nanoparticle-mediated expression of miR-326 inhibits human endometrial carcinoma stem cell growth. Int J Nanomedicine 2019; 14: 2719-31.
[http://dx.doi.org/10.2147/IJN.S200480] [PMID: 31114192]
[87]
Li BL, Wan XP. The role of lncRNAs in the development of endometrial carcinoma. Oncol Lett 2018; 16(3): 3424-9.
[http://dx.doi.org/10.3892/ol.2018.9065] [PMID: 30127944]
[88]
Xu WW, Jin J, Wu X, Ren QL, Farzaneh M. MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int 2022; 22(1): 126.
[http://dx.doi.org/10.1186/s12935-022-02540-y] [PMID: 35305641]
[89]
Zhou X, Gao Q, Wang J, Zhang X, Liu K, Duan Z. Linc-RNA-RoR acts as a “sponge” against mediation of the differentiation of endometrial cancer stem cells by microRNA-145. Gynecol Oncol 2014; 133(2): 333-9.
[http://dx.doi.org/10.1016/j.ygyno.2014.02.033] [PMID: 24589415]
[90]
Łuczak A, Supernat A, Łapińska-Szumczyk S, et al. HOTAIR inrelation to epithelial-mesenchymal transition and cancer stem cells in molecular subtypes of endometrial cancer. Int J Biol Markers 2016; 31(3): 245-51.
[http://dx.doi.org/10.5301/jbm.5000187] [PMID: 26868332]
[91]
Lai T, Qiu H, Si L, Zhen Y, Chu D, Guo R. Long noncoding RNA BMPR1B-AS1 facilitates endometrial cancer cell proliferation and metastasis by sponging miR-7-2-3p to modulate the DCLK1/Akt/NF-κB pathway. Cell Cycle 2022; 21(15): 1599-618.
[http://dx.doi.org/10.1080/15384101.2022.2060003] [PMID: 35404759]
[92]
Chen H, Ma J, Kong F, Song N, Wang C, Ma X. UPF1 contributes to the maintenance of endometrial cancer stem cell phenotype by stabilizing LINC00963. Cell Death Dis 2022; 13(3): 257.
[http://dx.doi.org/10.1038/s41419-022-04707-x] [PMID: 35318304]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy