Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Dihydrofolate Reductase (DHFR) Inhibitors: A Comprehensive Review

Author(s): Renu Sehrawat, Priyanka Rathee, Sarita Khatkar, EsraKüpeli Akkol, Maryam Khayatkashani, Seyed Mohammad Nabavi and Anurag Khatkar*

Volume 31, Issue 7, 2024

Published on: 19 May, 2023

Page: [799 - 824] Pages: 26

DOI: 10.2174/0929867330666230310091510

Price: $65

Abstract

Background: Dihydrofolate reductase (DHFR) is an indispensable enzyme required for the survival of most prokaryotic and eukaryotic cells as it is involved in the biosynthesis of essential cellular components. DHFR has attracted a lot of attention as a molecular target for various diseases like cancer, bacterial infection, malaria, tuberculosis, dental caries, trypanosomiasis, leishmaniasis, fungal infection, influenza, Buruli ulcer, and respiratory illness. Various teams of researchers have reported different DHFR inhibitors to explore their therapeutic efficacy. Despite all the progress made, there is a strong need to find more novel leading structures, which may be used as better and safe DHFR inhibitors, especially against the microorganisms which are resistant to the developed drug candidates.

Objective: This review aims to pay attention to recent development, particularly made in the past two decades and published in this field, and pay particular attention to promising DHFR inhibitors. Hence, an attempt has been made in this article to highlight the structure of dihydrofolate reductase, the mechanism of action of DHFR inhibitors, most recently reported DHFR inhibitors, diverse pharmacological applications of DHFR inhibitors, reported in silico study data and recent patents based on DHFR inhibitors to comprehensively portray the current scenery for researchers interested in designing novel DHFR inhibitors.

Conclusion: A critical review of recent studies revealed that most novel DHFR inhibitor compounds either synthetically or naturally derived are characterized by the presence of heterocyclic moieties in their structure. Non-classical antifolates like trimethoprim, pyrimethamine, and proguanil are considered excellent templates to design novel DHFR inhibitors, and most of them have substituted 2,4-diamino pyrimidine motifs. Targeting DHFR has massive potential to be investigated for newer therapeutic possibilities to treat various diseases of clinical importance.

Keywords: Dihydrofolate reductase (DHFR) inhibitors, tuberculosis, pyrimethamine, enzyme, methotrexate, trimethoprim.

[1]
Hawser, S.; Lociuro, S.; Islam, K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem. Pharmacol., 2006, 71(7), 941-948.
[http://dx.doi.org/10.1016/j.bcp.2005.10.052] [PMID: 16359642]
[2]
Hariri, S.; Rasti, B.; Shirini, F.; Ghasemi, J.B. A combined structure-based pharmacophore modeling and 3D-QSAR study on a series of N-heterocyclic scaffolds to screen novel antagonists as human DHFR inhibitors. Struct. Chem., 2021, 32(4), 1571-1588.
[http://dx.doi.org/10.1007/s11224-020-01705-7]
[3]
Rao, A.S.; Tapale, S.R. A study on dihdrofolate reductase and its inhibitors: A review. Int. J. Pharm. Sci. Res., 2013, 4(2535), 2535-2547.
[4]
Foye, W.O.; Lemke, T.L.; Williams, D.A. Principles of medicinal chemistry.Wolter Kluwer Health Adis, 1995.
[5]
He, J.; Qiao, W.; An, Q.; Yang, T.; Luo, Y. Dihydrofolate reductase inhibitors for use as antimicrobial agents. Eur. J. Med. Chem., 2020, 195, 112268.
[http://dx.doi.org/10.1016/j.ejmech.2020.112268] [PMID: 32298876]
[6]
Gibson, M.W.; Dewar, S.; Ong, H.B.; Sienkiewicz, N.; Fairlamb, A.H. Trypanosoma brucei DHFR-TS revisited: Characterisation of a bifunctional and highly unstable recombinant dihydrofolate reductase-thymidylate synthase. PLoS Negl. Trop. Dis., 2016, 10(5), e0004714.
[http://dx.doi.org/10.1371/journal.pntd.0004714] [PMID: 27175479]
[7]
El-Gazzar, Y.I.; Georgey, H.H.; El-Messery, S.M.; Ewida, H.A.; Hassan, G.S.; Raafat, M.M.; Ewida, M.A.; El-Subbagh, H.I. Synthesis, biological evaluation and molecular modeling study of new (1,2,4-triazole or 1,3,4-thiadiazole)-methylthio-derivatives of quinazolin-4(3 H )-one as DHFR inhibitors. Bioorg. Chem., 2017, 72, 282-292.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.019] [PMID: 28499189]
[8]
Fesatidou, M.; Zagaliotis, P.; Camoutsis, C.; Petrou, A.; Eleftheriou, P.; Tratrat, C.; Haroun, M.; Geronikaki, A.; Ciric, A.; Sokovic, M. 5-Adamantan thiadiazole-based thiazolidinones as antimicrobial agents. Design, synthesis, molecular docking and evaluation. Bioorg. Med. Chem., 2018, 26(16), 4664-4676.
[http://dx.doi.org/10.1016/j.bmc.2018.08.004] [PMID: 30107969]
[9]
Polshakov, V.I. Dihydrofolate reductase: Structural aspects of mechanisms of enzyme catalysis and inhibition. Russ. Chem. Bull., 2001, 50(10), 1733-1751.
[http://dx.doi.org/10.1023/A:1014313625350]
[10]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[11]
Then, R.L. Antimicrobial dihydrofolate reductase inhibitors achievements and future options: Review. J. Chemother., 2004, 16(1), 3-12.
[http://dx.doi.org/10.1179/joc.2004.16.1.3] [PMID: 15077993]
[12]
Huang, D.B.; Strader, C.D.; MacDonald, J.S.; VanArendonk, M.; Peck, R.; Holland, T. An updated review of iclaprim: A potent and rapidly bactericidal antibiotic for the treatment of skin and skin structure infections and nosocomial pneumonia caused by gram-positive including multidrug-resistant bacteria. Open Forum Infect. Dis., 2018, 5(2), ofy003.
[http://dx.doi.org/10.1093/ofid/ofy003] [PMID: 29423421]
[13]
Krajinovic, M.; Abaji, R.; Sharif-Askari, B. DHFR (dihydrofolate reductase). Atlas Genet. Cytogenet. Oncol. Haematol., 2018.
[http://dx.doi.org/10.4267/2042/66069]
[14]
da Cunha, E.F.F.; Ramalho, T.C.; Maia, E.R.; de Alencastro, R.B. The search for new DHFR inhibitors: A review of patents, January 2001 – February 2005. Expert Opin. Ther. Pat., 2005, 15(8), 967-986.
[http://dx.doi.org/10.1517/13543776.15.8.967]
[15]
Raimondi, M.; Randazzo, O.; La Franca, M.; Barone, G.; Vignoni, E.; Rossi, D.; Collina, S. DHFR inhibitors: Reading the past for discovering novel anticancer agents. Molecules, 2019, 24(6), 1140.
[http://dx.doi.org/10.3390/molecules24061140] [PMID: 30909399]
[16]
Wang, M.; Yang, J.; Yuan, M.; Xue, L.; Li, H.; Tian, C.; Wang, X.; Liu, J.; Zhang, Z. Synthesis and antiproliferative activity of a series of novel 6-substituted pyrido[3,2- d ]pyrimidines as potential nonclassical lipophilic antifolates targeting dihydrofolate reductase. Eur. J. Med. Chem., 2017, 128, 88-97.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.033] [PMID: 28152430]
[17]
Ducker, G.S.; Rabinowitz, J.D. One-carbon metabolism in health and disease. Cell Metab., 2017, 25(1), 27-42.
[http://dx.doi.org/10.1016/j.cmet.2016.08.009] [PMID: 27641100]
[18]
Brown, P.M.; Pratt, A.G.; Isaacs, J.D. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat. Rev. Rheumatol., 2016, 12(12), 731-742.
[http://dx.doi.org/10.1038/nrrheum.2016.175] [PMID: 27784891]
[19]
Nordberg, M.G. Approaches to Soft Drug Analogues of Dihydrofolate Reductase Inhibitors, PhD thesis, Acta Universitatis Upsaliensis. 2001.
[20]
Cao, H.; Gao, M.; Zhou, H.; Skolnick, J. The crystal structure of a tetrahydrofolate-bound dihydrofolate reductase reveals the origin of slow product release. Commun. Biol., 2018, 1(1), 226.
[http://dx.doi.org/10.1038/s42003-018-0236-y] [PMID: 30564747]
[21]
Macreadie, I.; Ginsburg, H.; Sirawaraporn, W.; Tilley, L. Antimalarial drug development and new targets. Parasitol. Today, 2000, 16(10), 438-444.
[http://dx.doi.org/10.1016/S0169-4758(00)01758-0] [PMID: 11006476]
[22]
Wróbel, A.; Drozdowska, D. Recent design and structure-activity relationship studies on the modifications of DHFR inhibitors as anticancer agents. Curr. Med. Chem., 2021, 28(5), 910-939.
[http://dx.doi.org/10.2174/1875533XMTAxnNTQey] [PMID: 31622199]
[23]
Cody, V.; Schwalbe, C.H. Structural characteristics of antifolate dihydrofolate reductase enzyme interactions. Crystallogr. Rev., 2006, 12(4), 301-333.
[http://dx.doi.org/10.1080/08893110701337727]
[24]
Mhashal, A.R.; Vardi-Kilshtain, A.; Kohen, A.; Major, D.T. The role of the Met20 loop in the hydride transfer in Escherichia coli dihydrofolate reductase. J. Biol. Chem., 2017, 292(34), 14229-14239.
[http://dx.doi.org/10.1074/jbc.M117.777136] [PMID: 28620051]
[25]
Oliveira, A.A.; Rennó, M.N.; de Matos, C.A.S.; Bertuzzi, M.D.; Ramalho, T.C.; Fraga, C.A.M.; França, T.C.C. Molecular modeling studies of Yersinia pestis dihydrofolate reductase. J. Biomol. Struct. Dyn., 2011, 29(2), 351-367.
[http://dx.doi.org/10.1080/07391102.2011.10507390] [PMID: 21875154]
[26]
Zuccotto, F.; Martin, A.C.R.; Laskowski, R.A.; Thornton, J.M.; Gilbert, I.H. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania. J. Comput. Aided Mol. Des., 1998, 12(3), 241-257.
[http://dx.doi.org/10.1023/A:1016085005275] [PMID: 9749368]
[27]
Cummins, J. Antimicrobial resistance. N. Z. Med. J., 1999, 112(1087), 166-167.
[PMID: 10378813]
[28]
Moran, G.J.; Krishnadasan, A.; Gorwitz, R.J.; Fosheim, G.E.; McDougal, L.K.; Carey, R.B.; Talan, D.A. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med., 2006, 355(7), 666-674.
[http://dx.doi.org/10.1056/NEJMoa055356] [PMID: 16914702]
[29]
Fridkin, S.K.; Hageman, J.C.; Morrison, M.; Sanza, L.T.; Como-Sabetti, K.; Jernigan, J.A.; Harriman, K.; Harrison, L.H.; Lynfield, R.; Farley, M.M. Methicillin-resistant staphylococcus aureus disease in three communities. Active bacterial core surveillance program of the emerging infections program network N. Engl. J. Med., 2005, 352(14), 1436-1444.
[http://dx.doi.org/10.1056/NEJMoa043252] [PMID: 15814879]
[30]
Kumar, M.; Dagar, A.; Gupta, V.K.; Sharma, A. In silico docking studies of bioactive natural plant products as putative DHFR antagonists. Med. Chem. Res., 2014, 23(2), 810-817.
[http://dx.doi.org/10.1007/s00044-013-0654-9] [PMID: 25620864]
[31]
Mokmak, W.; Chunsrivirot, S.; Hannongbua, S.; Yuthavong, Y.; Tongsima, S.; Kamchonwongpaisan, S. Molecular dynamics of interactions between rigid and flexible antifolates and dihydrofolate reductase from pyrimethamine-sensitive and pyrimethamine-resistant Plasmodium falciparum. Chem. Biol. Drug Des., 2014, 84(4), 450-461.
[http://dx.doi.org/10.1111/cbdd.12334] [PMID: 24716467]
[32]
Gregson, A.; Plowe, C.V. Mechanisms of resistance of malaria parasites to antifolates. Pharmacol. Rev., 2005, 57(1), 117-145.
[http://dx.doi.org/10.1124/pr.57.1.4] [PMID: 15734729]
[33]
Bolstad, D.B.; Bolstad, E.S.D.; Wright, D.L.; Anderson, A.C. Dihydrofolate reductase inhibitors: Developments in antiparasitic chemotherapy. Expert Opin. Ther. Pat., 2008, 18(2), 143-157.
[http://dx.doi.org/10.1517/13543776.18.2.143] [PMID: 20553119]
[34]
Alam, M.S.; Saleh, M.A.; Mozibullah, M.; Riham, A.T.; Solayman, M.; Gan, S.H. Computational algorithmic and molecular dynamics study of functional and structural impacts of non-synonymous single nucleotide polymorphisms in human DHFR gene. Comput. Biol. Chem., 2021, 95, 107587.
[http://dx.doi.org/10.1016/j.compbiolchem.2021.107587] [PMID: 34710812]
[35]
Matthews, D.A.; Bolin, J.T.; Burridge, J.M.; Filman, D.J.; Volz, K.W.; Kaufman, B.T.; Beddell, C.R.; Champness, J.N.; Stammers, D.K.; Kraut, J. Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim. J. Biol. Chem., 1985, 260(1), 381-391.
[http://dx.doi.org/10.1016/S0021-9258(18)89743-5] [PMID: 3880742]
[36]
Wróbel, A.; Arciszewska, K.; Maliszewski, D.; Drozdowska, D. Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J. Antibiot., 2020, 73(1), 5-27.
[http://dx.doi.org/10.1038/s41429-019-0240-6] [PMID: 31578455]
[37]
Eliopoulos, G.M.; Huovinen, P. Resistance to trimethoprim-sulfamethoxazole. Clin. Infect. Dis., 2001, 32(11), 1608-1614.
[http://dx.doi.org/10.1086/320532] [PMID: 11340533]
[38]
Libecco, J.A.; Powell, K.R.; Miller, N. Trimethoprim/Sulfamethoxazole. Pediatr. Rev., 2004, 25(11), 375-380.
[http://dx.doi.org/10.1542/pir.25.11.375] [PMID: 15520082]
[39]
Farber, S.; Diamond, L.K.; Mercer, R.D.; Sylvester, R.F., Jr; Wolff, J.A. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med., 1948, 238(23), 787-793.
[http://dx.doi.org/10.1056/NEJM194806032382301] [PMID: 18860765]
[40]
Blaney, J.M.; Hansch, C.; Silipo, C.; Vittoria, A. Structure-activity relationships of dihydrofolated reductase inhibitors. Chem. Rev., 1984, 84(4), 333-407.
[http://dx.doi.org/10.1021/cr00062a002]
[41]
Srinivasan, B.; Skolnick, J. Insights into the slow-onset tight-binding inhibition of Escherichia coli dihydrofolate reductase: detailed mechanistic characterization of pyrrolo [3,2- f ] quinazoline-1,3-diamine and its derivatives as novel tight-binding inhibitors. FEBS J., 2015, 282(10), 1922-1938.
[http://dx.doi.org/10.1111/febs.13244] [PMID: 25703118]
[42]
Zhang, Y.; Chowdhury, S.; Rodrigues, J.V.; Shakhnovich, E. Development of antibacterial compounds that constrain evolutionary pathways to resistance. eLife, 2021, 10, e64518.
[http://dx.doi.org/10.7554/eLife.64518] [PMID: 34279221]
[43]
Gangjee, A.; Jain, H.D.; Phan, J.; Lin, X.; Song, X.; McGuire, J.J.; Kisliuk, R.L. Dual inhibitors of thymidylate synthase and dihydrofolate reductase as antitumor agents: design, synthesis, and biological evaluation of classical and nonclassical pyrrolo[2,3-d]pyrimidine antifolates(1). J. Med. Chem., 2006, 49(3), 1055-1065.
[http://dx.doi.org/10.1021/jm058276a] [PMID: 16451071]
[44]
Shinde, G.H.; Pekamwar, S.S. An overview on dihydrofolate reductase inhibitors. Int. J. Chem. Pham. Sci., 2013, 4, 8-17.
[45]
Singh, A.; Deshpande, N.; Pramanik, N.; Jhunjhunwala, S.; Rangarajan, A.; Atreya, H.S. Optimized peptide based inhibitors targeting the dihydrofolate reductase pathway in cancer. Sci. Rep., 2018, 8(1), 3190.
[http://dx.doi.org/10.1038/s41598-018-21435-5] [PMID: 29453377]
[46]
Tonelli, M.; Naesens, L.; Gazzarrini, S.; Santucci, M.; Cichero, E.; Tasso, B.; Moroni, A.; Costi, M.P.; Loddo, R. Host dihydrofolate reductase (DHFR)-directed cycloguanil analogues endowed with activity against influenza virus and respiratory syncytial virus. Eur. J. Med. Chem., 2017, 135, 467-478.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.070] [PMID: 28477572]
[47]
Liu, J.; Bolstad, D.B.; Bolstad, E.S.D.; Wright, D.L.; Anderson, A.C. Towards new antifolates targeting eukaryotic opportunistic infections. Eukaryot. Cell, 2009, 8(4), 483-486.
[http://dx.doi.org/10.1128/EC.00298-08] [PMID: 19168759]
[48]
Anderson, A.C.; Wright, D.L. Antifolate agents: A patent review (2010 – 2013). Expert Opin. Ther. Pat., 2014, 24(6), 687-697.
[http://dx.doi.org/10.1517/13543776.2014.898062] [PMID: 24655343]
[49]
Wang, Y.; Lu, H.; Sun, L.; Chen, X.; Wei, H.; Suo, C.; Feng, J.; Yuan, M.; Shen, S.; Jia, W.; Wang, Y.; Zhang, H.; Li, Z.; Zhong, X.; Gao, P. Metformin sensitises hepatocarcinoma cells to methotrexate by targeting dihydrofolate reductase. Cell Death Dis., 2021, 12(10), 902.
[http://dx.doi.org/10.1038/s41419-021-04199-1] [PMID: 34601503]
[50]
Zhou, X.; Lin, K.; Ma, X.; Chui, W.K.; Zhou, W. Design, synthesis, docking studies and biological evaluation of novel dihydro-1,3,5-triazines as human DHFR inhibitors. Eur. J. Med. Chem., 2017, 125, 1279-1288.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.010] [PMID: 27886545]
[51]
Riyadh, S.M.; El-Motairi, S.A.; Ahmed, H.E.A.; Khalil, K.D.; Habib, E.L.S.E. Synthesis, biological evaluation, and molecular docking of novel thiazoles and [1,3,4]thiadiazoles incorporating sulfonamide group as DHFR inhibitors. Chem. Biodivers., 2018, 15(9), e1800231.
[http://dx.doi.org/10.1002/cbdv.201800231] [PMID: 29956887]
[52]
Fargualy, A.M.; Habib, N.S.; Ismail, K.A.; Hassan, A.M.M.; Sarg, M.T.M. Synthesis, biological evaluation and molecular docking studies of some pyrimidine derivatives. Eur. J. Med. Chem., 2013, 66, 276-295.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.028] [PMID: 23811090]
[53]
Ewida, M.A.; Abou El Ella, D.A.; Lasheen, D.S.; Ewida, H.A.; El-Gazzar, Y.I.; El-Subbagh, H.I. Imidazo[2′,1′:2,3]thiazolo[4,5-d]pyridazinone as a new scaffold of DHFR inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg. Chem., 2018, 80, 11-23.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.025] [PMID: 29864684]
[54]
Ewida, M.A.; Abou El Ella, D.A.; Lasheen, D.S.; Ewida, H.A.; El-Gazzar, Y.I.; El-Subbagh, H.I. Thiazolo[4,5- d ]pyridazine analogues as a new class of dihydrofolate reductase (DHFR) inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg. Chem., 2017, 74, 228-237.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.010] [PMID: 28865294]
[55]
Algul, O.; Paulsen, J.L.; Anderson, A.C. 2,4-Diamino-5-(2′-arylpropargyl)pyrimidine derivatives as new nonclassical antifolates for human dihydrofolate reductase inhibition. J. Mol. Graph. Model., 2011, 29(5), 608-613.
[http://dx.doi.org/10.1016/j.jmgm.2010.11.004] [PMID: 21146434]
[56]
Hobani, Y.; Jerah, A.; Bidwai, A. A comparative molecular docking study of curcumin and methotrexate to dihydrofolate reductase. Bioinformation, 2017, 13(3), 63-66.
[http://dx.doi.org/10.6026/97320630013063] [PMID: 28584445]
[57]
Aslan, E.; Adem, S. Investigation of the effects of some drugs and phenolic compounds on human dihydrofolate reductase activity. J. Biochem. Mol. Toxicol., 2015, 29(3), 135-139.
[http://dx.doi.org/10.1002/jbt.21677] [PMID: 25418905]
[58]
Sánchez-del-Campo, L.; Sáez-Ayala, M.; Chazarra, S.; Cabezas-Herrera, J.; Rodríguez-López, J.N. Binding of natural and synthetic polyphenols to human dihydrofolate reductase. Int. J. Mol. Sci., 2009, 10(12), 5398-5410.
[http://dx.doi.org/10.3390/ijms10125398] [PMID: 20054477]
[59]
El-Subbagh, H.I.; Hassan, G.S.; El-Messery, S.M.; Al-Rashood, S.T.; Al-Omary, F.A.M.; Abulfadl, Y.S.; Shabayek, M.I. Nonclassical antifolates, part 5. Benzodiazepine analogs as a new class of DHFR inhibitors: Synthesis, antitumor testing and molecular modeling study. Eur. J. Med. Chem., 2014, 74, 234-245.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.004] [PMID: 24469112]
[60]
El-Shershaby, M.H.; El-Gamal, K.M.; Bayoumi, A.H.; El-Adl, K.; Alswah, M.; Ahmed, H.E.A.; Al-Karmalamy, A.A.; Abulkhair, H.S. The antimicrobial potential and pharmacokinetic profiles of novel quinoline-based scaffolds: Synthesis and in silico mechanistic studies as dual DNA gyrase and DHFR inhibitors. New J. Chem., 2021, 45(31), 13986-14004.
[http://dx.doi.org/10.1039/D1NJ02838C]
[61]
Ragab, A.; Fouad, S.A.; Ali, O.A.A.; Ahmed, E.M.; Ali, A.M.; Askar, A.A.; Ammar, Y.A. Sulfaguanidine hybrid with some new pyridine-2-one derivatives: Design, synthesis, and antimicrobial activity against multidrug-resistant bacteria as dual DNA gyrase and DHFR inhibitors. Antibiotics, 2021, 10(2), 162.
[http://dx.doi.org/10.3390/antibiotics10020162] [PMID: 33562582]
[62]
Li, Y.; Ouyang, Y.; Wu, H.; Wang, P.; Huang, Y.; Li, X.; Chen, H.; Sun, Y.; Hu, X.; Wang, X.; Li, G.; Lu, Y.; Li, C.; Lu, X.; Pang, J.; Nie, T.; Sang, X.; Dong, L.; Dong, W.; Jiang, J.; Paterson, I.C.; Yang, X.; Hong, W.; Wang, H.; You, X. The discovery of 1, 3-diamino-7H-pyrrol[3, 2-f]quinazoline compounds as potent antimicrobial antifolates. Eur. J. Med. Chem., 2021, 113979
[http://dx.doi.org/10.1016/j.ejmech.2021.113979] [PMID: 34802838]
[63]
Rashid, U.; Ahmad, W.; Hassan, S.F.; Qureshi, N.A.; Niaz, B.; Muhammad, B.; Imdad, S.; Sajid, M. Design, synthesis, antibacterial activity and docking study of some new trimethoprim derivatives. Bioorg. Med. Chem. Lett., 2016, 26(23), 5749-5753.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.051] [PMID: 28327306]
[64]
Dinari, M.; Gharahi, F.; Asadi, P. Synthesis, spectroscopic characterization, antimicrobial evaluation and molecular docking study of novel triazine-quinazolinone based hybrids. J. Mol. Struct., 2018, 1156, 43-50.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.087]
[65]
Debbabi, K.F.; Bashandy, M.S.; Al-Harbi, S.A.; Aljuhani, E.H.; Al-Saidi, H.M. Synthesis and molecular docking against dihydrofolate reductase of novel pyridin-N-ethyl-N-methylbenzenesulfonamides as efficient anticancer and antimicrobial agents. J. Mol. Struct., 2017, 1131, 124-135.
[http://dx.doi.org/10.1016/j.molstruc.2016.11.048]
[66]
Gschwend, D.A.; Sirawaraporn, W.; Santi, D.V.; Kuntz, I.D. Specificity in structure-based drug design: Identification of a novel, selective inhibitor ofPneumocystis carinii dihydrofolate reductase. Proteins, 1997, 29(1), 59-67.
[http://dx.doi.org/10.1002/(SICI)1097-0134(199709)29:1<59::AID-PROT4>3.0.CO;2-A] [PMID: 9294866]
[67]
Jackson, H.C.; Biggadike, K.; McKilligin, E.; Kinsman, O.S.; Queener, S.F.; Lane, A.; Smith, J.E. 6,7-disubstituted 2,4-diaminopteridines: Novel inhibitors of Pneumocystis carinii and toxoplasma gondii dihydrofolate reductase. Antimicrob. Agents Chemother., 1996, 40(6), 1371-1375.
[http://dx.doi.org/10.1128/AAC.40.6.1371] [PMID: 8726003]
[68]
Liu, J.; Bolstad, D.B.; Smith, A.E.; Priestley, N.D.; Wright, D.L.; Anderson, A.C. The crystal structure of Candida glabrata dihydrofolate reductase drives new inhibitor design toward efficacious antifungal agents. Chem. Biol., 2008, 15(9), 990.
[http://dx.doi.org/10.1016/j.chembiol.2008.07.013] [PMID: 18804036]
[69]
Dewangan, D.; Vaishnav, Y.; Mishra, A.; Jha, A.K.; Verma, S.; Badwaik, H. Synthesis, molecular docking, and biological evaluation of Schiff base hybrids of 1,2,4-triazole-pyridine as dihydrofolate reductase inhibitors. Curr Res Pharmacol Drug Discov, 2021, 2, 100024.
[http://dx.doi.org/10.1016/j.crphar.2021.100024] [PMID: 34909659]
[70]
Buruli ulcer. Available From: https://www.who.int/news-room/fact-sheets/detail/buruli-ulcer-(Accessed on: December 1, 2021).
[71]
Riboldi, G.P.; Zigweid, R.; Myler, P.J.; Mayclin, S.J.; Couñago, R.M.; Staker, B.L. Identification of P218 as a potent inhibitor of Mycobacterium ulcerans DHFR. RSC Medicinal Chemistry, 2021, 12(1), 103-109.
[http://dx.doi.org/10.1039/D0MD00303D] [PMID: 34046602]
[72]
Desai, N.C.; Trivedi, A.R.; Khedkar, V.M. Preparation, biological evaluation and molecular docking study of imidazolyl dihydropyrimidines as potential Mycobacterium tuberculosis dihydrofolate reductase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(16), 4030-4035.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.082] [PMID: 27397497]
[73]
Sharma, K.; Tanwar, O.; Sharma, S.; Ali, S.; Alam, M.M.; Zaman, M.S.; Akhter, M. Structural comparison of Mtb-DHFR and h-DHFR for design, synthesis and evaluation of selective non-pteridine analogues as antitubercular agents. Bioorg. Chem., 2018, 80, 319-333.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.022] [PMID: 29986181]
[74]
Aragaw, W.W.; Lee, B.M.; Yang, X.; Zimmerman, M.D.; Gengenbacher, M.; Dartois, V.; Chui, W.K.; Jackson, C.J.; Dick, T. Potency boost of a Mycobacterium tuberculosis dihydrofolate reductase inhibitor by multienzyme F 420 H 2 -dependent reduction. Proc. Natl. Acad. Sci. USA, 2021, 118(25), e2025172118.
[http://dx.doi.org/10.1073/pnas.2025172118] [PMID: 34161270]
[75]
Malaria. Available From: https://www.who.int/news-room/fact-sheets/detail/malaria (Accessed on: December 1, 2021).
[76]
Ivanetich, K.M.; Santi, D.V. Thymidylate synthase-dihydrofolate reductase in protozoa. Exp. Parasitol., 1990, 70(3), 367-371.
[http://dx.doi.org/10.1016/0014-4894(90)90119-W] [PMID: 2178951]
[77]
Thakkar, S.S.; Thakor, P.; Doshi, H.; Ray, A. 1,2,4-Triazole and 1,3,4-oxadiazole analogues: Synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities. Bioorg. Med. Chem., 2017, 25(15), 4064-4075.
[http://dx.doi.org/10.1016/j.bmc.2017.05.054] [PMID: 28634040]
[78]
Thakkar, S.S.; Thakor, P.; Ray, A.; Doshi, H.; Thakkar, V.R. Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities. Bioorg. Med. Chem., 2017, 25(20), 5396-5406.
[http://dx.doi.org/10.1016/j.bmc.2017.07.057] [PMID: 28789907]
[79]
Bekhit, A.A.; Saudi, M.N.; Hassan, A.M.M.; Fahmy, S.M.; Ibrahim, T.M.; Ghareeb, D.; El-Seidy, A.M.; Nasralla, S.N.; Bekhit, A.E.D.A. Synthesis, in silico experiments and biological evaluation of 1,3,4-trisubstituted pyrazole derivatives as antimalarial agents. Eur. J. Med. Chem., 2019, 163, 353-366.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.067] [PMID: 30530172]
[80]
Gahtori, P.; Ghosh, S.K.; Parida, P.; Prakash, A.; Gogoi, K.; Bhat, H.R.; Singh, U.P. Antimalarial evaluation and docking studies of hybrid phenylthiazolyl-1,3,5-triazine derivatives: A novel and potential antifolate lead for Pf-DHFR-TS inhibition. Exp. Parasitol., 2012, 130(3), 292-299.
[http://dx.doi.org/10.1016/j.exppara.2011.12.014] [PMID: 22233734]
[81]
Patel, T.S.; Vanparia, S.F.; Patel, U.H.; Dixit, R.B.; Chudasama, C.J.; Patel, B.D.; Dixit, B.C. Novel 2,3-disubstituted quinazoline-4(3H)-one molecules derived from amino acid linked sulphonamide as a potent malarial antifolates for DHFR inhibition. Eur. J. Med. Chem., 2017, 129, 251-265.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.012] [PMID: 28231522]
[82]
Hopper, A.T.; Brockman, A.; Wise, A.; Gould, J.; Barks, J.; Radke, J.B.; Sibley, L.D.; Zou, Y.; Thomas, S. Discovery of selective Toxoplasma gondii dihydrofolate reductase inhibitors for the treatment of toxoplasmosis. J. Med. Chem., 2019, 62(3), 1562-1576.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01754] [PMID: 30624926]
[83]
Singh, I.V.; Mishra, S. Molecular docking analysis of pyrimethamine derivatives with plasmodium falciparum dihydrofolate reductase. Bioinformation, 2018, 14(5), 232-235.
[http://dx.doi.org/10.6026/97320630014232] [PMID: 30108420]
[84]
Francesconi, V.; Giovannini, L.; Santucci, M.; Cichero, E.; Costi, M.P.; Naesens, L.; Giordanetto, F.; Tonelli, M. Synthesis, biological evaluation and molecular modeling of novel azaspiro dihydrotriazines as influenza virus inhibitors targeting the host factor dihydrofolate reductase (DHFR). Eur. J. Med. Chem., 2018, 155, 229-243.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.059] [PMID: 29886325]
[85]
Zhang, Q.; Nguyen, T.; McMichael, M.; Velu, S.E.; Zou, J.; Zhou, X.; Wu, H. New small-molecule inhibitors of dihydrofolate reductase inhibit Streptococcus mutans. Int. J. Antimicrob. Agents, 2015, 46(2), 174-182.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.03.015] [PMID: 26022931]
[86]
Kelotra, A.; Soumya, V.; Kelotra, S.; Gokhale, S.M.; Bidwai, A. Molecular docking of some herbal-based potential anti-psoriasis agents with dihydrofolate reductase. Ind. J. Drug Dis., 2012, 1(8)
[87]
World Health Organization (WHO). Leishmaniasis. Available From: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (Accessed on: December 1, 2021).
[88]
Cavazzuti, A.; Paglietti, G.; Hunter, W.N.; Gamarro, F.; Piras, S.; Loriga, M.; Allecca, S.; Corona, P.; McLuskey, K.; Tulloch, L.; Gibellini, F.; Ferrari, S.; Costi, M.P. Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development. Proc. Natl. Acad. Sci., 2008, 105(5), 1448-1453.
[http://dx.doi.org/10.1073/pnas.0704384105] [PMID: 18245389]
[89]
Bibi, M.; Qureshi, N.A.; Sadiq, A.; Farooq, U.; Hassan, A.; Shaheen, N.; Asghar, I.; Umer, D.; Ullah, A.; Khan, F.A.; Salman, M.; Bibi, A.; Rashid, U. Exploring the ability of dihydropyrimidine-5-carboxamide and 5-benzyl-2,4-diaminopyrimidine-based analogues for the selective inhibition of L. major dihydrofolate reductase. Eur. J. Med. Chem., 2021, 210, 112986.
[http://dx.doi.org/10.1016/j.ejmech.2020.112986] [PMID: 33187806]
[90]
Schüttelkopf, A.W.; Hardy, L.W.; Beverley, S.M.; Hunter, W.N. Structures of Leishmania major pteridine reductase complexes reveal the active site features important for ligand binding and to guide inhibitor design. J. Mol. Biol., 2005, 352(1), 105-116.
[http://dx.doi.org/10.1016/j.jmb.2005.06.076] [PMID: 16055151]
[91]
Maganti, L.; Manoharan, P.; Ghoshal, N. Probing the structure of Leishmania donovani chagasi DHFR-TS: comparative protein modeling and protein–ligand interaction studies. J. Mol. Model., 2010, 16(9), 1539-1547.
[http://dx.doi.org/10.1007/s00894-010-0649-0] [PMID: 20174846]
[92]
Available From: https://go.drugbank.com/ drugs/ DB03695 (Accessed on: December 1, 2021)
[93]
Lémann, M.; Zenjari, T.; Bouhnik, Y.; Cosnes, J.; Mesnard, B.; Rambaud, J.C.; Modigliani, R.; Cortot, A.; Colombel, J.F. Methotrexate in Crohn’s disease: Long-term efficacy and toxicity. Am. J. Gastroenterol., 2000, 95(7), 1730-1734.
[http://dx.doi.org/10.1111/j.1572-0241.2000.02190.x] [PMID: 10925976]
[94]
Vidmar, M.; Grželj, J.; Mlinarič-Raščan, I.; Geršak, K.; Dolenc, M.S. Medicines associated with folate–homocysteine–methionine pathway disruption. Arch. Toxicol., 2019, 93(2), 227-251.
[http://dx.doi.org/10.1007/s00204-018-2364-z] [PMID: 30499019]
[95]
Petersen, E. The safety of atovaquone/proguanil in long-term malaria prophylaxis of nonimmune adults. J. Travel Med., 2003, 10, S13-S15.
[http://dx.doi.org/10.2310/7060.2003.35050] [PMID: 12737755]
[96]
Available From: https://www.drugs.com/search.php? searchterm=pemetrexed&a=1 (Accessed on: July 27, 2021).
[97]
FDA Approves Folotyn (pralatrexate) for Treatment of Peripheral T-cell Lymphoma. Available From: https://www.drugs.com/newdrugs/fda-approves-folotyn-pralatrexate-peripheral-t-cell-lymphoma-1666.html (Accessed on: December 1, 2021).
[98]
Andersen, J.T.; Petersen, M.; Jimenez-Solem, E.; Broedbaek, K.; Andersen, E.W.; Andersen, N.L.; Afzal, S.; Torp-Pedersen, C.; Keiding, N.; Poulsen, H.E. Trimethoprim use in early pregnancy and the risk of miscarriage: A register-based nationwide cohort study. Epidemiol. Infect., 2013, 141(8), 1749-1755.
[http://dx.doi.org/10.1017/S0950268812002178] [PMID: 23010291]
[99]
Salako, L.A. Toxicity and side-effects of antimalarials in Africa: A critical review. Bull. World Health Organ., 1984.
[100]
Proguanil. Available From: https://go.drugbank.com/drugs/DB01131 (Accessed on: December 1, 2021).
[101]
Andrejko, K.L.; Mayer, R.C.; Kovacs, S.; Slutsker, E.; Bartlett, E.; Tan, K.R.; Gutman, J.R. The safety of atovaquone-proguanil for the prevention and treatment of malaria in pregnancy: A systematic review. Travel Med. Infect. Dis., 2019, 27, 20-26.
[http://dx.doi.org/10.1016/j.tmaid.2019.01.008] [PMID: 30654041]
[102]
Patents. Fuel Cells Bull., 2019, 2019(4), 16-19.
[http://dx.doi.org/10.1016/S1464-2859(19)30172-5]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy