Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

HDAC4-mediated Deacetylation of Glutaminase Facilitates Glioma Stemness

Author(s): Gang Xu*, Jianqiang Qu and Ming Zhang

Volume 23, Issue 9, 2023

Published on: 11 May, 2023

Page: [742 - 750] Pages: 9

DOI: 10.2174/1568009623666230329123358

Price: $65

Abstract

Background: Inhibiting cancer metabolism via glutaminase (GLS) is a promising strategy to disrupt tumor progression. However, the mechanism regarding GLS acetylation remains largely unknown.

Methods: Mitochondrial protein isolation and glutaminase activity assay were used to examine GLS activity. RT-qPCR, western blot, sphere-formation, ALDH activity, and tumor-initiating assays were performed to evaluate the alteration of cell stemness. Co-IP and rescuing experiments were conducted to explore the underlying mechanisms.

Results: In this study, we demonstrated that GLS acetylation is a vital post-translational modification that inhibits GLS activity in glioma. We identified GLS as deacetylated by HDAC4, a class II deacetylase. GLS acetylation stimulated the interaction between GLS and SIRT5, thereby promoting GLS ubiquitination and inhibiting GLS activity. Furthermore, GLS overexpression suppressed the stemness of glioma cells, which was rescued by the deacetylation of GLS.

Conclusion: Our findings reveal a novel mechanism of GLS regulation by acetylation and ubiquitination that participate in glioma stemness.

Keywords: Glutaminase, cancer metabolism, acetylation, glioma, stemness, mitochondrial protein.

« Previous
Graphical Abstract
[1]
Raudenská, M.; Masařík, M.; Peltanová, B.; Hönigová, K.; Navrátil, J.; Masařík, M. Metabolic plasticity of cancer cells. Klin. Onkol., 2022, 35(3), 195-207.
[http://dx.doi.org/10.48095/ccko2022195] [PMID: 35760572]
[2]
Kay, E.J.; Paterson, K.; Riera-Domingo, C.; Sumpton, D.; Däbritz, J.H.M.; Tardito, S.; Boldrini, C.; Hernandez-Fernaud, J.R.; Athineos, D.; Dhayade, S.; Stepanova, E.; Gjerga, E.; Neilson, L.J.; Lilla, S.; Hedley, A.; Koulouras, G.; McGregor, G.; Jamieson, C.; Johnson, R.M.; Park, M.; Kirschner, K.; Miller, C.; Kamphorst, J.J.; Loayza-Puch, F.; Saez-Rodriguez, J.; Mazzone, M.; Blyth, K.; Zagnoni, M.; Zanivan, S. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix. Nat. Metab., 2022, 4(6), 693-710.
[http://dx.doi.org/10.1038/s42255-022-00582-0] [PMID: 35760868]
[3]
Huang, Q.; Tan, Y.; Yin, P.; Ye, G.; Gao, P.; Lu, X.; Wang, H.; Xu, G. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res., 2013, 73(16), 4992-5002.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0308] [PMID: 23824744]
[4]
Vander, H.M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[5]
Mohamed, A.; Deng, X.; Khuri, F.R.; Owonikoko, T.K. Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin. Lung Cancer, 2014, 15(1), 7-15.
[http://dx.doi.org/10.1016/j.cllc.2013.09.001] [PMID: 24377741]
[6]
Wei, Z.; Ye, S.; Feng, H.; Zeng, C.; Dong, X.; Zeng, X.; Zeng, L.; Lin, X.; Liu, Q.; Yao, J. Silybin suppresses ovarian cancer cell proliferation by inhibiting isocitrate dehydrogenase 1 activity. Cancer Sci., 2022, 113(9), 3032-3043.
[http://dx.doi.org/10.1111/cas.15470] [PMID: 35730256]
[7]
Pan, M.; Zorbas, C.; Sugaya, M.; Ishiguro, K.; Kato, M.; Nishida, M.; Zhang, H.F.; Candeias, M.M.; Okamoto, A.; Ishikawa, T.; Soga, T.; Aburatani, H.; Sakai, J.; Matsumura, Y.; Suzuki, T.; Proud, C.G.; Lafontaine, D.L.J.; Osawa, T. Glutamine deficiency in solid tumor cells confers resistance to ribosomal RNA synthesis inhibitors. Nat. Commun., 2022, 13(1), 3706.
[http://dx.doi.org/10.1038/s41467-022-31418-w] [PMID: 35764642]
[8]
Matés, J.M.; Campos-Sandoval, J.A.; Santos-Jiménez, J.; Márquez, J. Dysregulation of glutaminase and glutamine synthetase in cancer. Cancer Lett., 2019, 467, 29-39.
[http://dx.doi.org/10.1016/j.canlet.2019.09.011] [PMID: 31574293]
[9]
Katt, W.P.; Lukey, M.J.; Cerione, R.A. A tale of two glutaminases: Homologous enzymes with distinct roles in tumorigenesis. Future Med. Chem., 2017, 9(2), 223-243.
[http://dx.doi.org/10.4155/fmc-2016-0190] [PMID: 28111979]
[10]
Masisi, B.K.; El Ansari, R.; Alfarsi, L.; Rakha, E.A.; Green, A.R.; Craze, M.L. The role of glutaminase in cancer. Histopathology, 2020, 76(4), 498-508.
[http://dx.doi.org/10.1111/his.14014] [PMID: 31596504]
[11]
Kim, J.H.; Lee, J.; Cho, Y.R.; Lee, S.Y.; Sung, G.J.; Shin, D.M.; Choi, K.C.; Son, J. TFEB supports pancreatic cancer growth through the transcriptional regulation of glutaminase. Cancers, 2021, 13(3), 483.
[http://dx.doi.org/10.3390/cancers13030483] [PMID: 33513833]
[12]
Gao, P.; Tchernyshyov, I.; Chang, T.C.; Lee, Y.S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; Dang, C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458(7239), 762-765.
[http://dx.doi.org/10.1038/nature07823] [PMID: 19219026]
[13]
Du, K.; Hyun, J.; Premont, R.T.; Choi, S.S.; Michelotti, G.A.; Swiderska-Syn, M.; Dalton, G.D.; Thelen, E.; Rizi, B.S.; Jung, Y.; Diehl, A.M. Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology, 2018, 154(5), 1465-1479.e13.
[http://dx.doi.org/10.1053/j.gastro.2017.12.022] [PMID: 29305935]
[14]
Milewski, K.; Bogacińska-Karaś, M.; Hilgier, W.; Albrecht, J.; Zielińska, M. TNFα increases STAT3-mediated expression of glutaminase isoform KGA in cultured rat astrocytes. Cytokine, 2019, 123, 154774.
[http://dx.doi.org/10.1016/j.cyto.2019.154774] [PMID: 31344597]
[15]
Han, T.; Zhan, W.; Gan, M.; Liu, F.; Yu, B.; Chin, Y.E.; Wang, J.B. Phosphorylation of glutaminase by PKCε is essential for its enzymatic activity and critically contributes to tumorigenesis. Cell Res., 2018, 28(6), 655-669.
[http://dx.doi.org/10.1038/s41422-018-0021-y] [PMID: 29515166]
[16]
Choudhury, M.; Yin, X.; Schaefbauer, K.J.; Kang, J.H.; Roy, B.; Kottom, T.J.; Limper, A.H.; Leof, E.B. SIRT7‐mediated modulation of glutaminase 1 regulates TGF‐β‐induced pulmonary fibrosis. FASEB J., 2020, 34(7), 8920-8940.
[http://dx.doi.org/10.1096/fj.202000564R] [PMID: 32519817]
[17]
Zhang, T.; Cui, Y.; Wu, Y.; Meng, J.; Han, L.; Zhang, J.; Zhang, C.; Yang, C.; Chen, L.; Bai, X.; Zhang, K.; Wu, K.; Sack, M.N.; Wang, L.; Zhu, L. Mitochondrial GCN5L1 regulates glutaminase acetylation and hepatocellular carcinoma. Clin. Transl. Med., 2022, 12(5), e852.
[http://dx.doi.org/10.1002/ctm2.852] [PMID: 35538890]
[18]
Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942), 834-840.
[http://dx.doi.org/10.1126/science.1175371] [PMID: 19608861]
[19]
Weinert, B.T.; Schölz, C.; Wagner, S.A.; Iesmantavicius, V.; Su, D.; Daniel, J.A.; Choudhary, C. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep., 2013, 4(4), 842-851.
[http://dx.doi.org/10.1016/j.celrep.2013.07.024] [PMID: 23954790]
[20]
Yang, Y.; Li, X.; Wang, T.; Guo, Q.; Xi, T.; Zheng, L. Emerging agents that target signaling pathways in cancer stem cells. J. Hematol. Oncol., 2020, 13(1), 60.
[http://dx.doi.org/10.1186/s13045-020-00901-6] [PMID: 32456660]
[21]
Li, B.; Cao, Y.; Meng, G.; Qian, L.; Xu, T.; Yan, C.; Luo, O.; Wang, S.; Wei, J.; Ding, Y.; Yu, D. Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine, 2019, 39, 239-254.
[http://dx.doi.org/10.1016/j.ebiom.2018.11.063] [PMID: 30555042]
[22]
Katt, W.P. A unique metabolic dependency for liver cancer stem cells. EBioMedicine, 2019, 39, 9-10.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.026] [PMID: 30579869]
[23]
Kim, J.H.; Lee, K.J.; Seo, Y.; Kwon, J.H.; Yoon, J.P.; Kang, J.Y.; Lee, H.J.; Park, S.J.; Hong, S.P.; Cheon, J.H.; Kim, W.H.; Il Kim, T. Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism. Sci. Rep., 2018, 8(1), 409.
[http://dx.doi.org/10.1038/s41598-017-18762-4] [PMID: 29323154]
[24]
Restall, IJ; Cseh, O; Richards, LM; Pugh, TJ Brain tumor stem cell dependence on glutaminase reveals a metabolic vulnerability through the amino acid deprivation response pathway. Cancer Res, 2020, 80(24), 5478-5490.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3923]
[25]
Koch, K.; Hartmann, R.; Tsiampali, J.; Uhlmann, C.; Nickel, A.C.; He, X.; Kamp, M.A.; Sabel, M.; Barker, R.A.; Steiger, H.J.; Hänggi, D.; Willbold, D.; Maciaczyk, J.; Kahlert, U.D. A comparative pharmaco-metabolomic study of glutaminase inhibitors in glioma stem-like cells confirms biological effectiveness but reveals differences in target-specificity. Cell Death Discov., 2020, 6(1), 20.
[http://dx.doi.org/10.1038/s41420-020-0258-3] [PMID: 32337072]
[26]
Greene, K.S.; Lukey, M.J.; Wang, X.; Blank, B.; Druso, J.E.; Lin, M.J.; Stalnecker, C.A.; Zhang, C.; Negrón Abril, Y.; Erickson, J.W.; Wilson, K.F.; Lin, H.; Weiss, R.S.; Cerione, R.A. SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. Proc. Natl. Acad. Sci., 2019, 116(52), 26625-26632.
[http://dx.doi.org/10.1073/pnas.1911954116] [PMID: 31843902]
[27]
Galan-Cobo, A.; Sitthideatphaiboon, P.; Qu, X.; Poteete, A.; Pisegna, M.A.; Tong, P.; Chen, P.H.; Boroughs, L.K.; Rodriguez, M.L.M.; Zhang, W.; Parlati, F.; Wang, J.; Gandhi, V.; Skoulidis, F.; DeBerardinis, R.J.; Minna, J.D.; Heymach, J.V. LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS -mutant lung adenocarcinoma. Cancer Res., 2019, 79(13), 3251-3267.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3527] [PMID: 31040157]
[28]
Jacque, N.; Ronchetti, A.M.; Larrue, C.; Meunier, G.; Birsen, R.; Willems, L.; Saland, E.; Decroocq, J.; Maciel, T.T.; Lambert, M.; Poulain, L.; Hospital, M.A.; Sujobert, P.; Joseph, L.; Chapuis, N.; Lacombe, C.; Moura, I.C.; Demo, S.; Sarry, J.E.; Recher, C.; Mayeux, P.; Tamburini, J.; Bouscary, D. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood, 2015, 126(11), 1346-1356.
[http://dx.doi.org/10.1182/blood-2015-01-621870] [PMID: 26186940]
[29]
Matés, J.M.; Campos-Sandoval, J.A.; Márquez, J. Glutaminase isoenzymes in the metabolic therapy of cancer. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(2), 158-164.
[http://dx.doi.org/10.1016/j.bbcan.2018.07.007] [PMID: 30053497]
[30]
Hu, Y.; Smyth, G.K. ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods, 2009, 347(1-2), 70-78.
[http://dx.doi.org/10.1016/j.jim.2009.06.008] [PMID: 19567251]
[31]
Prasad, P.; Ghosh, S.; Roy, S.S. Glutamine deficiency promotes stemness and chemoresistance in tumor cells through DRP1-induced mitochondrial fragmentation. Cell. Mol. Life Sci., 2021, 78(10), 4821-4845.
[http://dx.doi.org/10.1007/s00018-021-03818-6] [PMID: 33895866]
[32]
Mukha, A.; Kahya, U.; Linge, A.; Chen, O.; Löck, S.; Lukiyanchuk, V.; Richter, S.; Alves, T.C.; Peitzsch, M.; Telychko, V.; Skvortsov, S.; Negro, G.; Aschenbrenner, B.; Skvortsova, I.I.; Mirtschink, P.; Lohaus, F.; Hölscher, T.; Neubauer, H.; Rivandi, M.; Labitzky, V.; Lange, T.; Franken, A.; Behrens, B.; Stoecklein, N.H.; Toma, M.; Sommer, U.; Zschaeck, S.; Rehm, M.; Eisenhofer, G.; Schwager, C.; Abdollahi, A.; Groeben, C.; Kunz-Schughart, L.A.; Baretton, G.B.; Baumann, M.; Krause, M.; Peitzsch, C.; Dubrovska, A. GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics, 2021, 11(16), 7844-7868.
[http://dx.doi.org/10.7150/thno.58655] [PMID: 34335968]
[33]
Hensley, C.T.; Wasti, A.T.; DeBerardinis, R.J. Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J. Clin. Invest., 2013, 123(9), 3678-3684.
[http://dx.doi.org/10.1172/JCI69600] [PMID: 23999442]
[34]
Yang, Y.; Lu, Y.; Zhang, C.; Guo, Q.; Zhang, W.; Wang, T.; Xia, Z.; Liu, J.; Cheng, X.; Xi, T.; Jiang, F.; Zheng, L. Phenazine derivatives attenuate the stemness of breast cancer cells through triggering ferroptosis. Cell Mol. Life Sci., 2022, 79(7), 360.
[35]
Weinberg, F.; Hamanaka, R.; Wheaton, W.W.; Weinberg, S.; Joseph, J.; Lopez, M.; Kalyanaraman, B.; Mutlu, G.M.; Budinger, G.R.S.; Chandel, N.S. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci., 2010, 107(19), 8788-8793.
[http://dx.doi.org/10.1073/pnas.1003428107] [PMID: 20421486]
[36]
Matés, J.M.; Campos-Sandoval, J.A.; de los Santos-Jiménez, J.; Segura, J.A.; Alonso, F.J.; Márquez, J. Metabolic reprogramming of cancer by chemicals that target glutaminase isoenzymes. Curr. Med. Chem., 2020, 27(32), 5317-5339.
[http://dx.doi.org/10.2174/0929867326666190416165004] [PMID: 31038055]
[37]
Zang, W.J.; Hu, Y.L.; Qian, C.Y.; Feng, Y.; Liu, J.Z.; Yang, J.L.; Huang, H.; Zhu, Y.Z.; Xue, W.J. HDAC4 promotes the growth and metastasis of gastric cancer via autophagic degradation of MEKK3. Br. J. Cancer, 2022, 127(2), 237-248.
[http://dx.doi.org/10.1038/s41416-022-01805-7] [PMID: 35637410]
[38]
Cheng, C.; Yang, J.; Li, S.W.; Huang, G.; Li, C.; Min, W.P.; Sang, Y. HDAC4 promotes nasopharyngeal carcinoma progression and serves as a therapeutic target. Cell Death Dis., 2021, 12(2), 137.
[http://dx.doi.org/10.1038/s41419-021-03417-0] [PMID: 33542203]
[39]
Zeng, L.S.; Yang, X.Z.; Wen, Y.F.; Mai, S-J.; Wang, M.H.; Zhang, M.Y.; Zheng, X.F.S.; Wang, H.Y. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging, 2016, 8(6), 1236-1248.
[http://dx.doi.org/10.18632/aging.100980] [PMID: 27295551]
[40]
Wang, T.; Lu, Z.; Han, T.; Wang, Y.; Gan, M.; Wang, J.B. Deacetylation of glutaminase by hdac4 contributes to lung cancer tumorigenesis. Int. J. Biol. Sci., 2022, 18(11), 4452-4465.
[http://dx.doi.org/10.7150/ijbs.69882] [PMID: 35864951]
[41]
Chen, X.; Xu, Z.; Zeng, S.; Wang, X.; Liu, W.; Qian, L.; Wei, J.; Yang, X.; Shen, Q.; Gong, Z.; Yan, Y. SIRT5 downregulation is associated with poor prognosis in glioblastoma. Cancer Biomark., 2019, 24(4), 449-459.
[http://dx.doi.org/10.3233/CBM-182197] [PMID: 30909186]
[42]
Li, F.; He, X.; Ye, D.; Lin, Y.; Yu, H.; Yao, C.; Huang, L.; Zhang, J.; Wang, F.; Xu, S.; Wu, X.; Liu, L.; Yang, C.; Shi, J.; He, X.; Liu, J.; Qu, Y.; Guo, F.; Zhao, J.; Xu, W.; Zhao, S. NADP+-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol. Cell, 2015, 60(4), 661-675.
[http://dx.doi.org/10.1016/j.molcel.2015.10.017] [PMID: 26585387]
[43]
Ke, F.; Ren, C.; Zhai, Z.; Gao, X.; Wei, J.; Zhu, Y.; Zhi, Y. LINC01234 regulates microRNA-27b-5p to induce the migration, invasion and self-renewal of ovarian cancer stem cells through targeting SIRT5. Cell Cycle, 2022, 21(10), 1020-1033.
[http://dx.doi.org/10.1080/15384101.2022.2040282] [PMID: 35230909]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy