Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Phenyliodine(III)diacetate (PIDA): Applications in Rearrangement/Migration Reactions

Author(s): M. Mujahid Alam, Hari Babu Bollikolla, Mohammed Amanullah, Mohamed Hussein and Ravi Varala*

Volume 27, Issue 2, 2023

Published on: 17 April, 2023

Page: [93 - 107] Pages: 15

DOI: 10.2174/1385272827666230330105241

Price: $65

Abstract

One of the most widely utilized hypervalent iodines used as an oxidizing agent in organic chemistry is (dialcetoxyiodo)benzene (PhI(OAc)2), also known as (DAIB), phenyliodine(III) diacetate (PIDA). In this mini-review, PIDA is highlighted in relation to its applications in organic synthesis involving rearrangement/migration reactions along with their interesting mechanistic aspects from the summer of 2015 to the present.

Keywords: Phenyliodine(III) diacetate (PIDA/DAIB), oxidizing agent, organic synthesis, rearrangements, migrations, mechanistic aspects.

Graphical Abstract
[1]
Richardson, R.D.; Wirth, T. Hypervalent iodine goes catalytic. Angew. Chem. Int. Ed., 2006, 45(27), 4402-4404.
[http://dx.doi.org/10.1002/anie.200601817] [PMID: 16804953]
[2]
Li, X.; Chen, P.; Liu, G. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes. Beilstein J. Org. Chem., 2018, 14, 1813-1825.
[http://dx.doi.org/10.3762/bjoc.14.154] [PMID: 30112085]
[3]
Zhdankin, V.V.; Stang, P.J. Chemistry of polyvalent iodine. Chem. Rev., 2008, 108(12), 5299-5358.
[http://dx.doi.org/10.1021/cr800332c] [PMID: 18986207]
[4]
Zhdankin, V. Application of hypervalent iodine compounds in advanced green technologies. Resource-Efficient Technolog., 2021, 1(1), 1-16.
[http://dx.doi.org/10.18799/24056537/2021/1/286]
[5]
Dohi, T.; Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. Chem. Commun., 2009, 16(16), 2073-2085.
[http://dx.doi.org/10.1039/b821747e] [PMID: 19360157]
[6]
Bauer, A.; Maulide, N. Recent discoveries on the structure of iodine(III) reagents and their use in cross-nucleophile coupling. Chem. Sci., 2021, 12(3), 853-864.
[http://dx.doi.org/10.1039/D0SC03266B] [PMID: 34163852]
[7]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[8]
Zhdankin, V.V. Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC, 2009, 2009(1), 1-62.
[http://dx.doi.org/10.3998/ark.5550190.0010.101]
[9]
Silva, L.F., Jr; Olofsson, B. Hypervalent iodine reagents in the total synthesis of natural products. Nat. Prod. Rep., 2011, 28(10), 1722-1754.
[http://dx.doi.org/10.1039/c1np00028d] [PMID: 21829843]
[10]
Zheng, Z.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. The applications of hypervalent iodine(III) reagents in the constructions of heterocyclic compounds through oxidative coupling reactions. Sci. China Chem., 2014, 57(2), 189-214.
[http://dx.doi.org/10.1007/s11426-013-5043-1]
[11]
Shetgaonkar, S.E.; Mamgain, R.; Kikushima, K.; Dohi, T.; Singh, F.V. Palladium-catalyzed organic reactions involving hypervalent iodine reagents. Molecules, 2022, 27(12), 3900-3956.
[http://dx.doi.org/10.3390/molecules27123900] [PMID: 35745020]
[12]
Shetgaonkar, S.E.; Krishnan, M.; Singh, F.V. Hypervalent iodine reagents for oxidative rearrangements. Mini Rev. Org. Chem., 2021, 18(2), 138-158.
[http://dx.doi.org/10.2174/1570193X17999200727204349]
[13]
Zhang, B.; Li, X.; Guo, B.; Du, Y. Hypervalent iodine reagent-mediated reactions involving rearrangement processes. Chem. Commun., 2020, 56(91), 14119-14136.
[http://dx.doi.org/10.1039/D0CC05354F] [PMID: 33140751]
[14]
Soni, R.; Sihag, M.; Rani, N.; Kinger, M.; Aneja, D.K. Aqueous mediated reactions involving hypervalent iodine reagents. Asian J. Org. Chem., 2022, 11(9), e202200125.
[http://dx.doi.org/10.1002/ajoc.202200125]
[15]
Rani, N.; Soni, R.; Sihag, M.; Kinger, M.; Aneja, D.K. Combined approach of hypervalent iodine reagents and transition metals in organic reactions. Adv. Synth. Catal., 2022, 364(11), 1798-1848.
[http://dx.doi.org/10.1002/adsc.202200088]
[16]
Mironova, I.A.; Kirsch, S.F.; Zhdankin, V.V.; Yoshimura, A.; Yusubov, M.S. Hypervalent iodine-mediated azidation reactions. Eur. J. Org. Chem., 2022, 2022(34), e202200754.
[http://dx.doi.org/10.1002/ejoc.202200754]
[17]
Willgerodt, C. On some aromatic iodide chlorides. J. Prakt. Chem., 1886, 33, 154e160.
[18]
Togo, H.; Iinuma, M.; Moriyama, K. Simple and practical method for preparation of [(diacetoxy)iodo]arenes with iodoarenes and m-chloroperoxybenzoic acid. Synlett, 2012, 23(18), 2663-2666.
[http://dx.doi.org/10.1055/s-0032-1317345]
[19]
Kitamura, T.; Hossain, M.D. Alternative, Easy preparation of (diacetoxyiodo)arenes from iodoarenes using potassium peroxodisulfate as the oxidant. Synthesis, 2005, 2005(12), 1932-1934.
[http://dx.doi.org/10.1055/s-2005-869962]
[20]
Togo, H.; Nabana, T.; Yamaguchi, K. Preparation and reactivities of novel (Diacetoxyiodo)arenes bearing heteroaromatics. J. Org. Chem., 2000, 65(24), 8391-8394.
[http://dx.doi.org/10.1021/jo001186n] [PMID: 11101405]
[21]
Alcock, N.W.; Countryman, R.M.; Esperås, S.; Sawyer, J.F. Secondary bonding. Part 5. The crystal and molecular structures of phenyliodine(III) diacetate and bis(dichloroacetate). J. Chem. Soc., Dalton Trans., 1979, 5(5), 854-860.
[http://dx.doi.org/10.1039/DT9790000854]
[22]
Kiprof, P. The nature of iodine oxygen bonds in hypervalent 10-I-3 iodine compounds. ARKIVOC, 2005, iv, 19-25.
[23]
Alcock, N.W.; Harrison, W.D.; Howes, C. Secondary bonding. Part 13. Aryl-tellurium(IV) and -iodine(III) acetates and trifluoroacetates. The crystal and molecular structures of bis-(p-methoxyphenyl)tellurium diacetate, µ-oxo-bis[diphenyltrifluoroacetoxytellurium] hydrate, and [bis(trifluoroacetoxy)iodo]benzene. J. Chem. Soc., Dalton Trans., 1984, (8), 1709-1716.
[http://dx.doi.org/10.1039/DT9840001709]
[24]
Lee, C.K.; Mak, T.C.W.; Li, W.K.; Kirner, J.F. Iodobenzene diacetate. Acta Crystallogr. B, 1977, 33(5), 1620-1622.
[http://dx.doi.org/10.1107/S0567740877006694]
[25]
Sharefkin, J.G.; Saltzman, H. Iodosobenzene diacetate. Org. Synth. Coll., 1973, V, 660-663.
[26]
Freitas, R.H.C.N. (Diacetoxyiodo)benzene: More than an oxidant. Aust. J. Chem., 2017, 70(3), 338-340.
[http://dx.doi.org/10.1071/CH16239]
[27]
Pelter, A.; Elgendy, S.M.A. Phenolic oxidations with phenyliodonium diacetate. J. Chem. Soc. Perkin Trans., 1993, 1(16), 1891-1896.
[http://dx.doi.org/10.1039/p19930001891]
[28]
Kryska, A.; Skulski, L. Improved, acid-catalyzed iodinating procedures for activated aromatics with (diacetoxyiodo)benzene as the oxidant. J. Chem. Res. Synop., 1999, 10(10), 590-591.
[http://dx.doi.org/10.1039/a904053f]
[29]
Chen, D.J.; Chen, Z.C. Hypervalent iodine in synthesis. Part 54: One-step conversion of aryl aldehydes to aroyl azides using a combined reagent of (diacetoxy-iodo)benzene with sodium azide. Tetrahedron Lett., 2000, 41(38), 7361-7363.
[http://dx.doi.org/10.1016/S0040-4039(00)00990-4]
[30]
Barluenga, J.; González-Bobes, F.; González, J.M. Activation of alkanes upon reaction with PhI(OAc)2-I2. Angew. Chem. Int. Ed., 2002, 41(14), 2556-2558.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2556::AIDANIE2556>3.0.CO;2-C] [PMID: 12203532]
[31]
Yusubov, M.S.; Zholobova, G.A.; Filimonova, I.L.; Chi, K.W. New oxidative transformations of alkenes and alkynes under the action of diacetoxyiodobenzene. Russ. Chem. Bull., 2004, 53(8), 1735-1742.
[http://dx.doi.org/10.1007/s11172-005-0027-8]
[32]
Piancatelli, G.; Leonelli, F.; Do, N.; Ragan, J. Oxidation of nerol to neral with iodosobenzene diacetate and TEMPO. Org. Synth., 2006, 83, 18-23.
[http://dx.doi.org/10.15227/orgsyn.083.0018]
[33]
Fan, R.; Wen, F.; Qin, L.; Pu, D.; Wang, B.PhI. (OAc)2 induced intramolecular oxidative bromocyclization of homoallylic sulfonamides with KBr as the bromine source. Tetrahedron Lett., 2007, 48(42), 7444-7447.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.085]
[34]
Bérard, D.; Jean, A.; Canesi, S. Novel formal [2+3] cycloaddition between substituted phenols and furan. Tetrahedron Lett., 2007, 48(46), 8238-8241.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.062]
[35]
Chanu, A.; Safir, I.; Basak, R.; Chiaroni, A.; Arseniyadis, S. Synthesis of a norsesquiterpene spirolactone/steroidal hybrid by using an environmentally friendly domino reaction as a key step. Eur. J. Org. Chem., 2007, 2007(26), 4305-4312.
[http://dx.doi.org/10.1002/ejoc.200700446]
[36]
Shu, X.Z.; Xia, X.F.; Yang, Y.F.; Ji, K.G.; Liu, X.Y.; Liang, Y.M. Selective functionalization of sp(3) C-H bonds adjacent to nitrogen using (diacetoxyiodo)benzene (DIB). J. Org. Chem., 2009, 74(19), 7464-7469.
[http://dx.doi.org/10.1021/jo901583r] [PMID: 19731925]
[37]
Mendelsohn, B.A.; Lee, S.; Kim, S.; Teyssier, F.; Aulakh, V.S.; Ciufolini, M.A. Oxidation of oximes to nitrile oxides with hypervalent iodine reagents. Org. Lett., 2009, 11(7), 1539-1542.
[http://dx.doi.org/10.1021/ol900194v] [PMID: 19254039]
[38]
Telvekar, V.; Sasane, K. Oxidative decarboxylation of 2- aryl carboxylic acids using (diacetoxyiodo)benzene forpreparation of aryl aldehydes, ketones, and nitriles. Synlett, 2010, 2010(18), 2778-2780.
[http://dx.doi.org/10.1055/s-0030-1258812]
[39]
Nicolaou, K.C.; Adsool, V.A.; Hale, C.R.H. An expedient procedure for the oxidative cleavage of olefinic bonds with PhI(OAc)2, NMO, and catalytic OsO4. Org. Lett., 2010, 12(7), 1552-1555.
[http://dx.doi.org/10.1021/ol100290a] [PMID: 20192259]
[40]
Kim, H.J.; Kim, J.; Cho, S.H.; Chang, S. Intermolecular oxidative C-N bond formation under metal-free conditions: control of chemoselectivity between aryl sp2 and benzylic sp3 C-H bond imidation. J. Am. Chem. Soc., 2011, 133(41), 16382-16385.
[http://dx.doi.org/10.1021/ja207296y] [PMID: 21928852]
[41]
Mo, D.L.; Ding, C.H.; Dai, L.X.; Hou, X.L. Metal-free synthesis of polysubstituted pyrroles by (diacetoxyiodo)benzene-mediated cascade reaction of 3-alkynyl amines. Chem. Asian J., 2011, 6(12), 3200-3204.
[http://dx.doi.org/10.1002/asia.201100474] [PMID: 21954112]
[42]
Jen, T.; Mendelsohn, B.A.; Ciufolini, M.A. Oxidation of α-oxo-oximes to nitrile oxides with hypervalent iodine reagents. J. Org. Chem., 2011, 76(2), 728-731.
[http://dx.doi.org/10.1021/jo102241s] [PMID: 21175144]
[43]
Ball, L.T.; Lloyd-Jones, G.C.; Russell, C.A. Gold-catalyzed direct arylation. Science, 2012, 337(6102), 1644-1648.
[http://dx.doi.org/10.1126/science.1225709] [PMID: 23019647]
[44]
Prasad, V.; Kale, R.R.; Mishra, B.B.; Kumar, D.; Tiwari, V.K. Diacetoxyiodobenzene mediated one-pot synthesis of diverse carboxamides from aldehydes. Org. Lett., 2012, 14(12), 2936-2939.
[http://dx.doi.org/10.1021/ol3012315] [PMID: 22630055]
[45]
Chen, H.; Sanjaya, S.; Wang, Y.F.; Chiba, S. Copper-catalyzed aliphatic C-H amination with an amidine moiety. Org. Lett., 2013, 15(1), 212-215.
[http://dx.doi.org/10.1021/ol303302r] [PMID: 23252919]
[46]
Xu, J.H.; Jiang, Q.; Guo, C.C. Phenyliodonium diacetate mediated direct synthesis of benzonitriles from styrenes through oxidative cleavage of C═C bonds. J. Org. Chem., 2013, 78(23), 11881-11886.
[http://dx.doi.org/10.1021/jo401919h] [PMID: 24171555]
[47]
Xie, F.; Qi, Z.; Li, X. Rhodium(III)-catalyzed azidation and nitration of arenes by C-H activation. Angew. Chem. Int. Ed., 2013, 52(45), 11862-11866.
[http://dx.doi.org/10.1002/anie.201305902] [PMID: 24573725]
[48]
Xu, L.; Mou, X.Q.; Chen, Z.M.; Wang, S.H. Copper-catalyzed intermolecular azidocyanation of aryl alkenes. Chem. Commun., 2014, 50(73), 10676-10679.
[http://dx.doi.org/10.1039/C4CC04640D] [PMID: 25079085]
[49]
Zhang, N.; Cheng, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Hypervalent iodine-mediated oxygenation of N,N-diaryl tertiary amines: Intramolecular functionalization of sp3 C-H bonds adjacent to nitrogen. J. Org. Chem., 2014, 79(21), 10581-10587.
[http://dx.doi.org/10.1021/jo5016823] [PMID: 25279661]
[50]
Gomes, L.F.R.; Veiros, L.F.; Maulide, N.; Afonso, C.A.M. Diazo- and transition-metal-free C-H insertion: A direct synthesis of β-lactams. Chemistry, 2015, 21(4), 1449-1453.
[http://dx.doi.org/10.1002/chem.201404990] [PMID: 25412838]
[51]
Liu, G.Q.; Yang, C.H.; Li, Y.M. Modular preparation of 5-halomethyl-2-oxazolines via PIDA-promoted intramolecular halooxygenation of N-allylcarboxamides. J. Org. Chem., 2015, 80(22), 11339-11350.
[http://dx.doi.org/10.1021/acs.joc.5b01832] [PMID: 26501791]
[52]
Zenzola, M.; Doran, R.; Luisi, R.; Bull, J.A. Synthesis of sulfoximine carbamates by rhodium-catalyzed nitrene transfer of carbamates to sulfoxides. J. Org. Chem., 2015, 80(12), 6391-6399.
[http://dx.doi.org/10.1021/acs.joc.5b00844] [PMID: 25989821]
[53]
Mandal, S.; Pramanik, A. Synthesis of Hydroxylated Polycyclic Pyrrolo/Indolo[1,2-a]quinoxaline-fused lactam derivatives via PhI(OAc)2 -promoted 1,2-bond migration and solvent insertion. J. Org. Chem., 2022, 87(14), 9282-9295.
[http://dx.doi.org/10.1021/acs.joc.2c01008] [PMID: 35786893]
[54]
Martins, B.S.; Kaiser, D.; Bauer, A.; Tiefenbrunner, I.; Maulide, N. Formal enone α-arylation via I(III)-mediated aryl migration/elimination. Org. Lett., 2021, 23(6), 2094-2098.
[http://dx.doi.org/10.1021/acs.orglett.1c00251] [PMID: 33635665]
[55]
Li, J.; Bauer, A.; Di Mauro, G.; Maulide, N. α-Arylation of carbonyl compounds through oxidative C-C bond activation. Angew. Chem. Int. Ed., 2019, 58, 9816-9819.
[http://dx.doi.org/10.1002/anie.201904899] [PMID: 31112360]
[56]
Bauer, A.; Di Mauro, G.; Li, J.; Maulide, N. An α-Cyclopropanation of carbonyl derivatives by oxidative umpolung. Angew. Chem. Int. Ed., 2020, 59(41), 18208-18212.
[http://dx.doi.org/10.1002/anie.202007439] [PMID: 32808419]
[57]
Reboul, V.; Saraiva Rosa, N.; Glachet, T.; Ibert, Q.; Lohier, J-F.; Franck, X. A straightforward synthesis of N-substituted ureas from primary amides. Synthesis, 2020, 52(14), 2099-2105.
[http://dx.doi.org/10.1055/s-0040-1707103]
[58]
Fang, Z-Y.; Qi, L.; Song, J-Y.; Ren, P-X.; Hou, C-Y.; Ji, S-C.; Wang, L-J.; Li, W.PhI. (OAc)2-Promoted 1,2-diaza-cope rearrangement of βᵧ-unsaturated hydrazones with acetate/H2O: access to diacyl/acyl N-allylhydrazines. Eur. J. Org. Chem., 2020, 2020(33), 5464-5468.
[http://dx.doi.org/10.1002/ejoc.202000875]
[59]
Ye, Z.; Zhang, H.; Chen, N.; Wu, Y.; Zhang, F. PIDA-Mediated rearrangement for the synthesis of enantiopure triazolopyridinones. Org. Lett., 2020, 22(16), 6464-6467.
[http://dx.doi.org/10.1021/acs.orglett.0c02278] [PMID: 32806197]
[60]
Patel, O.P.S.; Jaspal, S.; Shinde, V.N.; Nandwana, N.K.; Rangan, K.; Kumar, A. Phenyliodine(III) Diacetate-Mediated 1,2- ipso -Migration in Mannich Bases of Imid-azo[1,2- a]pyridines: Preparation of N -Acetoxymethyl/Alkoxymethyl- N -arylimidazo[1,2- a]pyridine-3-amines. J. Org. Chem., 2020, 85(11), 7309-7321.
[http://dx.doi.org/10.1021/acs.joc.0c00674] [PMID: 32408748]
[61]
Feng, Y.; Yang, C.; Deng, Q.; Xiong, R.; Zhang, X.; Xiong, Y.; Xiong, Y. Synthesis of antitricyclic morpholine derivatives through iodine(iii)-mediated intramolecular umpolung cycloaddition of olefins. J. Org. Chem., 2020, 85(6), 4500-4506.
[http://dx.doi.org/10.1021/acs.joc.0c00286] [PMID: 32098469]
[62]
Danton, F.; Othman, M.; Lawson, A.M.; Moncol, J.; Ghinet, A.; Rigo, B.; Daïch, A. Phenyliodine(III) diacetate/i2-mediated domino approach for pyrrolo[1,4]thiazines and 1,4-thiazines by a one-pot morin rearrangement of N,S-acetals. Chemistry, 2019, 25(24), 6113-6118.
[http://dx.doi.org/10.1002/chem.201901111] [PMID: 30908789]
[63]
Li, X-Q.; Shang, X-X.; Vu, H-M.L. One-pot synthesisof 2-arylbenzoxazinones from 2-arylindoles with(diacetoxyiodo)benzene as the sole oxidant. Synthesis, 2018, 50(2), 377-383.
[http://dx.doi.org/10.1055/s-0036-1590933]
[64]
Garia, A.; Jain, N. Transition-metal-free synthesis offused quinazolinones by oxidative cyclization of N-pyridylindoles. J. Org. Chem., 2019, 84(15), 9661-9670.
[http://dx.doi.org/10.1021/acs.joc.9b01170] [PMID: 31267751]
[65]
Glachet, T.; Marzag, H.; Saraiva Rosa, N.; Colell, J.F.P.; Zhang, G.; Warren, W.S.; Franck, X.; Theis, T.; Reboul, V. Iodonitrene in action: Directtransformation of amino acids into terminaldiazirines and 15N2-diazirines and their applicationas hyperpolarized markers. J. Am. Chem. Soc., 2019, 141(34), 13689-13696.
[http://dx.doi.org/10.1021/jacs.9b07035] [PMID: 31373802]
[66]
Yamakoshi, W.; Arisawa, M.; Murai, K. OxidativeRearrangement of primary amines using PhI(OAc)2and Cs2CO3. Org. Lett., 2019, 21(9), 3023-3027.
[http://dx.doi.org/10.1021/acs.orglett.9b00559] [PMID: 30998017]
[67]
Zheng, Z.J.; Yu, T.Y.; Xu, P.F.; Wei, H. (Diacetoxyiodo)benzene-mediated selective synthesisof α-azido ketones or acyl azides from β-keto acids. Asian J. Org. Chem., 2018, 7(8), 1579-1582.
[http://dx.doi.org/10.1002/ajoc.201800319]
[68]
Moriarty, R.M.; Prakash, O.; Vavilikolanu, P.R. Oxidative Cleavage of Ketoximes with Iodosobenzene diacetate. Synth. Commun., 1986, 16(10), 1247-1253.
[http://dx.doi.org/10.1080/00397918608056372]
[69]
Maegawa, T.; Miki, Y.; Oishi, R.; Segi, K.; Hamamoto, H.; Nakamura, A. Hypervalent iodine-mediated beckmann rearrangement of ketoximes. Synlett, 2018, 29(11), 1465-1468.
[http://dx.doi.org/10.1055/s-0037-1609686]
[70]
Kiyokawa, K.; Watanabe, T.; Fra, L.; Kojima, T.; Minakata, S. Hypervalent iodine(III)-mediateddecarboxylative Ritter-type amination leading to theproduction of α-tertiary amine derivatives. J. Org. Chem., 2017, 82(22), 11711-11720.
[http://dx.doi.org/10.1021/acs.joc.7b01202] [PMID: 28603990]
[71]
Guo, T.; Jiang, Q.; Yu, Z. Copper-catalyzed ring-expansion/thiolactonization via azidation ofinternal olefinic C-H bond under mild conditions. Adv. Synth. Catal., 2016, 358(21), 3450-3457.
[http://dx.doi.org/10.1002/adsc.201600675]
[72]
Debnath, P.; Baeten, M.; Lefèvre, N.; Daele, S.V.; Maes, B.U.W. Synthesis of secondaryamides from N-substituted amidines by tandemoxidative rearrangement and isocyanateelimination. Adv. Synth. Catal., 2015, 357(1), 197-209.
[http://dx.doi.org/10.1002/adsc.201400648]
[73]
Zhang, X.; Huang, R.; Marrot, J.; Coeffard, V.; Xiong, Y. Hypervalent iodine-mediated synthesis of benzoxazoles and benzimidazoles via an oxidative rearrangement. Tetrahedron, 2015, 71(4), 700-708.
[http://dx.doi.org/10.1016/j.tet.2014.11.066]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy