Generic placeholder image

Micro and Nanosystems


ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

A Conceptual Framework Towards the Realization of In situ Monitoring and Control of End-to-End Additive Manufacturing Process

Author(s): Sachin Karadgi*, Prabhakar M. Bhovi, Arun Y. Patil, Keshavamurthy Ramaiah, K. Venkateswarlu and Terence G. Langdon

Volume 15, Issue 2, 2023

Published on: 09 June, 2023

Page: [92 - 101] Pages: 10

DOI: 10.2174/1876402915666230405132640

Price: $65


Additive Manufacturing (AM) is considered one of the key technologies for realizing Industry 4.0. There are numerous stages in the end-to-end AM process, including component design, material design, build, and so on. An enormous amount of data is generated along the end-to-end AM process that can be acquired from the 3D printer in real-time, micro-characterization studies, and process plan details, among others. For instance, these data can be employed to predict the printed components’ quality and, at the same time, proactively adapt the 3D printer parameters to achieve better quality. This end-to-end AM process can be mapped onto the digital thread. The current article elaborates on a conceptual framework to acquire the data from various sources associated with the end-to-end AM process and realize monitoring and control of the end-to-end AM process, leading to an intelligent AM process.

Keywords: Industry 4.0, real-time enterprise, traceability, in situ monitoring and control, machine learning, intelligent AM process.

Graphical Abstract
Kagermann, H.; Wahlster, W.; Helbig, J. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0, Tech; Acatech: Munich, Germany, 2013.
Lu, Y.; Morris, K.; Frechette, S. Current Standards Landscape for Smart Manufacturing Systems; National Institute of Standards and Technology: Maryland, USA, 2016, p. 8107.
Leiva, C. Three Functional Dimensions Converge on Smart Manufacturing, Tech. Rep. Whitepaper 59; MESA International: Arizona, USA, 2018.
ISO/TC 184/SC 4 Secretary, ISO 10303 Part 1 – Overview and fundamental principles, Standard, International Organization for Standardization (ISO); Genera, Switzerland, 1994.
Hannah, M.; James, M.; Johnson, S.; Leiva, C.; Michel, A.; Noller, D.; Riddick, F.; Riley, D.; Wallace, E. Brad Williams, Smart Manufacturing – The Landscape Explained, Tech. rep; MESA International: Arizona, USA, 2016.
Butt, J. Exploring the interrelationship between additive manufacturing and Industry 4.0. Designs, 2020, 4(2), 13.
Abdulhameed, O.; Al-Ahmari, A.; Ameen, W.; Mian, S.H. Additive manufacturing: Challenges, trends, and applications. Adv. Mech. Eng., 2019, 11(2), 1-27.
Razvi, S.S.; Feng, S.; Narayanan, A.; Lee, Y.T.T.; Witherell, P. A review of machine learning applications in additive manufacturing, 2019.
Alfaify, A.; Saleh, M.; Abdullah, F.M.; Al-Ahmari, A.M. Design for additive manufacturing: A systematic review. Sustainability (Basel), 2020, 12(19), 7936.
Horst, D.J.; Duvoisin, C.; Vieira, R.D.A. Additive manufacturing at Industry 4.0: A review. Int. J. Eng. Tech. Res., 2018, 8(8), 3-8.
Qi, X.; Chen, G.; Li, Y.; Cheng, X.; Li, C. Applying neural-network-based machine learning to additive manufacturing: Current applications, challenges, and future perspectives. Engineering (Beijing), 2019, 5(4), 721-729.
Colosimo, B.M.; Huang, Q.; Dasgupta, T.; Tsung, F. Opportunities and challenges of quality engineering for additive manufacturing. J. Qual. Technol., 2018, 50(3), 233-252.
Masinelli, G.; Shevchik, S.A.; Pandiyan, V.; Quang-Le, T.; Wasmer, K. Artificial intelligence for monitoring and control of metal additive manufacturing. Industrializing Additive Manufacturing; Meboldt, M; Klahn, C., Ed.; Springer International Publishing: Cham, 2021, pp. 205-220.
Meng, L.; McWilliams, B.; Jarosinski, W.; Park, H.Y.; Jung, Y.G.; Lee, J.; Zhang, J. Machine learning in additive manufacturing: A review. J. Miner. Met. Mater. Soc., 2020, 72(6), 2363-2377.
Johnson, N.S.; Vulimiri, P.S.; To, A.C.; Zhang, X.; Brice, C.A.; Kappes, B.B.; Stebner, A.P. Invited review: Machine learning for materials developments in metals additive manufacturing. Addit. Manuf., 2020, 36, 101641.
Goh, G.D.; Sing, S.L.; Yeong, W.Y. A review on machine learning in 3D printing: applications, potential, and challenges. Artif. Intell. Rev., 2021, 54(1), 63-94.
Kim, D.B.; Witherell, P.; Lipman, R.; Feng, S.C. Streamlining the additive manufacturing digital spectrum: A systems approach. Addit. Manuf., 2015, 5, 20-30.
Jin, Z.; Zhang, Z.; Demir, K.; Gu, G.X. Machine learning for advanced additive manufacturing. Matter, 2020, 3(5), 1541-1556.
Jiang, J.; Ma, Y. Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: A review. Micromachines (Basel), 2020, 11(7), 633.
[] [PMID: 32605325]
Wang, Y.; Zheng, P.; Peng, T.; Yang, H.; Zou, J. Smart additive manufacturing: Current artificial intelligence-enabled methods and future perspectives. Sci. China Technol. Sci., 2020, 63(9), 1600-1611.
Wang, Z.; Wu, W.; Qian, G.; Sun, L.; Li, X.; Correia, J.A.F.O. In situ SEM investigation on fatigue behaviors of additive manufactured Al-Si10-Mg alloy at elevated temperature. Eng. Fract. Mech., 2019, 214, 149-163.
Jiao, L.; Chua, Z.; Moon, S.; Song, J.; Bi, G.; Zheng, H. Femtosecond laser produced hydrophobic hierarchical structures on additive manufacturing parts. Nanomaterials (Basel), 2018, 8(8), 601.
[] [PMID: 30087292]
Zhu, W.; Hangas, J.; Li, Y.; Huo, Y.; Poczatek, E.; Li, M. TEM study on the additive-manufactured AlSi10Mg. Microsc. Microanal., 2020, 26(S2), 3228-3231.
Spigarelli, S.; Paoletti, C.; Cabibbo, M.; Cerri, E.; Santecchia, E. On the creep performance of the Ti‐6Al‐4V alloy processed by additive manufacturing. Addit. Manuf., 2022, 49, 102520.
Paoletti, C.; Spigarelli, S.; Cabibbo, M.; Cerri, E. Creep behavior of a AlSiMg alloy produced by additive manufacturing. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series:; Springer: Cham, 2020.
Kagermann, H. Industrie 4.0 - Perspektiven für den Standort Deutschland Die zweite Welle der Digitalisierung Deutschlands Zukunftsprojekte, Tech. rep; Acatech: Munich, Germany, 2018.
Gilchrist, A. Industry 4.0; Apress: Berkeley, CA, 2016.
Adolphs, P.; Bedenbender, H.; Dirzus, D. Status Report: Reference Architecture Model Industrie 4.0 (RAMI4.0), Tech. Rep. July; VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Dossal dorf, Germany, 2015.
Secretary. DIN DIN SPEC 91345:2016-04 – Reference Architecture Model Industrie 4.0 (RAMI4.0); Standard, Beuth Verlag GmbH: Berlin, DE, 2016.
Schuh, G.; Anderl, R.; Gausemeier, J.; ten Hompel, M.; Wahlster, W. Industry 4.0 maturity index.Tech. rep., acatech STUDY; Munich Germany, 2018.
PI International, Profibus and Profinet International (PI). 2023. Available from:
Modbus, 2023. Available from: (Accessed on 2023-01-13).
OPC. OPC foundation, 2023. Available from: (Accessed on: 2023-01-13).
MTConnect. 2023. Available from: (Accessed on: 2023-01-13).
Grauer, M.; Metz, D.; Karadgi, S.S.; Schäfer, W.; Reichwald, J.W. Towards an it-framework for digital enterprise integration. Proceedings of the 6th CIRP-Sponsored International Conference on Digital Enterprise Technology; Springer: Berlin., 2010, pp. 1467-1482.
Karadgi, S. Real-Time Performance Measurement in Manufacturing; Springer International Publishing: Cham, 2014, pp. 53-100.
Grauer, M.; Karadgi, S.; Metz, D. Enhancement of transparency and adaptability by online tracking of enterprise processes. 10th International Conference on Wirtschaftsinformatik, Zurich, Switzerland2011, pp. 282-291.
Grauer, M.; Seeger, B.; Metz, D.; Karadgi, S.; Schneider, M. About adopting event processing in manufacturing. In: Towards a Service-Based Internet. ServiceWave 2010 Workshops; Cezon, Y.; Micheland, W., Eds.; Springer: Berlin, Heidelberg, 2011; pp. 180-187.
Karadgi, S.; Grauer, M.; Metz, D. First steps towards an event-driven reference architecture in manufacturing. In: Tagungsband Multikonferenz Wirtschaftsinformatik 2014; MKWI, Germany, 2014; pp. 1-12.
Khosla, V.; Pal, M. Real Time Enterprises - A Continuous Migration Approach, Tech. rep; Khosla Ventures: California, USA, 2002.
McKendrick, J. 4 ways to join the real-time enterprise revolution. 2023. Available from:
Kosanke, K.; Vernadat, F.; Zelm, M. CIMOSA: Enterprise engineering and integration. Comput. Ind., 1999, 40(2-3), 83-97.
Meyer, C. Going to Real-Time., 2023. Available from: (Accessed on: 2023-01-13).
Malhotra, Y. Integrating knowledge management technologies in organizational business processes: getting real time enterprises to deliver real business performance. J. Knowl. Manage., 2005, 9(1), 7-28.
ISO/TC 184/SC 5 Secretary, ISO 22400-2:2014 – Automation systems and integration – Key performance indicators (KPIs) for manufacturing operations management – Part 2: Definitions and descriptions, Standard, International Organization for Standardization; ISO: Geneva, Switzerland, 2014.
Verma, A.; Rai, R. Energy efficient modeling and optimization of additive manufacturing processes In. International Solid Freeform Fabrication Symposium 2013., University of Texas at Austin2013.
Shevchik, S.A.; Masinelli, G.; Kenel, C.; Leinenbach, C.; Wasmer, K. Deep learning for in situ and real-time quality monitoring in additive manufacturing using acoustic emission. IEEE Trans. Industr. Inform., 2019, 15(9), 5194-5203.
Akhil, V.; Raghav, G.; Arunachalam, N.; Srinivas, D.S. Image data-based surface texture characterization and prediction using machine learning approaches for additive manufacturing. J. Comput. Inf. Sci. Eng. Apr, 2020, 20(2), 021010.
Douard, A.; Grandvallet, C.; Pourroy, F.; Vignat, F. An example of machine learning applied in additive manufacturing. In: IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2018, pp. 1746-1750.
Jin, Z.; Zhang, Z.; Gu, G.X. Automated real‐time detection and prediction of interlayer imperfections in additive manufacturing processes using artificial intelligence. Adv. Intell. Syst., 2020, 2(1), 1900130.
Khanzadeh, M.; Rao, P.; Jafari-Marandi, R.; Smith, B.K.; Tschopp, M.A.; Bian, L. Quantifying geometric accuracy with unsupervised machine learning: using self-organizing map on fused filament fabrication additive manufacturing parts. J. Manuf. Sci. Eng. Mar, 2017, 140(3), 031011.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy