Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

SARS-CoV-2 Omicron Variant in Medicinal Chemistry Research

Author(s): Weslany Souza Rocha, Peng Zhan and Edeildo Ferreira da Silva-Júnior*

Volume 23, Issue 17, 2023

Published on: 02 May, 2023

Page: [1625 - 1639] Pages: 15

DOI: 10.2174/1568026623666230411095417

Price: $65

Abstract

The Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths and threatens public health and safety. Nowadays, modern society has faced a new challenging problem, the emergence of novel SARS-CoV-2 variants of concern (VOCs). In this context, the Omicron (B.1.1.529) variant, having more than 60 mutations when compared to its ancestral wild-type virus, has infected many individuals around the world. It is rapidly spread person-to-person due to its increased transmissibility. Additionally, it was demonstrated that this newest variant and its subvariants have the capability of evading the host immune system, being resistant to neutralizing antibodies. Moreover, it has been proven to be resistant to monoclonal antibodies and several different vaccines. This ability is associated with a huge number of mutations associated with its spike (S) glycoprotein, which presents at least 15 mutations. These mutations are able to modify the way how this virus interacts with the host angiotensin-converting enzyme 2 (ACE2), increasing its infectivity and making the therapeutic alternatives more ineffective. Concerning its chymotrypsin-like picornavirus 3C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp), it has been seen that some compounds can be active against different SARS-CoV-2 variants, in a similar mode than its wild-type precursor. This broad spectrum of action for some drugs could be attributed to the fact that the currently identified mutations found in 3CLpro and RNA proteins being localized near the catalytic binding site, conserving their activities. Herein this review, we provide a great and unprecedented compilation of all identified and/or repurposed compounds/drugs against this threatening variant, Omicron. The main targets for those compounds are the protein-protein interface (PPI) of S protein with ACE2, 3CLpro, RdRp, and Nucleocapsid (N) protein. Some of these studies have presented only in silico data, having a lack of experimental results to prove their findings. However, these should be considered here since other research teams can use their observations to design and investigate new potential agents. Finally, we believe that our review will contribute to several studies that are in progress worldwide, compiling several interesting aspects about VOCs associated with SARS-CoV- 2, as well as describing the results for different chemical classes of compounds that could be promising as prototypes for designing new and more effective antiviral agents.

Keywords: COVID-19, B.1.1.529, VOC, Immune evasion, Natural product, Synthetics, Inhibitors.

Graphical Abstract
[1]
Volz, E.; Hill, V.; McCrone, J.T.; Price, A.; Jorgensen, D.; O’Toole, Á.; Southgate, J.; Johnson, R.; Jackson, B.; Nascimento, F.F.; Rey, S.M.; Nicholls, S.M.; Colquhoun, R.M.; da Silva Filipe, A.; Shepherd, J.; Pascall, D.J.; Shah, R.; Jesudason, N.; Li, K.; Jarrett, R.; Pacchiarini, N.; Bull, M.; Geidelberg, L.; Siveroni, I.; Goodfellow, I.; Loman, N.J.; Pybus, O.G.; Robertson, D.L.; Thomson, E.C.; Rambaut, A.; Connor, T.R.; Koshy, C.; Wise, E.; Cortes, N.; Lynch, J.; Kidd, S.; Mori, M.; Fairley, D.J.; Curran, T.; McKenna, J.P.; Adams, H.; Fraser, C.; Golubchik, T.; Bonsall, D.; Moore, C.; Caddy, S.L.; Khokhar, F.A.; Wantoch, M.; Reynolds, N.; Warne, B.; Maksimovic, J.; Spellman, K.; McCluggage, K.; John, M.; Beer, R.; Afifi, S.; Morgan, S.; Marchbank, A.; Price, A.; Kitchen, C.; Gulliver, H.; Merrick, I.; Southgate, J.; Guest, M.; Munn, R.; Workman, T.; Connor, T.R.; Fuller, W.; Bresner, C.; Snell, L.B.; Charalampous, T.; Nebbia, G.; Batra, R.; Edgeworth, J.; Robson, S.C.; Beckett, A.; Loveson, K.F.; Aanensen, D.M.; Underwood, A.P.; Yeats, C.A.; Abudahab, K.; Taylor, B.E.W.; Menegazzo, M.; Clark, G.; Smith, W.; Khakh, M.; Fleming, V.M.; Lister, M.M.; Howson-Wells, H.C.; Berry, L.; Boswell, T.; Joseph, A.; Willingham, I.; Bird, P.; Helmer, T.; Fallon, K.; Holmes, C.; Tang, J.; Raviprakash, V.; Campbell, S.; Sheriff, N.; Loose, M.W.; Holmes, N.; Moore, C.; Carlile, M.; Wright, V.; Sang, F.; Debebe, J.; Coll, F.; Signell, A.W.; Betancor, G.; Wilson, H.D.; Feltwell, T.; Houldcroft, C.J.; Eldirdiri, S.; Kenyon, A.; Davis, T.; Pybus, O.; du Plessis, L.; Zarebski, A.; Raghwani, J.; Kraemer, M.; Francois, S.; Attwood, S.; Vasylyeva, T.; Torok, M.E.; Hamilton, W.L.; Goodfellow, I.G.; Hall, G.; Jahun, A.S.; Chaudhry, Y.; Hosmillo, M.; Pinckert, M.L.; Georgana, I.; Yakovleva, A.; Meredith, L.W.; Moses, S.; Lowe, H.; Ryan, F.; Fisher, C.L.; Awan, A.R.; Boyes, J.; Breuer, J.; Harris, K.A.; Brown, J.R.; Shah, D.; Atkinson, L.; Lee, J.C.D.; Alcolea-Medina, A.; Moore, N.; Cortes, N.; Williams, R.; Chapman, M.R.; Levett, L.J.; Heaney, J.; Smith, D.L.; Bashton, M.; Young, G.R.; Allan, J.; Loh, J.; Randell, P.A.; Cox, A.; Madona, P.; Holmes, A.; Bolt, F.; Price, J.; Mookerjee, S.; Rowan, A.; Taylor, G.P.; Ragonnet-Cronin, M.; Nascimento, F.F.; Jorgensen, D.; Siveroni, I.; Johnson, R.; Boyd, O.; Geidelberg, L.; Volz, E.M.; Brunker, K.; Smollett, K.L.; Loman, N.J.; Quick, J.; McMurray, C.; Stockton, J.; Nicholls, S.; Rowe, W.; Poplawski, R.; Martinez-Nunez, R.T.; Mason, J.; Robinson, T.I.; O’Toole, E.; Watts, J.; Breen, C.; Cowell, A.; Ludden, C.; Sluga, G.; Machin, N.W.; Ahmad, S.S.Y.; George, R.P.; Halstead, F.; Sivaprakasam, V.; Thomson, E.C.; Shepherd, J.G.; Asamaphan, P.; Niebel, M.O.; Li, K.K.; Shah, R.N.; Jesudason, N.G.; Parr, Y.A.; Tong, L.; Broos, A.; Mair, D.; Nichols, J.; Carmichael, S.N.; Nomikou, K.; Aranday-Cortes, E.; Johnson, N.; Starinskij, I.; da Silva Filipe, A.; Robertson, D.L.; Orton, R.J.; Hughes, J.; Vattipally, S.; Singer, J.B.; Hale, A.D.; Macfarlane-Smith, L.R.; Harper, K.L.; Taha, Y.; Payne, B.A.I.; Burton-Fanning, S.; Waugh, S.; Collins, J.; Eltringham, G.; Templeton, K.E.; McHugh, M.P.; Dewar, R.; Wastenge, E.; Dervisevic, S.; Stanley, R.; Prakash, R.; Stuart, C.; Elumogo, N.; Sethi, D.K.; Meader, E.J.; Coupland, L.J.; Potter, W.; Graham, C.; Barton, E.; Padgett, D.; Scott, G.; Swindells, E.; Greenaway, J.; Nelson, A.; Yew, W.C.; Resende Silva, P.C.; Andersson, M.; Shaw, R.; Peto, T.; Justice, A.; Eyre, D.; Crooke, D.; Hoosdally, S.; Sloan, T.J.; Duckworth, N.; Walsh, S.; Chauhan, A.J.; Glaysher, S.; Bicknell, K.; Wyllie, S.; Butcher, E.; Elliott, S.; Lloyd, A.; Impey, R.; Levene, N.; Monaghan, L.; Bradley, D.T.; Allara, E.; Pearson, C.; Muir, P.; Vipond, I.B.; Hopes, R.; Pymont, H.M.; Hutchings, S.; Curran, M.D.; Parmar, S.; Lackenby, A.; Mbisa, T.; Platt, S.; Miah, S.; Bibby, D.; Manso, C.; Hubb, J.; Chand, M.; Dabrera, G.; Ramsay, M.; Bradshaw, D.; Thornton, A.; Myers, R.; Schaefer, U.; Groves, N.; Gallagher, E.; Lee, D.; Williams, D.; Ellaby, N.; Harrison, I.; Hartman, H.; Manesis, N.; Patel, V.; Bishop, C.; Chalker, V.; Osman, H.; Bosworth, A.; Robinson, E.; Holden, M.T.G.; Shaaban, S.; Birchley, A.; Adams, A.; Davies, A.; Gaskin, A.; Plimmer, A.; Gatica-Wilcox, B.; McKerr, C.; Moore, C.; Williams, C.; Heyburn, D.; De Lacy, E.; Hilvers, E.; Downing, F.; Shankar, G.; Jones, H.; Asad, H.; Coombes, J.; Watkins, J.; Evans, J.M.; Fina, L.; Gifford, L.; Gilbert, L.; Graham, L.; Perry, M.; Morgan, M.; Bull, M.; Cronin, M.; Pacchiarini, N.; Craine, N.; Jones, R.; Howe, R.; Corden, S.; Rey, S.; Kumziene-Summerhayes, S.; Taylor, S.; Cottrell, S.; Jones, S.; Edwards, S.; O’Grady, J.; Page, A.J.; Wain, J.; Webber, M.A.; Mather, A.E.; Baker, D.J.; Rudder, S.; Yasir, M.; Thomson, N.M.; Aydin, A.; Tedim, A.P.; Kay, G.L.; Trotter, A.J.; Gilroy, R.A.J.; Alikhan, N.F.; de Oliveira Martins, L.; Le-Viet, T.; Meadows, L.; Kolyva, A.; Diaz, M.; Bell, A.; Gutierrez, A.V.; Charles, I.G.; Adriaenssens, E.M.; Kingsley, R.A.; Casey, A.; Simpson, D.A.; Molnar, Z.; Thompson, T.; Acheson, E.; Masoli, J.A.H.; Knight, B.A.; Hattersley, A.; Ellard, S.; Auckland, C.; Mahungu, T.W.; Irish-Tavares, D.; Haque, T.; Bourgeois, Y.; Scarlett, G.P.; Partridge, D.G.; Raza, M.; Evans, C.; Johnson, K.; Liggett, S.; Baker, P.; Essex, S.; Lyons, R.A.; Caller, L.G.; Castellano, S.; Williams, R.J.; Kristiansen, M.; Roy, S.; Williams, C.A.; Dyal, P.L.; Tutill, H.J.; Panchbhaya, Y.N.; Forrest, L.M.; Niola, P.; Findlay, J.; Brooks, T.T.; Gavriil, A.; Mestek-Boukhibar, L.; Weeks, S.; Pandey, S.; Berry, L.; Jones, K.; Richter, A.; Beggs, A.; Smith, C.P.; Bucca, G.; Hesketh, A.R.; Harrison, E.M.; Peacock, S.J.; Palmer, S.; Churcher, C.M.; Bellis, K.L.; Girgis, S.T.; Naydenova, P.; Blane, B.; Sridhar, S.; Ruis, C.; Forrest, S.; Cormie, C.; Gill, H.K.; Dias, J.; Higginson, E.E.; Maes, M.; Young, J.; Kermack, L.M.; Hadjirin, N.F.; Aggarwal, D.; Griffith, L.; Swingler, T.; Davidson, R.K.; Rambaut, A.; Williams, T.; Balcazar, C.E.; Gallagher, M.D.; O’Toole, Á.; Rooke, S.; Jackson, B.; Colquhoun, R.; Ashworth, J.; Hill, V.; McCrone, J.T.; Scher, E.; Yu, X.; Williamson, K.A.; Stanton, T.D.; Michell, S.L.; Bewshea, C.M.; Temperton, B.; Michelsen, M.L.; Warwick-Dugdale, J.; Manley, R.; Farbos, A.; Harrison, J.W.; Sambles, C.M.; Studholme, D.J.; Jeffries, A.R.; Darby, A.C.; Hiscox, J.A.; Paterson, S.; Iturriza-Gomara, M.; Jackson, K.A.; Lucaci, A.O.; Vamos, E.E.; Hughes, M.; Rainbow, L.; Eccles, R.; Nelson, C.; Whitehead, M.; Turtle, L.; Haldenby, S.T.; Gregory, R.; Gemmell, M.; Kwiatkowski, D.; de Silva, T.I.; Smith, N.; Angyal, A.; Lindsey, B.B.; Groves, D.C.; Green, L.R.; Wang, D.; Freeman, T.M.; Parker, M.D.; Keeley, A.J.; Parsons, P.J.; Tucker, R.M.; Brown, R.; Wyles, M.; Constantinidou, C.; Unnikrishnan, M.; Ott, S.; Cheng, J.K.J.; Bridgewater, H.E.; Frost, L.R.; Taylor-Joyce, G.; Stark, R.; Baxter, L.; Alam, M.T.; Brown, P.E.; McClure, P.C.; Chappell, J.G.; Tsoleridis, T.; Ball, J.; Grammatopoulos, D.; Buck, D.; Todd, J.A.; Green, A.; Trebes, A.; MacIntyre-Cockett, G.; de Cesare, M.; Langford, C.; Alderton, A.; Amato, R.; Goncalves, S.; Jackson, D.K.; Johnston, I.; Sillitoe, J.; Palmer, S.; Lawniczak, M.; Berriman, M.; Danesh, J.; Livett, R.; Shirley, L.; Farr, B.; Quail, M.; Thurston, S.; Park, N.; Betteridge, E.; Weldon, D.; Goodwin, S.; Nelson, R.; Beaver, C.; Letchford, L.; Jackson, D.A.; Foulser, L.; McMinn, L.; Prestwood, L.; Kay, S.; Kane, L.; Dorman, M.J.; Martincorena, I.; Puethe, C.; Keatley, J.P.; Tonkin-Hill, G.; Smith, C.; Jamrozy, D.; Beale, M.A.; Patel, M.; Ariani, C.; Spencer-Chapman, M.; Drury, E.; Lo, S.; Rajatileka, S.; Scott, C.; James, K.; Buddenborg, S.K.; Berger, D.J.; Patel, G.; Garcia-Casado, M.V.; Dibling, T.; McGuigan, S.; Rogers, H.A.; Hunter, A.D.; Souster, E.; Neaverson, A.S. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell, 2021, 184(1), 64-75.e11.
[http://dx.doi.org/10.1016/j.cell.2020.11.020] [PMID: 33275900]
[2]
Weng, S.; Shang, J.; Cheng, Y.; Zhou, H.; Ji, C.; Yang, R.; Wu, A. Genetic differentiation and diversity of SARS-CoV-2 Omicron variant in its early outbreak. Biosafety Health, 2022, 4(3), 171-178.
[http://dx.doi.org/10.1016/j.bsheal.2022.04.004] [PMID: 35496653]
[3]
Sun, Y.; Lin, W.; Dong, W.; Xu, J. Origin and evolutionary analysis of the SARS-CoV-2 Omicron variant. J. Biosafety Biosec., 2022, 4(1), 33-37.
[http://dx.doi.org/10.1016/j.jobb.2021.12.001] [PMID: 35005525]
[4]
Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; Choga, W.T.; Colquhoun, R.; Davids, M.; Deforche, K.; Doolabh, D.; du Plessis, L.; Engelbrecht, S.; Everatt, J.; Giandhari, J.; Giovanetti, M.; Hardie, D.; Hill, V.; Hsiao, N.Y.; Iranzadeh, A.; Ismail, A.; Joseph, C.; Joseph, R.; Koopile, L.; Kosakovsky Pond, S.L.; Kraemer, M.U.G.; Kuate-Lere, L.; Laguda-Akingba, O.; Lesetedi-Mafoko, O.; Lessells, R.J.; Lockman, S.; Lucaci, A.G.; Maharaj, A.; Mahlangu, B.; Maponga, T.; Mahlakwane, K.; Makatini, Z.; Marais, G.; Maruapula, D.; Masupu, K.; Matshaba, M.; Mayaphi, S.; Mbhele, N.; Mbulawa, M.B.; Mendes, A.; Mlisana, K.; Mnguni, A.; Mohale, T.; Moir, M.; Moruisi, K.; Mosepele, M.; Motsatsi, G.; Motswaledi, M.S.; Mphoyakgosi, T.; Msomi, N.; Mwangi, P.N.; Naidoo, Y.; Ntuli, N.; Nyaga, M.; Olubayo, L.; Pillay, S.; Radibe, B.; Ramphal, Y.; Ramphal, U.; San, J.E.; Scott, L.; Shapiro, R.; Singh, L.; Smith-Lawrence, P.; Stevens, W.; Strydom, A.; Subramoney, K.; Tebeila, N.; Tshiabuila, D.; Tsui, J.; van Wyk, S.; Weaver, S.; Wibmer, C.K.; Wilkinson, E.; Wolter, N.; Zarebski, A.E.; Zuze, B.; Goedhals, D.; Preiser, W.; Treurnicht, F.; Venter, M.; Williamson, C.; Pybus, O.G.; Bhiman, J.; Glass, A.; Martin, D.P.; Rambaut, A.; Gaseitsiwe, S.; von Gottberg, A.; de Oliveira, T. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, 2022, 603(7902), 679-686.
[http://dx.doi.org/10.1038/s41586-022-04411-y] [PMID: 35042229]
[5]
WHO. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern. Available From: https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern [Accessed on Jul 6, 2022].
[6]
WHO. WHO Coronavirus (COVID-19) Dashboard. Available From: https://covid19.who.int/
[7]
CDC. Omicron variant: What you need to know. Available From: https://www.cdc.gov/coronavirus/2019-ncov/variants/omicron-variant.html [Accessed on Jul 12, 2022].
[8]
Shah, M.; Woo, H.G. Omicron: A heavily mutated SARS-CoV-2 variant exhibits stronger binding to ACE2 and potently escapes approved COVID-19 therapeutic antibodies. Front. Immunol., 2022, 12, 830527.
[http://dx.doi.org/10.3389/fimmu.2021.830527] [PMID: 35140714]
[9]
GISAID. Tracking of variants., Available From: https://www.gisaid.org/hcov19-variants [Accessed on Jul 7, 2022].
[10]
WHO. Tracking SARS-CoV-2 variants. Available From: https://www.who.int/activities/tracking-SARS-CoV-2-variants [Accessed on Jul 6, 2022].
[11]
CDC. Science Brief: Omicron (B.1.1.529) Variant. Available From: https://www.cdc.gov/coronavirus/2019-ncov/science/sciencebriefs/scientific-brief-omicron-variant.html [Accessed on Jul 6, 2022].
[12]
Gobeil, S.M.C.; Henderson, R.; Stalls, V.; Janowska, K.; Huang, X.; May, A.; Speakman, M.; Beaudoin, E.; Manne, K.; Li, D.; Parks, R.; Barr, M.; Deyton, M.; Martin, M.; Mansouri, K.; Edwards, R.J.; Eaton, A.; Montefiori, D.C.; Sempowski, G.D.; Saunders, K.O.; Wiehe, K.; Williams, W.; Korber, B.; Haynes, B.F.; Acharya, P. Structural diversity of the SARS-CoV-2 Omicron spike. Mol. Cell, 2022, 82(11), 2050-2068.e6.
[http://dx.doi.org/10.1016/j.molcel.2022.03.028] [PMID: 35447081]
[13]
Du, P.; Gao, G.F.; Wang, Q. The mysterious origins of the Omicron variant of SARS-CoV-2. Innovation, 2022, 3(2), 100206.
[http://dx.doi.org/10.1016/j.xinn.2022.100206] [PMID: 35043101]
[14]
Wang, Q.; Anang, S.; Iketani, S.; Guo, Y.; Liu, L.; Katsamba, P.S.; Shapiro, L.; Ho, D.D.; Sodroski, J.G. Functional properties of the spike glycoprotein of the emerging SARS-CoV-2 variant B.1.1.529. Cell Rep., 2022, 39(11), 110924.
[http://dx.doi.org/10.1016/j.celrep.2022.110924] [PMID: 35658975]
[15]
Chen, J.; Wang, R.; Gilby, N.B.; Wei, G.W. omicron variant (b.1.1.529): infectivity, vaccine breakthrough, and antibody resistance. J. Chem. Inf. Model., 2022, 62(2), 412-422.
[http://dx.doi.org/10.1021/acs.jcim.1c01451] [PMID: 34989238]
[16]
Fratev, F. R346K Mutation in the Mu Variant of SARS-CoV-2 Alters the Interactions with Monoclonal antibodies from Class 2: A free energy perturbation study. J. Chem. Inf. Model., 2022, 62(3), 627-631.
[http://dx.doi.org/10.1021/acs.jcim.1c01243] [PMID: 35072475]
[17]
Han, Y.; Yang, Z.; Hu, H.; Zhang, H.; Chen, L.; Li, K.; Kong, L.; Wang, Q.; Liu, B.; Wang, M.; Lin, J.; Chen, P.R. Covalently engineered protein minibinders with enhanced neutralization efficacy against escaping SARS-CoV-2 Variants. J. Am. Chem. Soc., 2022, 144(13), 5702-5707.
[http://dx.doi.org/10.1021/jacs.1c11554] [PMID: 35212528]
[18]
Greaney, A.J.; Starr, T.N.; Gilchuk, P.; Zost, S.J.; Binshtein, E.; Loes, A.N.; Hilton, S.K.; Huddleston, J.; Eguia, R.; Crawford, K.H.D.; Dingens, A.S.; Nargi, R.S.; Sutton, R.E.; Suryadevara, N.; Rothlauf, P.W.; Liu, Z.; Whelan, S.P.J.; Carnahan, R.H.; Crowe, J.E., Jr; Bloom, J.D. Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. Cell Host Microbe, 2021, 29(1), 44-57.e9.
[http://dx.doi.org/10.1016/j.chom.2020.11.007] [PMID: 33259788]
[19]
Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.J.; Robertson, D.L. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol., 2021, 19(7), 409-424.
[http://dx.doi.org/10.1038/s41579-021-00573-0] [PMID: 34075212]
[20]
Gao, S.J.; Guo, H.; Luo, G. Omicron variant (B.1.1.529) of SARS‐CoV‐2, a global urgent public health alert!. J. Med. Virol., 2022, 94(4), 1255-1256.
[http://dx.doi.org/10.1002/jmv.27491] [PMID: 34850421]
[21]
Karim, S.S.A.; Karim, Q.A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet, 2021, 398(10317), 2126-2128.
[http://dx.doi.org/10.1016/S0140-6736(21)02758-6] [PMID: 34871545]
[22]
Meng, B.; Abdullahi, A.; Ferreira, I.A.T.M.; Goonawardane, N.; Saito, A.; Kimura, I.; Yamasoba, D.; Gerber, P.P.; Fatihi, S.; Rathore, S.; Zepeda, S.K.; Papa, G.; Kemp, S.A.; Ikeda, T.; Toyoda, M.; Tan, T.S.; Kuramochi, J.; Mitsunaga, S.; Ueno, T.; Shirakawa, K.; Takaori-Kondo, A.; Brevini, T.; Mallery, D.L.; Charles, O.J.; Baker, S.; Dougan, G.; Hess, C.; Kingston, N.; Lehner, P.J.; Lyons, P.A.; Matheson, N.J.; Ouwehand, W.H.; Saunders, C.; Summers, C.; Thaventhiran, J.E.D.; Toshner, M.; Weekes, M.P.; Maxwell, P.; Shaw, A.; Bucke, A.; Calder, J.; Canna, L.; Domingo, J.; Elmer, A.; Fuller, S.; Harris, J.; Hewitt, S.; Kennet, J.; Jose, S.; Kourampa, J.; Meadows, A.; O’Brien, C.; Price, J.; Publico, C.; Rastall, R.; Ribeiro, C.; Rowlands, J.; Ruffolo, V.; Tordesillas, H.; Bullman, B.; Dunmore, B.J.; Gräf, S.; Hodgson, J.; Huang, C.; Hunter, K.; Jones, E.; Legchenko, E.; Matara, C.; Martin, J.; Mescia, F.; O’Donnell, C.; Pointon, L.; Shih, J.; Sutcliffe, R.; Tilly, T.; Treacy, C.; Tong, Z.; Wood, J.; Wylot, M.; Betancourt, A.; Bower, G.; Cossetti, C.; De Sa, A.; Epping, M.; Fawke, S.; Gleadall, N.; Grenfell, R.; Hinch, A.; Jackson, S.; Jarvis, I.; Krishna, B.; Nice, F.; Omarjee, O.; Perera, M.; Potts, M.; Richoz, N.; Romashova, V.; Stefanucci, L.; Strezlecki, M.; Turner, L.; De Bie, E.M.D.D.; Bunclark, K.; Josipovic, M.; Mackay, M.; Butcher, H.; Caputo, D.; Chandler, M.; Chinnery, P.; Clapham-Riley, D.; Dewhurst, E.; Fernandez, C.; Furlong, A.; Graves, B.; Gray, J.; Hein, S.; Ivers, T.; Le Gresley, E.; Linger, R.; Kasanicki, M.; King, R.; Kingston, N.; Meloy, S.; Moulton, A.; Muldoon, F.; Ovington, N.; Papadia, S.; Penkett, C.J.; Phelan, I.; Ranganath, V.; Paraschiv, R.; Sage, A.; Sambrook, J.; Scholtes, I.; Schon, K.; Stark, H.; Stirrups, K.E.; Townsend, P.; Walker, N.; Webster, J.; Butlertanaka, E.P.; Tanaka, Y.L.; Ito, J.; Uriu, K.; Kosugi, Y.; Suganami, M.; Oide, A.; Yokoyama, M.; Chiba, M.; Motozono, C.; Nasser, H.; Shimizu, R.; Kitazato, K.; Hasebe, H.; Irie, T.; Nakagawa, S.; Wu, J.; Takahashi, M.; Fukuhara, T.; Shimizu, K.; Tsushima, K.; Kubo, H.; Kazuma, Y.; Nomura, R.; Horisawa, Y.; Nagata, K.; Kawai, Y.; Yanagida, Y.; Tashiro, Y.; Tokunaga, K.; Ozono, S.; Kawabata, R.; Morizako, N.; Sadamasu, K.; Asakura, H.; Nagashima, M.; Yoshimura, K.; Cárdenas, P.; Muñoz, E.; Barragan, V.; Márquez, S.; Prado-Vivar, B.; Becerra-Wong, M.; Caravajal, M.; Trueba, G.; Rojas-Silva, P.; Grunauer, M.; Gutierrez, B.; Guadalupe, J.J.; Fernández-Cadena, J.C.; Andrade-Molina, D.; Baldeon, M.; Pinos, A.; Bowen, J.E.; Joshi, A.; Walls, A.C.; Jackson, L.; Martin, D.; Smith, K.G.C.; Bradley, J.; Briggs, J.A.G.; Choi, J.; Madissoon, E.; Meyer, K.B.; Mlcochova, P.; Ceron-Gutierrez, L.; Doffinger, R.; Teichmann, S.A.; Fisher, A.J.; Pizzuto, M.S.; de Marco, A.; Corti, D.; Hosmillo, M.; Lee, J.H.; James, L.C.; Thukral, L.; Veesler, D.; Sigal, A.; Sampaziotis, F.; Goodfellow, I.G.; Matheson, N.J.; Sato, K.; Gupta, R.K. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature, 2022, 603(7902), 706-714.
[http://dx.doi.org/10.1038/s41586-022-04474-x] [PMID: 35104837]
[23]
Zhang, J.; Cai, Y.; Lavine, C.L.; Peng, H.; Zhu, H.; Anand, K.; Tong, P.; Gautam, A.; Mayer, M.L.; Rits-Volloch, S.; Wang, S.; Sliz, P.; Wesemann, D.R.; Yang, W.; Seaman, M.S.; Lu, J.; Xiao, T.; Chen, B. Structural and functional impact by SARS-CoV-2 Omicron spike mutations. Cell Rep., 2022, 39(4), 110729.
[http://dx.doi.org/10.1016/j.celrep.2022.110729] [PMID: 35452593]
[24]
Hoffmann, M.; Krüger, N.; Schulz, S.; Cossmann, A.; Rocha, C.; Kempf, A.; Nehlmeier, I.; Graichen, L.; Moldenhauer, A.S.; Winkler, M.S.; Lier, M.; Dopfer-Jablonka, A.; Jäck, H.M.; Behrens, G.M.N.; Pöhlmann, S. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell, 2022, 185(3), 447-456.e11.
[http://dx.doi.org/10.1016/j.cell.2021.12.032] [PMID: 35026151]
[25]
Guo, H.; Gao, Y.; Li, T.; Li, T.; Lu, Y.; Zheng, L.; Liu, Y.; Yang, T.; Luo, F.; Song, S.; Wang, W.; Yang, X.; Nguyen, H.C.; Zhang, H.; Huang, A.; Jin, A.; Yang, H.; Rao, Z.; Ji, X. Structures of Omicron spike complexes and implications for neutralizing antibody development. Cell Rep., 2022, 39(5), 110770.
[http://dx.doi.org/10.1016/j.celrep.2022.110770] [PMID: 35477022]
[26]
Li, L.; Liao, H.; Meng, Y.; Li, W.; Han, P.; Liu, K.; Wang, Q.; Li, D.; Zhang, Y.; Wang, L.; Fan, Z.; Zhang, Y.; Wang, Q.; Zhao, X.; Sun, Y.; Huang, N.; Qi, J.; Gao, G.F. Structural basis of human ACE2 higher binding affinity to currently circulating Omicron SARS-CoV-2 sub-variants BA.2 and BA.1.1. Cell, 2022, 185(16), 2952-2960.e10.
[http://dx.doi.org/10.1016/j.cell.2022.06.023] [PMID: 35809570]
[27]
ECDC. Epidemiological update: SARS-CoV-2 Omicron sublineages BA.4 and BA.5. Available From: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-sars-cov-2-omicron-sub-lineages-ba4-and-ba5 [Accessed on Jul 12, 2022].
[28]
Koshikawa, T.; Miyoshi, H. High-resolution melting analysis to discriminate between the SARS-CoV-2 Omicron variants BA.1 and BA.2. Biochem. Biophys. Rep., 2022, 31, 101306.
[http://dx.doi.org/10.1016/j.bbrep.2022.101306] [PMID: 35791375]
[29]
Arora, P.; Kempf, A.; Nehlmeier, I.; Schulz, S.R.; Cossmann, A.; Stankov, M.V.; Jäck, H.M.; Behrens, G.M.N.; Pöhlmann, S.; Hoffmann, M. Augmented neutralisation resistance of emerging omicron subvariants BA.2.12.1, BA.4, and BA.5. Lancet Infect. Dis., 2022, 22(8), 1117-1118.
[http://dx.doi.org/10.1016/S1473-3099(22)00422-4] [PMID: 35777385]
[30]
Schmidt, F.; Weisblum, Y.; Muecksch, F.; Hoffmann, H.H.; Michailidis, E.; Lorenzi, J.C.C.; Mendoza, P.; Rutkowska, M.; Bednarski, E.; Gaebler, C.; Agudelo, M.; Cho, A.; Wang, Z.; Gazumyan, A.; Cipolla, M.; Caskey, M.; Robbiani, D.F.; Nussenzweig, M.C.; Rice, C.M.; Hatziioannou, T.; Bieniasz, P.D. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med., 2020, 217(11), e20201181.
[http://dx.doi.org/10.1084/jem.20201181] [PMID: 32692348]
[31]
Dhawan, M.; Saied, A.A.; Emran, T.B.; Choudhary, O.P. Emergence of omicron variant’s sublineages BA.4 and BA.5: Risks assessment and possible countermeasures. New Microbes New Infect., 2022, 48, 100997.
[http://dx.doi.org/10.1016/j.nmni.2022.100997] [PMID: 35873063]
[32]
Mader, A.L.; Tydykov, L.; Glück, V.; Bertok, M.; Weidlich, T.; Gottwald, C.; Stefl, A.; Vogel, M.; Plentz, A.; Köstler, J.; Salzberger, B.; Wenzel, J.J.; Niller, H.H.; Jantsch, J.; Wagner, R.; Schmidt, B.; Glück, T.; Gessner, A.; Peterhoff, D. Omicron’s binding to sotrovimab, casirivimab, imdevimab, CR3022, and sera from previously infected or vaccinated individuals. iScience, 2022, 25(4), 104076.
[http://dx.doi.org/10.1016/j.isci.2022.104076] [PMID: 35309727]
[33]
Tuekprakhon, A.; Nutalai, R.; Dijokaite-Guraliuc, A.; Zhou, D.; Ginn, H.M.; Selvaraj, M.; Liu, C.; Mentzer, A.J.; Supasa, P.; Duyvesteyn, H.M.E.; Das, R.; Skelly, D.; Ritter, T.G.; Amini, A.; Bibi, S.; Adele, S.; Johnson, S.A.; Constantinides, B.; Webster, H.; Temperton, N.; Klenerman, P.; Barnes, E.; Dunachie, S.J.; Crook, D.; Pollard, A.J.; Lambe, T.; Goulder, P.; Paterson, N.G.; Williams, M.A.; Hall, D.R.; Fry, E.E.; Huo, J.; Mongkolsapaya, J.; Ren, J.; Stuart, D.I.; Screaton, G.R.; Conlon, C.; Deeks, A.; Frater, J.; Frending, L.; Gardiner, S.; Jämsén, A.; Jeffery, K.; Malone, T.; Phillips, E.; Rothwell, L.; Stafford, L. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell, 2022, 185(14), 2422-2433.e13.
[http://dx.doi.org/10.1016/j.cell.2022.06.005] [PMID: 35772405]
[34]
Huang, M.; Wu, L.; Zheng, A.; Xie, Y.; He, Q.; Rong, X.; Han, P.; Du, P.; Han, P.; Zhang, Z.; Zhao, R.; Jia, Y.; Li, L.; Bai, B.; Hu, Z.; Hu, S.; Niu, S.; Hu, Y.; Liu, H.; Liu, B.; Cui, K.; Li, W.; Zhao, X.; Liu, K.; Qi, J.; Wang, Q.; Gao, G.F. Atlas of currently available human neutralizing antibodies against SARS-CoV-2 and escape by Omicron sub-variants BA.1/BA.1.1/BA.2/BA.3. Immunity, 2022, 55(8), 1501-1514.e3.
[http://dx.doi.org/10.1016/j.immuni.2022.06.005] [PMID: 35777362]
[35]
Stalls, V.; Lindenberger, J.; Gobeil, S.M.C.; Henderson, R.; Parks, R.; Barr, M.; Deyton, M.; Martin, M.; Janowska, K.; Huang, X.; May, A.; Speakman, M.; Beaudoin, E.; Kraft, B.; Lu, X.; Edwards, R.J.; Eaton, A.; Montefiori, D.C.; Williams, W.B.; Saunders, K.O.; Wiehe, K.; Haynes, B.F.; Acharya, P. Cryo-EM structures of SARS-CoV-2 Omicron BA.2 spike. Cell Rep., 2022, 39(13), 111009.
[http://dx.doi.org/10.1016/j.celrep.2022.111009] [PMID: 35732171]
[36]
Mohapatra, R.K.; Kandi, V.; Sarangi, A.K.; Verma, S.; Tuli, H.S.; Chakraborty, S.; Chakraborty, C.; Dhama, K. The recently emerged BA.4 and BA.5 lineages of Omicron and their global health concerns amid the ongoing wave of COVID-19 pandemic – Correspondence. Int. J. Surg., 2022, 103, 106698.
[http://dx.doi.org/10.1016/j.ijsu.2022.106698] [PMID: 35690362]
[37]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.F.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J.A. SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing. Nat., 2020, 583, 459-468.
[38]
Braga, S.; Schmidt, A. Clinical and cytogenetic spectrum of duplication 3p. Eur. J. Pediatr., 1982, 138(2), 195-197.
[http://dx.doi.org/10.1007/BF00441155] [PMID: 7094943]
[39]
Chan, J.F.W.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.W.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[40]
Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol., 2015, 1282, 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1]
[41]
Zhang, J.; Xiao, T.; Cai, Y.; Chen, B. Structure of SARS-CoV-2 spike protein. Curr. Opin. Virol., 2021, 50, 173-182.
[http://dx.doi.org/10.1016/j.coviro.2021.08.010] [PMID: 34534731]
[42]
Duart, G.; García-Murria, M.J.; Grau, B.; Acosta-Cáceres, J.M.; Martínez-Gil, L.; Mingarro, I. SARS-CoV-2 envelope protein topology in eukaryotic membranes. Open Biol., 2020, 10(9), 200209.
[http://dx.doi.org/10.1098/rsob.200209] [PMID: 32898469]
[43]
Al-Qaaneh, A.M.; Alshammari, T.; Aldahhan, R.; Aldossary, H.; Alkhalifah, Z.A.; Borgio, J.F. Genome composition and genetic characterization of SARS-CoV-2. Saudi J. Biol. Sci., 2021, 28(3), 1978-1989.
[http://dx.doi.org/10.1016/j.sjbs.2020.12.053] [PMID: 33519278]
[44]
Bianchi, M.; Benvenuto, D.; Giovanetti, M.; Angeletti, S.; Ciccozzi, M.; Pascarella, S. Sars-CoV-2 Envelope and Membrane Proteins: Structural Differences Linked to Virus Characteristics? Biomed Res. Int., 2020.
[45]
Zeng, W.; Liu, G.; Ma, H.; Zhao, D.; Yang, Y.; Liu, M.; Mohammed, A.; Zhao, C.; Yang, Y.; Xie, J.; Ding, C.; Ma, X.; Weng, J.; Gao, Y.; He, H.; Jin, T. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem. Biophys. Res. Commun., 2020, 527(3), 618-623.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.136] [PMID: 32416961]
[46]
Liu, S.; Leng, C.; Lien, S.; Chi, H.; Huang, C.; Lin, C.; Lian, W.; Chen, C.; Hsieh, S.; Chong, P. Immunological characterizations of the nucleocapsid protein based SARS vaccine candidates. Vaccine, 2006, 24(16), 3100-3108.
[http://dx.doi.org/10.1016/j.vaccine.2006.01.058] [PMID: 16494977]
[47]
Silva, L.R.; da Silva Santos-Júnior, P.F.; de Andrade Brandão, J.; Anderson, L.; Bassi, Ê.J.; Xavier de Araújo-Júnior, J.; Cardoso, S.H.; da Silva-Júnior, E.F. Druggable targets from coronaviruses for designing new antiviral drugs. Bioorg. Med. Chem., 2020, 28(22), 115745.
[http://dx.doi.org/10.1016/j.bmc.2020.115745] [PMID: 33007557]
[48]
Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R.; Qamar, T. Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of Anti-SARS Drugs. Science, 2003, 300, 1763-1767.
[49]
Tahir ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural Basis of SARS-CoV-2 3CLpro and Anti-COVID-19 Drug Discovery from Medicinal Plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[50]
Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol., 2009, 7(6), 439-450.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[51]
Tomar, S.; Johnston, M.L.; St John, S.E.; Osswald, H.L.; Nyalapatla, P.R.; Paul, L.N.; Ghosh, A.K.; Denison, M.R.; Mesecar, A.D. Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro): Implications for nsp5 regulation and the development of antivirals. J. Biol. Chem., 2015, 290(32), 19403-19422.
[http://dx.doi.org/10.1074/jbc.M115.651463] [PMID: 26055715]
[52]
Harcourt, B.H.; Jukneliene, D.; Kanjanahaluethai, A.; Bechill, J.; Severson, K.M.; Smith, C.M.; Rota, P.A.; Baker, S.C. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J. Virol., 2004, 78(24), 13600-13612.
[http://dx.doi.org/10.1128/JVI.78.24.13600-13612.2004] [PMID: 15564471]
[53]
Báez-Santos, Y.M.; St John, S.E.; Mesecar, A.D. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Res., 2015, 115, 21-38.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.015] [PMID: 25554382]
[54]
Barretto, N.; Jukneliene, D.; Ratia, K.; Chen, Z.; Mesecar, A.D.; Baker, S.C. Deubiquitinating activity of the SARS-CoV papain-like protease. Adv. Exp. Med. Biol., 2006, 581, 37-41.
[http://dx.doi.org/10.1007/978-0-387-33012-9_5] [PMID: 17037501]
[55]
Lindner, H.A.; Fotouhi-Ardakani, N.; Lytvyn, V.; Lachance, P.; Sulea, T.; Ménard, R. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol., 2005, 79(24), 15199-15208.
[http://dx.doi.org/10.1128/JVI.79.24.15199-15208.2005] [PMID: 16306591]
[56]
Frieman, M.; Ratia, K.; Johnston, R.E.; Mesecar, A.D.; Baric, R.S. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J. Virol., 2009, 83(13), 6689-6705.
[http://dx.doi.org/10.1128/JVI.02220-08] [PMID: 19369340]
[57]
Ratia, K.; Saikatendu, K.S.; Santarsiero, B.D.; Barretto, N.; Baker, S.C.; Stevens, R.C.; Mesecar, A.D. Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme. Proc. Natl. Acad. Sci. USA, 2006, 103(15), 5717-5722.
[http://dx.doi.org/10.1073/pnas.0510851103] [PMID: 16581910]
[58]
Lei, J.; Mesters, J.R.; Drosten, C.; Anemüller, S.; Ma, Q.; Hilgenfeld, R. Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features. Antiviral Res., 2014, 109, 72-82.
[http://dx.doi.org/10.1016/j.antiviral.2014.06.011] [PMID: 24992731]
[59]
Tan, H.; Hu, Y.; Jadhav, P.; Tan, B.; Wang, J. Progress and Challenges in Targeting the SARS-CoV-2 Papain-like Protease. J. Med. Chem., 2022, 65(11), 7561-7580.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00303] [PMID: 35620927]
[60]
dos Santos Nascimento, I.J.; da Silva-Júnior, E.F.; de Aquino, T.M. Molecular Modeling Targeting Transmembrane Serine Protease 2 (TMPRSS2) as an Alternative Drug Target Against Coronaviruses. Curr. Drug Targets, 2022, 23(3), 240-259.
[http://dx.doi.org/10.2174/1389450122666210809090909] [PMID: 34370633]
[61]
Santos-Júnior, P.F. da S.; Araújo-Júnior, J.X. Silva-Júnior. Peptidomimetic and Peptide-Derived Against 3CLpro from Coronaviruses.Pharmaceut. Target. Coronaviruses; Santos-Júnior, P.F. da S.; de Araújo-Júnior, J.X.; da Silva-Júnior, E.F., Eds.; Bentham science publishers, 2022, pp. 158-188.
[http://dx.doi.org/10.2174/9789815051308122010007]
[62]
Nascimento, I.J. dos S.; de Aquino, T.M.; da Silva-Júnior, E.F. Structure-Based Drug Discovery Approaches Applied to SARSCoV-2 (COVID-19).Pharmaceuticals for Targeting Coronaviruses; Nascimento, I.J. dos S.; de Aquino, T.M.; da Silva-Júnior, E.F., Eds.; Bentham science publishers, 2022, pp. 1-61.
[http://dx.doi.org/10.2174/9789815051308122010003]
[63]
Fernando da Silva Santos-Junior, P.; Jose dos Santos Nascimento, I.; Mendonca de Aquino, T.; Xavier de Araujo-Junior, J.; Ferreira da Silva-Junior, E. Drug discovery strategies against emerging coronaviruses: A global threat.Frontiers in Anti-Infective Drug Discovery; , 2020, pp. 35-90.
[http://dx.doi.org/10.2174/9789811412387120080004]
[64]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Drug Repurposing: A Strategy for Discovering Inhibitors against Emerging Viral Infections. Curr. Med. Chem., 2021, 28(15), 2887-2942.
[http://dx.doi.org/10.2174/1875533XMTA5rMDYp5] [PMID: 32787752]
[65]
Milken, I. COVID-19 Treatment and Vaccine Tracker. Available From: https://covid-19tracker.milkeninstitute.org/ [Accessed on Jul 8, 2022].
[66]
Kato, Y.; Nishiyama, K.; Nishimura, A.; Noda, T.; Okabe, K.; Kusakabe, T.; Kanda, Y.; Nishida, M. Drug repurposing for the treatment of COVID-19. J. Pharmacol. Sci., 2022, 149(3), 108-114.
[http://dx.doi.org/10.1016/j.jphs.2022.04.007] [PMID: 35641023]
[67]
Kumar, S.; Kovalenko, S.; Bhardwaj, S.; Sethi, A.; Gorobets, N.Y.; Desenko, S.M.; Poonam; Rathi, B. Drug repurposing against SARS-CoV-2 using computational approaches. Drug Discov. Today, 2022, 27(7), 2015-2027.
[http://dx.doi.org/10.1016/j.drudis.2022.02.004] [PMID: 35151891]
[68]
NIH. Antiviral Therapy | COVID-19 Treatment Guidelines. Available From: https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/ [Accessed on Jul 8, 2022].
[69]
Jie, X.; Hongmei, Y.; Ping, F.; Kuikui, Z.; Bohan, Y.; Rui, M. Beneficial effect of Arbidol in the management of COVID-19 infection. Aging, 2021, 13(7), 9253-9264.
[http://dx.doi.org/10.18632/aging.202867] [PMID: 33811756]
[70]
Manabe, T.; Kambayashi, D.; Akatsu, H.; Kudo, K. Favipiravir for the treatment of patients with COVID-19: A systematic review and meta-analysis. BMC Infect. Dis., 2021, 21(1), 489.
[http://dx.doi.org/10.1186/s12879-021-06164-x] [PMID: 34044777]
[71]
Pfizer.. Pfizer Starts Global Phase 2/3 EPIC-PEP Study of Novel COVID-19 Oral Antiviral Candidate for Post-Exposure Prophylaxis in Adults. Available From: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-starts-global-phase-23-epic-pep-study-novel-covid-19 [Accessed on Jul 10, 2022].
[72]
Halford, B. Pills to End the Pandemic. C&EN Glob. Interprise, 2021, 99, 44-45.
[73]
Atea’s AT-527, an Oral Antiviral Drug Candidate, Reduces Viral Replication in Hospitalized Patients with COVID-19 in Phase 2 Interim Analysis. Available From: https://ir.ateapharma.com/news-releases/news-release-details/ateas-527-oral-antiviral-drug-candidate-reduces-viral/ [Accessed on Jul 10, 2022].
[74]
Saputri, D.S.; Li, S.; van Eerden, F.J.; Rozewicki, J.; Xu, Z.; Ismanto, H.S.; Davila, A.; Teraguchi, S.; Katoh, K.; Standley, D.M. Flexible, Functional, and Familiar: Characteristics of SARS-CoV-2 Spike Protein Evolution. Front. Microbiol., 2020, 11, 2112.
[http://dx.doi.org/10.3389/fmicb.2020.02112] [PMID: 33042039]
[75]
Khateeb, J.; Li, Y.; Zhang, H. Emerging SARS-CoV-2 variants of concern and potential intervention approaches. Crit. Care, 2021, 25(1), 244.
[http://dx.doi.org/10.1186/s13054-021-03662-x] [PMID: 34253247]
[76]
Qu, X.X.; Hao, P.; Song, X.J.; Jiang, S.M.; Liu, Y.X.; Wang, P.G.; Rao, X.; Song, H.D.; Wang, S.Y.; Zuo, Y.; Zheng, A.H.; Luo, M.; Wang, H.L.; Deng, F.; Wang, H.Z.; Hu, Z.H.; Ding, M.X.; Zhao, G.P.; Deng, H.K. Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. J. Biol. Chem., 2005, 280(33), 29588-29595.
[http://dx.doi.org/10.1074/jbc.M500662200] [PMID: 15980414]
[77]
Song, H.D.; Tu, C.C.; Zhang, G.W.; Wang, S.Y.; Zheng, K.; Lei, L.C.; Chen, Q.X.; Gao, Y.W.; Zhou, H.Q.; Xiang, H.; Zheng, H.J.; Chern, S.W.W.; Cheng, F.; Pan, C.M.; Xuan, H.; Chen, S.J.; Luo, H.M.; Zhou, D.H.; Liu, Y.F.; He, J.F.; Qin, P.Z.; Li, L.H.; Ren, Y.Q.; Liang, W.J.; Yu, Y.D.; Anderson, L.; Wang, M.; Xu, R.H.; Wu, X.W.; Zheng, H.Y.; Chen, J.D.; Liang, G.; Gao, Y.; Liao, M.; Fang, L.; Jiang, L.Y.; Li, H.; Chen, F.; Di, B.; He, L.J.; Lin, J.Y.; Tong, S.; Kong, X.; Du, L.; Hao, P.; Tang, H.; Bernini, A.; Yu, X.J.; Spiga, O.; Guo, Z.M.; Pan, H.Y.; He, W.Z.; Manuguerra, J.C.; Fontanet, A.; Danchin, A.; Niccolai, N.; Li, Y.X.; Wu, C.I.; Zhao, G.P. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc. Natl. Acad. Sci. USA, 2005, 102(7), 2430-2435.
[http://dx.doi.org/10.1073/pnas.0409608102] [PMID: 15695582]
[78]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[79]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 2020, 183(6), 1735.
[http://dx.doi.org/10.1016/j.cell.2020.11.032] [PMID: 33306958]
[80]
Chen, J.; Wei, G.W. Omicron BA.2 (B.1.1.529.2): High potential for becoming the next dominant variant. J. Phys. Chem. Lett., 2022, 13(17), 3840-3849.
[http://dx.doi.org/10.1021/acs.jpclett.2c00469] [PMID: 35467344]
[81]
Socher, E.; Heger, L.; Paulsen, F.; Zunke, F.; Arnold, P. Molecular dynamics simulations of the delta and omicron SARS-CoV-2 spike – ACE2 complexes reveal distinct changes between both variants. Comput. Struct. Biotechnol. J., 2022, 20, 1168-1176.
[http://dx.doi.org/10.1016/j.csbj.2022.02.015] [PMID: 35251533]
[82]
Verkhivker, G.M.; Agajanian, S.; Kassab, R.; Krishnan, K. Landscape-based protein stability analysis and network modeling of multiple conformational states of the SARS-CoV-2 Spike D614G Mutant: Conformational plasticity and frustration-induced allostery as energetic drivers of highly transmissible spike variants. J. Chem. Inf. Model., 2022, 62(8), 1956-1978.
[http://dx.doi.org/10.1021/acs.jcim.2c00124] [PMID: 35377633]
[83]
Jawad, B.; Adhikari, P.; Podgornik, R.; Ching, W.Y. Binding interactions between receptor-binding domain of spike protein and human angiotensin converting enzyme-2 in omicron variant. J. Phys. Chem. Lett., 2022, 13(17), 3915-3921.
[http://dx.doi.org/10.1021/acs.jpclett.2c00423] [PMID: 35481766]
[84]
Hwang, S.; Baek, S.H.; Park, D. Interaction analysis of the spike protein of delta and omicron variants of SARS-CoV-2 with hACE2 and eight monoclonal antibodies using the fragment molecular orbital method. J. Chem. Inf. Model., 2022, 62(7), 1771-1782.
[http://dx.doi.org/10.1021/acs.jcim.2c00100] [PMID: 35312321]
[85]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM Structure of the 2019-NCoV Spike in the Prefusion Conformation. Science, 2020, 367(6483), 1260-1263.
[86]
Yuan, Y.; Cao, D.; Zhang, Y.; Ma, J.; Qi, J.; Wang, Q.; Lu, G.; Wu, Y.; Yan, J.; Shi, Y.; Zhang, X.; Gao, G.F. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun., 2017, 8(1), 15092.
[http://dx.doi.org/10.1038/ncomms15092] [PMID: 28393837]
[87]
Khan, A.; Waris, H.; Rafique, M.; Suleman, M.; Mohammad, A.; Ali, S.S.; Khan, T.; Waheed, Y.; Liao, C.; Wei, D.Q. The Omicron (B.1.1.529) variant of SARS-CoV-2 binds to the hACE2 receptor more strongly and escapes the antibody response: Insights from structural and simulation data. Int. J. Biol. Macromol., 2022, 200, 438-448.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.01.059] [PMID: 35063482]
[88]
Mansbach, R.A.; Chakraborty, S.; Nguyen, K.; Montefiori, D.C.; Korber, B.; Gnanakaran, S. The SARS-CoV-2 Spike variant D614G favors an open conformational state. Sci. Adv., 2021, 7(16), eabf3671.
[http://dx.doi.org/10.1126/sciadv.abf3671] [PMID: 33863729]
[89]
Krause, P.R.; Fleming, T.R.; Longini, I.M.; Peto, R.; Briand, S.; Heymann, D.L.; Beral, V.; Snape, M.D.; Rees, H.; Ropero, A.M.; Balicer, R.D.; Cramer, J.P.; Muñoz-Fontela, C.; Gruber, M.; Gaspar, R.; Singh, J.A.; Subbarao, K.; Van Kerkhove, M.D.; Swaminathan, S.; Ryan, M.J.; Henao-Restrepo, A.M. SARS-CoV-2 Variants and Vaccines. N. Engl. J. Med., 2021, 385(2), 179-186.
[http://dx.doi.org/10.1056/NEJMsr2105280] [PMID: 34161052]
[90]
Shah, M.; Woo, H.G. Molecular Perspectives of SARS-CoV-2: Pathology, immune evasion, and therapeutic interventions. Mol. Cells, 2021, 44(6), 408-421.
[http://dx.doi.org/10.14348/molcells.2021.0026] [PMID: 34059561]
[91]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[92]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[93]
Hu, H.; Li, L.; Kao, R.Y.; Kou, B.; Wang, Z.; Zhang, L.; Zhang, H.; Hao, Z.; Tsui, W.H.; Ni, A.; Cui, L.; Fan, B.; Guo, F.; Rao, S.; Jiang, C.; Li, Q.; Sun, M.; He, W.; Liu, G. Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library. J. Comb. Chem., 2005, 7(5), 648-656.
[http://dx.doi.org/10.1021/cc0500607] [PMID: 16153058]
[94]
Han, D.P.; Penn-Nicholson, A.; Cho, M.W. Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor. Virology, 2006, 350(1), 15-25.
[http://dx.doi.org/10.1016/j.virol.2006.01.029] [PMID: 16510163]
[95]
Shah, M.; Ung Moon, S.; Hyun Kim, J.; Thanh Thao, T.; Goo Woo, H. SARS-CoV-2 pan-variant inhibitory peptides deter S1-ACE2 interaction and neutralize delta and omicron pseudoviruses. Comput. Struct. Biotechnol. J., 2022, 20, 2042-2056.
[http://dx.doi.org/10.1016/j.csbj.2022.04.030] [PMID: 35495107]
[96]
Liu, Z.; Xu, W.; Xia, S.; Gu, C.; Wang, X.; Wang, Q.; Zhou, J.; Wu, Y.; Cai, X.; Qu, D.; Ying, T.; Xie, Y.; Lu, L.; Yuan, Z.; Jiang, S. RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response. Signal Transduct. Target. Ther., 2020, 5(1), 282.
[http://dx.doi.org/10.1038/s41392-020-00402-5] [PMID: 33247109]
[97]
Yang, J.; Wang, W.; Chen, Z.; Lu, S.; Yang, F.; Bi, Z.; Bao, L.; Mo, F.; Li, X.; Huang, Y.; Hong, W.; Yang, Y.; Zhao, Y.; Ye, F.; Lin, S.; Deng, W.; Chen, H.; Lei, H.; Zhang, Z.; Luo, M.; Gao, H.; Zheng, Y.; Gong, Y.; Jiang, X.; Xu, Y.; Lv, Q.; Li, D.; Wang, M.; Li, F.; Wang, S.; Wang, G.; Yu, P.; Qu, Y.; Yang, L.; Deng, H.; Tong, A.; Li, J.; Wang, Z.; Yang, J.; Shen, G.; Zhao, Z.; Li, Y.; Luo, J.; Liu, H.; Yu, W.; Yang, M.; Xu, J.; Wang, J.; Li, H.; Wang, H.; Kuang, D.; Lin, P.; Hu, Z.; Guo, W.; Cheng, W.; He, Y.; Song, X.; Chen, C.; Xue, Z.; Yao, S.; Chen, L.; Ma, X.; Chen, S.; Gou, M.; Huang, W.; Wang, Y.; Fan, C.; Tian, Z.; Shi, M.; Wang, F.S.; Dai, L.; Wu, M.; Li, G.; Wang, G.; Peng, Y.; Qian, Z.; Huang, C.; Lau, J.Y.N.; Yang, Z.; Wei, Y.; Cen, X.; Peng, X.; Qin, C.; Zhang, K.; Lu, G.; Wei, X. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature, 2020, 586(7830), 572-577.
[http://dx.doi.org/10.1038/s41586-020-2599-8] [PMID: 32726802]
[98]
Dai, L.; Zheng, T.; Xu, K.; Han, Y.; Xu, L.; Huang, E.; An, Y.; Cheng, Y.; Li, S.; Liu, M.; Yang, M.; Li, Y.; Cheng, H.; Yuan, Y.; Zhang, W.; Ke, C.; Wong, G.; Qi, J.; Qin, C.; Yan, J.; Gao, G.F. A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell, 2020, 182(3), 722-733.e11.
[http://dx.doi.org/10.1016/j.cell.2020.06.035] [PMID: 32645327]
[99]
Walls, A.C.; Fiala, B.; Schäfer, A.; Wrenn, S.; Pham, M.N.; Murphy, M.; Tse, L.V.; Shehata, L.; O’Connor, M.A.; Chen, C.; Navarro, M.J.; Miranda, M.C.; Pettie, D.; Ravichandran, R.; Kraft, J.C.; Ogohara, C.; Palser, A.; Chalk, S.; Lee, E.C.; Guerriero, K.; Kepl, E.; Chow, C.M.; Sydeman, C.; Hodge, E.A.; Brown, B.; Fuller, J.T.; Dinnon, K.H., III; Gralinski, L.E.; Leist, S.R.; Gully, K.L.; Lewis, T.B.; Guttman, M.; Chu, H.Y.; Lee, K.K.; Fuller, D.H.; Baric, R.S.; Kellam, P.; Carter, L.; Pepper, M.; Sheahan, T.P.; Veesler, D.; King, N.P. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell, 2020, 183(5), 1367-1382.e17.
[http://dx.doi.org/10.1016/j.cell.2020.10.043] [PMID: 33160446]
[100]
Lee, W.S.; Wheatley, A.K.; Kent, S.J.; DeKosky, B.J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol., 2020, 5(10), 1185-1191.
[http://dx.doi.org/10.1038/s41564-020-00789-5] [PMID: 32908214]
[101]
Wang, J.; Wen, Y.; Zhou, S.H.; Zhang, H.W.; Peng, X.Q.; Zhang, R.Y.; Yin, X.G.; Qiu, H.; Gong, R.; Yang, G.F.; Guo, J. Self-Adjuvanting Lipoprotein Conjugate αGalCer-RBD Induces potent immunity against SARS-CoV-2 and its variants of concern. J. Med. Chem., 2022, 65(3), 2558-2570.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02000] [PMID: 35073081]
[102]
Nag, A.; Banerjee, R.; Paul, S.; Kundu, R. Curcumin inhibits spike protein of new SARS-CoV-2 variant of concern (VOC) Omicron, an in silico study. Comput. Biol. Med., 2022, 146, 105552.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105552] [PMID: 35508082]
[103]
Han, P.; Li, L.; Liu, S.; Wang, Q.; Zhang, D.; Xu, Z.; Han, P.; Li, X.; Peng, Q.; Su, C.; Huang, B.; Li, D.; Zhang, R.; Tian, M.; Fu, L.; Gao, Y.; Zhao, X.; Liu, K.; Qi, J.; Gao, G.F.; Wang, P. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell, 2022, 185(4), 630-640.e10.
[http://dx.doi.org/10.1016/j.cell.2022.01.001] [PMID: 35093192]
[104]
Bahadur Gurung, A.; Ajmal Ali, M.; Elshikh, M.S.; Aref, I.; Amina, M.; Lee, J. An in silico approach unveils the potential of antiviral compounds in preclinical and clinical trials as SARS-CoV-2 omicron inhibitors. Saudi J. Biol. Sci., 2022, 29(6), 103297.
[http://dx.doi.org/10.1016/j.sjbs.2022.103297] [PMID: 35475118]
[105]
Vardhan, S.; Sahoo, S.K. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput. Biol. Med., 2020, 124, 103936.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103936] [PMID: 32738628]
[106]
Bae, J.R.; Park, W.H.; Suh, D.H.; No, J.H.; Kim, Y.B.; Kim, K. Role of limonin in anticancer effects of Evodia rutaecarpa on ovarian cancer cells. BMC Complement. Med. Therap., 2020, 20(1), 94.
[http://dx.doi.org/10.1186/s12906-020-02890-y] [PMID: 32197606]
[107]
Fan, S.; Zhang, C.; Luo, T.; Wang, J.; Tang, Y.; Chen, Z.; Yu, L. Limonin: A Review of Its Pharmacology, Toxicity, and Pharmacokinetics. Molecules, 2019, 24(20), 3679.
[http://dx.doi.org/10.3390/molecules24203679] [PMID: 31614806]
[108]
Yang, R.; Yu, H.; Chen, J.; Zhu, J.; Song, C.; Zhou, L.; Sun, Y.; Zhang, Q. Limonin Attenuates LPS-Induced Hepatotoxicity by Inhibiting Pyroptosis via NLRP3/Gasdermin D Signaling Pathway. J. Agric. Food Chem., 2021, 69(3), 982-991.
[http://dx.doi.org/10.1021/acs.jafc.0c06775] [PMID: 33427450]
[109]
Vardhan, S.; Sahoo, S.K. Computational studies on the interaction of SARS-CoV-2 Omicron SGp RBD with human receptor ACE2, limonin and glycyrrhizic acid. Comput. Biol. Med., 2022, 144, 105367.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105367] [PMID: 35247766]
[110]
Santos Nascimento, I.J.; Silva-Júnior, E.F.; Aquino, T.M. Repurposing FDA-approved drugs targeting SARS-CoV2 3CL pro: A Study by applying virtual screening, molecular dynamics, MM-PBSA calculations and covalent docking. Lett. Drug Des. Discov., 2022, 19(7), 637-653.
[http://dx.doi.org/10.2174/1570180819666220106110133]
[111]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[112]
Qiao, J.; Li, Y.-S.; Zeng, R.; Liu, F.-L.; Luo, R.-H.; Huang, C.; Wang, Y.-F.; Zhang, J.; Quan, B.; Shen, C.; Mao, X.; Liu, X.; Sun, W.; Yang, W.; Ni, X.; Wang, K.; Xu, L.; Duan, Z.-L.; Zou, Q.-C.; Zhang, H.-L.; Qu, W.; Long, Y.-H.-P.; Li, M.-H.; Yang, R.-C.; Liu, X.; You, J.; Zhou, Y.; Yao, R.; Li, W.-P.; Liu, J.-M.; Chen, P.; Liu, Y.; Lin, G.-F.; Yang, X.; Zou, J.; Li, L.; Hu, Y.; Lu, G.-W.; Li, W.-M.; Wei, Y.-Q.; Zheng, Y.-T.; Lei, J.; Yang, S. SARS-CoV-2 M pro inhibitors with antiviral activity in a transgenic mouse model. Science, 2021, 371(6536), 1374-1378.
[113]
Dampalla, C.S.; Zheng, J.; Perera, K.D.; Wong, L.Y.R.; Meyerholz, D.K.; Nguyen, H.N.; Kashipathy, M.M.; Battaile, K.P.; Lovell, S.; Kim, Y.; Perlman, S.; Groutas, W.C.; Chang, K.O. Postinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infection. Proc. Natl. Acad. Sci. USA, 2021, 118(29), e2101555118.
[http://dx.doi.org/10.1073/pnas.2101555118] [PMID: 34210738]
[114]
Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; Dantonio, A.; Di, L.; Eng, H.; Ferre, R.; Gajiwala, K.S.; Gibson, S.A.; Greasley, S.E.; Hurst, B.L.; Kadar, E.P.; Kalgutkar, A.S.; Lee, J.C.; Lee, J.; Liu, W.; Mason, S.W.; Noell, S.; Novak, J.J.; Obach, R.S.; Ogilvie, K.; Patel, N.C.; Pettersson, M.; Rai, D.K.; Reese, M.R.; Sammons, M.F.; Sathish, J.G.; Singh, R.S.P.; Steppan, C.M.; Stewart, A.E.; Tuttle, J.B.; Updyke, L.; Verhoest, P.R.; Wei, L.; Yang, Q.; Zhu, Y. An Oral SARS-CoV-2 Mpro Inhibitor Clinical Candidate for the Treatment of COVID-19. Science., 2021, 374(6575), 6575-1593.
[115]
Greasley, S.E.; Noell, S.; Plotnikova, O.; Ferre, R.; Liu, W.; Bolanos, B.; Fennell, K.; Nicki, J.; Craig, T.; Zhu, Y.; Stewart, A.E.; Steppan, C.M. Structural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variants. J. Biol. Chem., 2022, 298(6), 101972.
[http://dx.doi.org/10.1016/j.jbc.2022.101972] [PMID: 35461811]
[116]
Vangeel, L.; Chiu, W.; De Jonghe, S.; Maes, P.; Slechten, B.; Raymenants, J.; André, E.; Leyssen, P.; Neyts, J.; Jochmans, D. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res., 2022, 198, 105252.
[http://dx.doi.org/10.1016/j.antiviral.2022.105252] [PMID: 35085683]
[117]
Li, P.; Wang, Y.; Lavrijsen, M.; Lamers, M.M.; de Vries, A.C.; Rottier, R.J.; Bruno, M.J.; Peppelenbosch, M.P.; Haagmans, B.L.; Pan, Q. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res., 2022, 32(3), 322-324.
[http://dx.doi.org/10.1038/s41422-022-00618-w] [PMID: 35058606]
[118]
Paulo, A.; Gomes, E.T.; Houghton, P.J. New Alkaloids from Cryptolepis sanguinolenta. J. Nat. Prod., 1995, 58(10), 1485-1491.
[http://dx.doi.org/10.1021/np50124a002]
[119]
Cimanga, K.; De Bruyne, T.; Pieters, L.; Claeys, M.; Vlietinck, A. New alkaloids from Cryptolepis sanguinolenta. Tetrahedron Lett., 1996, 37(10), 1703-1706.
[http://dx.doi.org/10.1016/0040-4039(96)00112-8]
[120]
Ambros, R.; Angerer, S.V.; Wiegrebe, W. Synthesis and antitumor activity of methoxy-indolo[2,1-a]isoquinolines. Arch. Pharm., 1988, 321(8), 481-486.
[http://dx.doi.org/10.1002/ardp.19883210811] [PMID: 3223806]
[121]
Saundane, A.R.; Ranganath, S.H.; Prayagraj, G.; Rudresh, K.; Satyanarayana, N.D. Synthesis and Pharmacological Studies of Some New 11H- Indolo[3,2-C] Isoquinolin-5-Ylthio)Acetyl Thiosemicarbazide Andits Derivatives. Orient. J. Chem., 1998, 14, 251-254.
[122]
Verma, V.A.; Saundane, A.R.; Shamrao, R.; Meti, R.S.; Shinde, V.M. Novel indolo [3,2-c]isoquinoline-5-one-6-yl [1,2,4]triazolo [3,4-b] [1,3,4]thiadiazole analogues: Design, synthesis, anticancer activity, docking with SARS-CoV-2 Omicron protease and MESP/TD-DFT approaches. J. Mol. Struct., 2022, 1264, 133153.
[http://dx.doi.org/10.1016/j.molstruc.2022.133153] [PMID: 36532891]
[123]
Unoh, Y.; Uehara, S.; Nakahara, K.; Nobori, H.; Yamatsu, Y.; Yamamoto, S.; Maruyama, Y.; Taoda, Y.; Kasamatsu, K.; Suto, T.; Kouki, K.; Nakahashi, A.; Kawashima, S.; Sanaki, T.; Toba, S.; Uemura, K.; Mizutare, T.; Ando, S.; Sasaki, M.; Orba, Y.; Sawa, H.; Sato, A.; Sato, T.; Kato, T.; Tachibana, Y. Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J. Med. Chem., 2022, 65(9), 6499-6512.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00117] [PMID: 35352927]
[124]
Ahn, D.G.; Choi, J.K.; Taylor, D.R.; Oh, J.W. Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Arch. Virol., 2012, 157(11), 2095-2104.
[http://dx.doi.org/10.1007/s00705-012-1404-x] [PMID: 22791111]
[125]
Uengwetwanit, T.; Chutiwitoonchai, N.; Wichapong, K.; Karoonuthaisiri, N. Identification of novel SARS-CoV-2 RNA dependent RNA polymerase (RdRp) inhibitors: From in silico screening to experimentally validated inhibitory activity. Comput. Struct. Biotechnol. J., 2022, 20, 882-890.
[http://dx.doi.org/10.1016/j.csbj.2022.02.001] [PMID: 35136534]
[126]
de Farias, S.T.; dos Santos, Junior, A.P.; Rêgo, T.G.; José, M.V. Origin and Evolution of RNA-Dependent RNA Polymerase. Front. Genet., 2017, 8, 125.
[http://dx.doi.org/10.3389/fgene.2017.00125] [PMID: 28979293]
[127]
Hillen, H.S.; Kokic, G.; Farnung, L.; Dienemann, C.; Tegunov, D.; Cramer, P. Structure of replicating SARS-CoV-2 polymerase. Nature, 2020, 584(7819), 154-156.
[http://dx.doi.org/10.1038/s41586-020-2368-8] [PMID: 32438371]
[128]
Painter, W.P.; Holman, W.; Bush, J.A.; Almazedi, F.; Malik, H.; Eraut, N.C.J.E.; Morin, M.J.; Szewczyk, L.J.; Painter, G.R. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrob. Agents Chemother., 2021, 65(5), e02428-e20.
[http://dx.doi.org/10.1128/AAC.02428-20] [PMID: 33649113]
[129]
Agostini, M.L.; Pruijssers, A.J.; Chappell, J.D.; Gribble, J.; Lu, X.; Andres, E.L.; Bluemling, G.R.; Lockwood, M.A.; Sheahan, T.P.; Sims, A.C.; Natchus, M.G.; Saindane, M.; Kolykhalov, A.A.; Painter, G.R.; Baric, R.S.; Denison, M.R. Small-Molecule Antiviral β- D-N4 -Hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. J. Virol., 2019, 93(24), e01348-e19.
[http://dx.doi.org/10.1128/JVI.01348-19] [PMID: 31578288]
[130]
Painter, G.R.; Bowen, R.A.; Bluemling, G.R.; DeBergh, J.; Edpuganti, V.; Gruddanti, P.R.; Guthrie, D.B.; Hager, M.; Kuiper, D.L.; Lockwood, M.A.; Mitchell, D.G.; Natchus, M.G.; Sticher, Z.M.; Kolykhalov, A.A. The prophylactic and therapeutic activity of a broadly active ribonucleoside analog in a murine model of intranasal venezuelan equine encephalitis virus infection. Antiviral Res., 2019, 171, 104597.
[http://dx.doi.org/10.1016/j.antiviral.2019.104597] [PMID: 31494195]
[131]
Kamal, L.; Ramadan, A.; Farraj, S.; Bahig, L.; Ezzat, S. The pill of recovery; Molnupiravir for treatment of COVID-19 patients; A systematic review. Saudi Pharm. J., 2022, 30(5), 508-518.
[http://dx.doi.org/10.1016/j.jsps.2022.03.002] [PMID: 35287313]
[132]
Rosenke, K.; Okumura, A.; Lewis, M.C.; Feldmann, F.; Meade-White, K.; Bohler, W.F.; Griffin, A.; Rosenke, R.; Shaia, C.; Jarvis, M.A.; Feldmann, H. Molnupiravir inhibits SARS-CoV-2 variants including Omicron in the hamster model. JCI Insight, 2022, 7(13), e160108.
[http://dx.doi.org/10.1172/jci.insight.160108] [PMID: 35579953]
[133]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R.W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T.F.; Paredes, R.; Sweeney, D.A.; Short, W.R.; Touloumi, G.; Lye, D.C.; Ohmagari, N.; Oh, M.; Ruiz-Palacios, G.M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M.G.; Atmar, R.L.; Creech, C.B.; Lundgren, J.; Babiker, A.G.; Pett, S.; Neaton, J.D.; Burgess, T.H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; Lane, H.C. Remdesivir for the treatment of Covid-19 — Final report. N. Engl. J. Med., 2020, 383(19), 1813-1826.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[134]
Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; Hidalgo, A.; Sachdeva, Y.; Mittal, S.; Osiyemi, O.; Skarbinski, J.; Juneja, K.; Hyland, R.H.; Osinusi, A.; Chen, S.; Camus, G.; Abdelghany, M.; Davies, S.; Behenna-Renton, N.; Duff, F.; Marty, F.M.; Katz, M.J.; Ginde, A.A.; Brown, S.M.; Schiffer, J.T.; Hill, J.A. Early remdesivir to prevent progression to severe Covid-19 in outpatients. N. Engl. J. Med., 2022, 386(4), 305-315.
[http://dx.doi.org/10.1056/NEJMoa2116846] [PMID: 34937145]
[135]
Gomaa, A. Complementary Intervention for COVID-19. Available From: https://www.clinicaltrials.gov/ct2/show/NCT04487964 [Accessed on Jul 11, 2022].
[136]
Aarogyam, U. a pilot study on efficacy and safety of ayurveda combination in patients with mild-to-moderate COVID-19. Available From: https://clinicaltrials.gov/ct2/show/NCT04621903 [Accessed on Jul 11, 2022].
[137]
Aarogyam, U. Feasibility of ayurveda in patients with mild-tomoderate COVID-19: A community-based participatory research. Available From: https://www.clinicaltrials.gov/ct2/show/NCT04716647 [Accessed on Jul 11, 2022].
[138]
Roshni, J.; Vaishali, R.; Ganesh, K.S.; Dharani, N.; Alzahrani, K.J.; Banjer, H.J.; Alghamdi, A.H.; Theyab, A.; Ahmed, S.S.S.J.; Patil, S. Multi-target potential of Indian phytochemicals against SARS-CoV-2: A docking, molecular dynamics and MM-GBSA approach extended to Omicron B.1.1.529. J. Infect. Public Health, 2022, 15(6), 662-669.
[http://dx.doi.org/10.1016/j.jiph.2022.05.002] [PMID: 35617830]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy