Review Article

Revisiting Inhibition Effects of miR-28 as a Metastasis Suppressor in Gastrointestinal Cancers

Author(s): Saiedeh Razi Soofiyani, Sohrab Minaei Beirami, Kamran Hosseini, Mina Mohammadi Nasr, Maryam Ranjbar, Haleh Forouhandeh, Vahideh Tarhriz* and Mohammadreza Sadeghi*

Volume 12, Issue 2, 2023

Published on: 12 May, 2023

Page: [131 - 142] Pages: 12

DOI: 10.2174/2211536612666230413125126

Price: $65

Abstract

MicroRNAs are critical epigenetic regulators that can be used as diagnostic, prognostic, and therapeutic biomarkers for the treatment of various diseases, including gastrointestinal cancers, among a variety of cellular and molecular biomarkers. MiRNAs have also shown oncogenic or tumor suppressor roles in tumor tissue and other cell types. Studies showed that the dysregulation of miR-28 is involved in cell growth and metastasis of gastrointestinal cancers. MiR-28 plays a key role in controlling the physiological processes of cancer cells including growth and proliferation, migration, invasion, apoptosis, and metastasis. Therefore, miR-28 expression patterns can be used to distinguish patient subgroups. Based on the previous studies, miR-28 expression can be a suitable biomarker to detect tumor size and predict histological grade metastasis. In this review, we summarize the inhibitory effects of miR-28 as a metastasis suppressor in gastrointestinal cancers. miR-28 plays a role as a tumor suppressor in gastrointestinal cancers by regulating cancer cell growth, cell differentiation, angiogenesis, and metastasis. As a result, using it as a prognostic, diagnostic, and therapeutic biomarker in the treatment of gastrointestinal cancers can be a way to solve the problems in this field.

Keywords: Circulating miR-28, gastrointestinal cancers, biomarkers, metastasis, epigenetic regulators, MiRNAs.

Graphical Abstract
[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[2]
Sung H FJ, Siegel RL, Laversanne M, Soerjomataram I. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209-49.
[3]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin 2021; 71(1): 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[4]
Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi M. Colorectal Carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci 2017; 18(1): 197.
[http://dx.doi.org/10.3390/ijms18010197] [PMID: 28106826]
[5]
Orditura M, Galizia G, Sforza V, et al. Treatment of gastric cancer. World J Gastroenterol 2014; 20(7): 1635-49.
[http://dx.doi.org/10.3748/wjg.v20.i7.1635] [PMID: 24587643]
[6]
Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP. Gastric cancer: Epidemiology, prevention, classification, and treatment. Cancer Manag Res 2018; 10(1179)(1322): 239-48.
[http://dx.doi.org/10.2147/CMAR.S149619]
[7]
Abbas M, Habib M, Naveed M, Karthik K, Dhama K, Shi M. The relevance of gastric cancer biomarkers in prognosis and pre- and post- chemotherapy in clinical practice. Biomed Pharmacother 2017; 95(1950-6007): 1082-90.
[8]
Nahand JS, Taghizadeh-boroujeni S, Karimzadeh M, et al. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 2019; 234(10): 17064-99.
[http://dx.doi.org/10.1002/jcp.28457] [PMID: 30891784]
[9]
Mei J, Xu R, Hao L, Zhang Y. MicroRNA-613: A novel tumor suppressor in human cancers. Biomed Pharmacother 2020; 123: 109799.
[http://dx.doi.org/10.1016/j.biopha.2019.109799] [PMID: 31877552]
[10]
Zou X, Zhu D, Zhang H, Zhang S, Zhou X, He X. MicroRNA expression profiling analysis in serum for nasopharyngeal carcinoma diagnosis. Gene 2019; 727(1879-0038)
[11]
Abkhooie L, Sarabi MM, Kahroba H, et al. Potential roles of MyomiRs in cardiac development and related diseases. Curr Cardiol Rev 2021; 17(4): e010621188335.
[http://dx.doi.org/10.2174/1573403X16999201124201021] [PMID: 33238844]
[12]
Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 2014; 11(1759-4782): 145-56.
[http://dx.doi.org/10.1038/nrclinonc.2014.5]
[13]
Zhang Y, Ma Y. Association of microRNA-933 variant with the susceptibility to gastric cancer. J BUON 2017; 22(1107-0625): 390-5.
[14]
Xu J, Jiang N, Shi H, Zhao S, Yao S, Shen H. miR-28-5p promotes the development and progression of ovarian cancer through inhibition of N4BP1. Int J Oncol 2017; 50(1791-2423): 1383-91.
[15]
Rizzo MA-O, Berti G, Russo F, Evangelista M, Pellegrini M, Rainaldi G. The miRNA pull out assay as a method to validate the miR-28-5p targets identified in other tumor contexts in prostate cancer. Int J Genomics 2017; 2017(2314-436X)
[http://dx.doi.org/10.1155/2017/5214806]
[16]
Zhou SL, Hu ZQ, Zhou ZJ, Dai Z, Wang Z, Cao Y. miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis. Hepatology 2016; 63(1527-3350): 1560-75.
[17]
Sayagués JM, Corchete LA, Gutiérrez ML, Sarasquete ME, Del Mar Abad M, Bengoechea O. Genomic characterization of liver metastases from colorectal cancer patients. oncotarget 2016; 7(1949-2553): 72908-22.
[18]
Vychytilova-Faltejskova P, Pesta M, Radova L, Liska V, Daum O, Kala Z. Genome-wide microRNA expression profiling in primary tumors and matched liver metastasis of patients with colorectal cancer. Cancer Genomics Proteomics 2016; 13(1790-6245): 311-6.
[19]
Lv YA-O, Yang H, Ma X, Wu G. Strand-specific miR-28-3p and miR-28-5p have differential effects on nasopharyngeal cancer cells proliferation, apoptosis, migration and invasion. Cancer Cell Int 2019; 19(1475-2867): 187.
[http://dx.doi.org/10.1186/s12935-019-0915-x]
[20]
Tsiakanikas P, Kontos CK, Kerimis D, Papadopoulos IN, Scorilas A. High microRNA-28-5p expression in colorectal adenocarcinoma predicts short-term relapse of node-negative patients and poor overall survival of patients with non-metastatic disease. Clin Chem Lab Med 2018; 56(1437-4331): 990-1000.
[http://dx.doi.org/10.1515/cclm-2017-0430]
[21]
Almeida MI. Strand-specific miR-28-5p and miR-28-3p have distinct effects in colorectal cancer cells. Gastroenterology 2012; 142(1528-0012): 886-96.
[22]
Liang Z, Gao KP, Wang YX, et al. RNA sequencing identified specific circulating miRNA biomarkers for early detection of diabetes retinopathy. Am J Physiol Endocrinol Metab 2018; 315(3): E374-85.
[http://dx.doi.org/10.1152/ajpendo.00021.2018] [PMID: 29812988]
[23]
Jia L, Chopp M, Wang L, Lu X, Szalad A, Zhang ZG. Exosomes derived from high‐glucose‐stimulated Schwann cells promote development of diabetic peripheral neuropathy. FASEB J 2018; 32(12): 6911-22.
[http://dx.doi.org/10.1096/fj.201800597R] [PMID: 29932869]
[24]
Jimenez-Lucena R, Alcala-Diaz JF, Roncero-Ramos I, Lopez-Moreno J, Camargo A, Gomez-Delgado F. MiRNAs profile as biomarkers of nutritional therapy for the prevention of type 2 diabetes mellitus: From the CORDIOPREV study. Clinical nutrition (Edinburgh, Scotland) 2021; 40(3): 1028-38.
[25]
Ji HP, Xiong Y, Song WT, et al. MicroRNA-28 potentially regulates the photoreceptor lineage commitment of Müller glia-derived progenitors. Sci Rep 2017; 7(1): 11374.
[http://dx.doi.org/10.1038/s41598-017-11112-4] [PMID: 28900179]
[26]
Zhou X, Wen W, Shan X, et al. MiR-28-3p as a potential plasma marker in diagnosis of pulmonary embolism. Thromb Res 2016; 138: 91-5.
[http://dx.doi.org/10.1016/j.thromres.2015.12.006] [PMID: 26702486]
[27]
Mao H, Liu L, Hu Y. Mesenchymal stem cells-derived exosomal miRNA-28-3p promotes apoptosis of pulmonary endothelial cells in pulmonary embolism. Eur Rev Med Pharmacol Sci 2020; 24(20): 10619-31.
[http://dx.doi.org/10.21203/rs.3.rs-36047/v1] [PMID: 33155220]
[28]
Zhu RY, Zhang D, Zou HD, Zuo XS, Zhou QS, Huang H. MiR-28 inhibits cardiomyocyte survival through suppressing PDK1/Akt/mTOR signaling. In Vitro Cell Dev Biol Anim 2016; 52(10): 1020-5.
[http://dx.doi.org/10.1007/s11626-016-0065-6] [PMID: 27338735]
[29]
Liu J, Liu XQ, Liu Y, et al. MicroRNA 28-5p regulates ATP-binding cassette transporter A1 via inhibiting extracellular signal-regulated kinase 2. Mol Med Rep 2016; 13(1): 433-40.
[http://dx.doi.org/10.3892/mmr.2015.4563] [PMID: 26718613]
[30]
Torres-Do Rego A, Barrientos M, Ortega-Hernández A, et al. Identification of a plasma microrna signature as biomarker of subaneurysmal aortic dilation in patients with high cardiovascular risk. J Clin Med 2020; 9(9): 2783.
[http://dx.doi.org/10.3390/jcm9092783] [PMID: 32872191]
[31]
Zhao X, Wang S, Sun W. Expression of miR-28-3p in patients with Alzheimer’s disease before and after treatment and its clinical value. Exp Ther Med 2020; 20(3): 2218-26.
[http://dx.doi.org/10.3892/etm.2020.8920] [PMID: 32765698]
[32]
Wang X, Liu J, Zhou L, Ho WZ. Morphine withdrawal enhances HIV infection of macrophages. Front Immunol 2019; 10: 2601.
[http://dx.doi.org/10.3389/fimmu.2019.02601] [PMID: 31803178]
[33]
Huang J, Wang F, Argyris E, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 2007; 13(10): 1241-7.
[http://dx.doi.org/10.1038/nm1639] [PMID: 17906637]
[34]
Meng L, Yang H, Jin C, Quan S. miR-28-5p suppresses cell proliferation and weakens the progression of polycystic ovary syndrome by targeting prokineticin-1. Mol Med Rep 2019; 20(3): 2468-75.
[http://dx.doi.org/10.3892/mmr.2019.10446] [PMID: 31322191]
[35]
Xu Y, Li Y. MicroRNA-28-3p inhibits angiotensin-converting enzyme 2 ectodomain shedding in 293T cells treated with the spike protein of severe acute respiratory syndrome coronavirus 2 by targeting A disintegrin and metalloproteinase 17. Int J Mol Med 2021; 48(4): 189.
[http://dx.doi.org/10.3892/ijmm.2021.5022] [PMID: 34414454]
[36]
Eadon MT, Jacob A, Cunningham PN, Quigg RJ, Garcia JGN, Alexander JJ. Transcriptional profiling reveals that C5a alters microRNA in brain endothelial cells. Immunology 2014; 143(3): 363-73.
[http://dx.doi.org/10.1111/imm.12314] [PMID: 24801999]
[37]
Kaur H, Sehgal R, Kumar A, Sehgal A, Bansal D, Sultan AA. Screening and identification of potential novel biomarker for diagnosis of complicated Plasmodium vivax malaria. J Transl Med 2018; 16(1): 272.
[http://dx.doi.org/10.1186/s12967-018-1646-9] [PMID: 30286756]
[38]
Prats-Puig A, Ortega FJ, Mercader JM, et al. Changes in circulating microRNAs are associated with childhood obesity. J Clin Endocrinol Metab 2013; 98(10): E1655-60.
[http://dx.doi.org/10.1210/jc.2013-1496] [PMID: 23928666]
[39]
Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH. MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 2011; 47(2): 163-74.
[http://dx.doi.org/10.1016/j.ejca.2010.11.005] [PMID: 21145728]
[40]
Wong RSY. Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res 2011; 30(1): 87.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[41]
Green DR. Means to an end: apoptosis and other cell death mechanisms. Cold Spring Harbor Laboratory Press 2011.
[42]
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016; 1(1): 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[43]
Zhang L, Wang X, Liu X, et al. miR-28-5p targets MTSS1 to regulate cell proliferation and apoptosis in esophageal cancer. Acta Biochim Biophys Sin 2020; 52(8): 842-52.
[http://dx.doi.org/10.1093/abbs/gmaa059] [PMID: 32645138]
[44]
Wu W, He K, Guo Q, et al. SSRP1 promotes colorectal cancer progression and is negatively regulated by miR‐28‐5p. J Cell Mol Med 2019; 23(5): 3118-29.
[http://dx.doi.org/10.1111/jcmm.14134] [PMID: 30762286]
[45]
Ma ML, Zhang HY, Zhang SY, Yi XL. LncRNA CDKN2B-AS1 sponges miR-28-5p to regulate proliferation and inhibit apoptosis in colorectal cancer. Oncol Rep 2021; 46(4): 213.
[http://dx.doi.org/10.3892/or.2021.8164] [PMID: 34368874]
[46]
Zhu G, Wang Z, Mijiti M, Du G, Li Y, Dangmurenjiafu G. MiR-28-5p promotes human glioblastoma cell growth through inactivation of FOXO1. Int J Clin Exp Pathol 2019; 12(8): 2972-80.
[PMID: 31934134]
[47]
Luan XF, Wang L, Gai XF. The miR‐28‐5p‐CAMTA2 axis regulates colon cancer progression via Wnt/β‐catenin signaling. J Cell Biochem 2021; 122(9): 945-57.
[http://dx.doi.org/10.1002/jcb.29536] [PMID: 31709644]
[48]
Li Y, Zhao W, Ni J, et al. Predicting the value of adjuvant therapy in esophageal squamous cell carcinoma by combining the total number of examined lymph nodes with the positive lymph node ratio. Ann Surg Oncol 2019; 26(8): 2367-74.
[http://dx.doi.org/10.1245/s10434-019-07489-3] [PMID: 31187360]
[49]
Liu K, Zhao T, Wang J, et al. Etiology, cancer stem cells and potential diagnostic biomarkers for esophageal cancer. Cancer Lett 2019; 458: 21-8.
[http://dx.doi.org/10.1016/j.canlet.2019.05.018] [PMID: 31125642]
[50]
Thrift AP. Global burden and epidemiology of Barrett oesophagus and oesophageal cancer. Nat Rev Gastroenterol Hepatol 2021; 18(6): 432-43.
[http://dx.doi.org/10.1038/s41575-021-00419-3] [PMID: 33603224]
[51]
Xie SH, Lagergren J. Risk factors for oesophageal cancer. Best Pract Res Clin Gastroenterol 2018; 36-37: 3-8.
[http://dx.doi.org/10.1016/j.bpg.2018.11.008] [PMID: 30551854]
[52]
Xie F, Ye L, Chen J, et al. The impact of Metastasis Suppressor-1, MTSS1, on oesophageal squamous cell carcinoma and its clinical significance. J Transl Med 2011; 9(1): 95.
[http://dx.doi.org/10.1186/1479-5876-9-95] [PMID: 21696600]
[53]
Huang Z, Zhang L, Zhu D, et al. A novel serum microRNA signature to screen esophageal squamous cell carcinoma. Cancer Med 2017; 6(1): 109-19.
[http://dx.doi.org/10.1002/cam4.973] [PMID: 28035762]
[54]
Liu SG, Qin XG, Zhao BS, et al. Differential expression of miRNAs in esophageal cancer tissue. Oncol Lett 2013; 5(5): 1639-42.
[http://dx.doi.org/10.3892/ol.2013.1251] [PMID: 23761828]
[55]
Wei L, Sun J, Zhang N, et al. Noncoding RNAs in gastric cancer: Implications for drug resistance. Mol Cancer 2020; 19(1): 62.
[http://dx.doi.org/10.1186/s12943-020-01185-7] [PMID: 32192494]
[56]
Eyvazi S, Vostakolaei MA, Dilmaghani A, et al. The oncogenic roles of bacterial infections in development of cancer. Microb Pathog 2020; 141: 104019.
[http://dx.doi.org/10.1016/j.micpath.2020.104019] [PMID: 32006638]
[57]
Marano L, Polom K, Patriti A, et al. Surgical management of advanced gastric cancer: An evolving issue. Eur J Surg Oncol 2016; 42(1): 18-27.
[http://dx.doi.org/10.1016/j.ejso.2015.10.016] [PMID: 26632080]
[58]
Wang C, Wu C, Yang Q, et al. miR-28-5p acts as a tumor suppressor in renal cell carcinoma for multiple antitumor effects by targeting RAP1B. Oncotarget 2016; 7(45): 73888-902.
[http://dx.doi.org/10.18632/oncotarget.12516] [PMID: 27729617]
[59]
Schneider C, Setty M, Holmes AB, et al. microRNA 28 controls cell proliferation and is down-regulated in B-cell lymphomas. Proc Natl Acad Sci USA 2014; 111(22): 8185-90.
[http://dx.doi.org/10.1073/pnas.1322466111] [PMID: 24843176]
[60]
Li L, Zhu X, Shou T, et al. MicroRNA-28 promotes cell proliferation and invasion in gastric cancer via the PTEN/PI3K/AKT signalling pathway. Mol Med Rep 2018; 17(3): 4003-10.
[PMID: 29257342]
[61]
Guo Y, Cui X, Zhang Y, Ma X, Ren A, Huang H. Diagnostic and prognostic value of serum miR-296-5p and miR-28-3p in human gastric cancer. Cancer Biother Radiopharm 2020.
[http://dx.doi.org/10.1089/cbr.2020.4144] [PMID: 32898433]
[62]
Jeddi F, Alipour S, Najafzadeh N, et al. Reduced Levels of miR–28 and miR–200a act as predictor biomarkers of aggressive clinicopathological characteristics in gastric cancer patients. Galen Med J 2019; 8: 1329.
[http://dx.doi.org/10.31661/gmj.v8i0.1329] [PMID: 34466494]
[63]
Xiao F, Cheng Z, Wang P, et al. MicroRNA-28-5p inhibits the migration and invasion of gastric cancer cells by suppressing AKT phosphorylation. Oncol Lett 2018; 15(6): 9777-85.
[http://dx.doi.org/10.3892/ol.2018.8603] [PMID: 29928352]
[64]
Yue CF, Li LS, Ai L, Deng JK, Guo YM. sMicroRNA-28-5p acts as a metastasis suppressor in gastric cancer by targeting Nrf2. Exp Cell Res 2021; 402(2): 112553.
[http://dx.doi.org/10.1016/j.yexcr.2021.112553] [PMID: 33737068]
[65]
Singal AG, Lampertico P, Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J Hepatol 2020; 72(2): 250-61.
[http://dx.doi.org/10.1016/j.jhep.2019.08.025] [PMID: 31954490]
[66]
Ferenci P, Fried M, Labrecque D, et al. Hepatocellular Carcinoma (HCC). J Clin Gastroenterol 2010; 44(4): 239-45.
[http://dx.doi.org/10.1097/MCG.0b013e3181d46ef2] [PMID: 20216082]
[67]
Niu L, Liu L, Yang S, Ren J, Lai PBS, Chen GG. New insights into sorafenib resistance in hepatocellular carcinoma: Responsible mechanisms and promising strategies. Biochim Biophys Acta Rev Cancer 2017; 1868(2): 564-70.
[http://dx.doi.org/10.1016/j.bbcan.2017.10.002] [PMID: 29054475]
[68]
Han T, Xiang DM, Sun W, et al. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. J Hepatol 2015; 63(3): 651-60.
[http://dx.doi.org/10.1016/j.jhep.2015.03.036] [PMID: 25865556]
[69]
Li XF, Chen C, Xiang DM, et al. Chronic inflammation-elicited liver progenitor cell conversion to liver cancer stem cell with clinical significance. Hepatology 2017; 66(6): 1934-51.
[http://dx.doi.org/10.1002/hep.29372] [PMID: 28714104]
[70]
Sun C, Shui B, Zhao W, et al. Central role of IP3R2-mediated Ca2+ oscillation in self-renewal of liver cancer stem cells elucidated by high-signal ER sensor. Cell Death Dis 2019; 10(6): 396.
[http://dx.doi.org/10.1038/s41419-019-1613-2] [PMID: 31113961]
[71]
Xia Q, Han T, Yang P, et al. MicroRNA-28-5p regulates liver cancer stem cell expansion via IGF-1 pathway. Stem Cells Int 2019; 2019: 1-16.
[http://dx.doi.org/10.1155/2019/8734362] [PMID: 31885628]
[72]
Shi X, Teng F. Down-regulated miR-28-5p in human hepatocellular carcinoma correlated with tumor proliferation and migration by targeting insulin-like growth factor-1 (IGF-1). Mol Cell Biochem 2015; 408(1-2): 283-93.
[http://dx.doi.org/10.1007/s11010-015-2506-z] [PMID: 26160280]
[73]
Han Q, Li J, Xiong J, Song Z. Long noncoding RNA LINC00514 accelerates pancreatic cancer progression by acting as a ceRNA of miR-28-5p to upregulate Rap1b expression. J Exp Clin Cancer Res 2020; 39(1): 151.
[http://dx.doi.org/10.1186/s13046-020-01660-5] [PMID: 32771045]
[74]
Liu Y, Guo C, Li F, Wu L. LncRNA LOXL1‐AS1/miR‐28‐5p/SEMA7A axis facilitates pancreatic cancer progression. Cell Biochem Funct 2020; 38(1): 58-65.
[http://dx.doi.org/10.1002/cbf.3449] [PMID: 31732974]
[75]
Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020; 70(3): 145-64.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[76]
Jeon J, Du M, Schoen RE, et al. Determining risk of colorectal cancer and starting age of screening based on lifestyle, environmental, and genetic factors. Gastroenterology 2018; 154(8): 2152-2164.e19.
[http://dx.doi.org/10.1053/j.gastro.2018.02.021] [PMID: 29458155]
[77]
Fillon M. Study aims to improve colorectal cancer screening rates. CA Cancer J Clin 2019; 69(3): 161-3.
[http://dx.doi.org/10.3322/caac.21472] [PMID: 30861095]
[78]
Jemal A, Ward EM, Johnson CJ, et al. Annual Report to the Nation on the Status of Cancer, 1975–2014, featuring survival. J Natl Cancer Inst 2017; 109(9)
[http://dx.doi.org/10.1093/jnci/djx030] [PMID: 28376154]
[79]
Choi Y, Sateia HF, Peairs KS, Stewart RW. Screening for colorectal cancer. Semin Oncol 2017; 44(1): 34-44.
[http://dx.doi.org/10.1053/j.seminoncol.2017.02.002] [PMID: 28395761]
[80]
Xie H, Guo JH, An WM, et al. Diagnostic value evaluation of trefoil factors family 3 for the early detection of colorectal cancer. World J Gastroenterol 2017; 23(12): 2159-67.
[http://dx.doi.org/10.3748/wjg.v23.i12.2159] [PMID: 28405143]
[81]
Li J, Li K, Xie M, Tang Y, Tang Y, Hu B. Clinical significance and prognostic value of miR-28-5p in colon cancer. Dis Markers 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/3159831] [PMID: 32566038]
[82]
Yu J, Feng Q, Wong SH, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017; 66(1): 70-8.
[http://dx.doi.org/10.1136/gutjnl-2015-309800] [PMID: 26408641]
[83]
Zhou T, Wu L, Ma N, et al. SOX9-activated FARSA-AS1 predetermines cell growth, stemness, and metastasis in colorectal cancer through upregulating FARSA and SOX9. Cell Death Dis 2020; 11(12): 1071.
[http://dx.doi.org/10.1038/s41419-020-03273-4] [PMID: 33318478]
[84]
Liu CL, Zang XX, Huang H, et al. The expression of B7-H3 and B7-H4 in human gallbladder carcinoma and their clinical implications. Eur Rev Med Pharmacol Sci 2016; 20(21): 4466-73.
[PMID: 27874953]
[85]
Geng Y, Wang H, Lu C, et al. Expression of costimulatory molecules B7-H1, B7-H4 and Foxp3+ tregs in gastric cancer and its clinical significance. Int J Clin Oncol 2015; 20(2): 273-81.
[http://dx.doi.org/10.1007/s10147-014-0701-7] [PMID: 24804867]
[86]
Soofiyani SR, Hosseini K, Soleimanian A, et al. An overview on the role of miR-451 in lung cancer: Diagnosis, therapy, and prognosis. MicroRNA 2021; 10(3): 181-90.
[http://dx.doi.org/10.2174/2211536610666210910130828] [PMID: 34514995]
[87]
Sun J, Chen L, Zhang G, et al. Clinical significance and regulation of the costimulatory molecule B7-H3 in human colorectal carcinoma. Cancer Immunol Immunother 2010; 59(8): 1163-71.
[http://dx.doi.org/10.1007/s00262-010-0841-1] [PMID: 20333377]
[88]
Ingebrigtsen VA, Boye K, Nesland JM, Nesbakken A, Flatmark K, Fodstad Ø. B7-H3 expression in colorectal cancer: Associations with clinicopathological parameters and patient outcome. BMC Cancer 2014; 14(1): 602.
[http://dx.doi.org/10.1186/1471-2407-14-602] [PMID: 25139714]
[89]
Wang L, Zhao Y, Xu M, Zhou F, Yan J. Serum miR-1301-3p, miR-335-5p, miR-28-5p, and their target B7-H3 may serve as novel biomarkers for colorectal cancer. J BUON 2019; 24(3): 1120-7.
[90]
Lone SN, Maqbool R, Parray FQ, Ul Hussain M. Triose‐phosphate isomerase is a novel target of miR‐22 and miR‐28, with implications in tumorigenesis. J Cell Physiol 2018; 233(11): 8919-29.
[http://dx.doi.org/10.1002/jcp.26821] [PMID: 29856481]
[91]
Cui M, Chen M, Shen Z, Wang R, Fang X, Song B. LncRNA‐UCA1 modulates progression of colon cancer through regulating the miR‐28‐5p/HOXB3 axis. J Cell Biochem 2019; 120(5): 6926-36.
[http://dx.doi.org/10.1002/jcb.27630] [PMID: 30652355]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy