Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Systematic Review Article

Role of Molnupiravir in the Treatment of COVID-19

Author(s): Aman Sharma, Vaishali M. Patil*, Meenakshi Dahiya, Gaurav Pratap Singh and Anirudh Malik

Volume 21, Issue 4, 2023

Published on: 15 June, 2023

Article ID: e190423216042 Pages: 10

DOI: 10.2174/2211352521666230419100330

Price: $65

Abstract

Background: Molnupiravir is a ribonucleoside analog and exhibits its antiviral mechanism by inhibiting replication. Preclinical studies have been reported that support the role of Molnupiravir towards the prophylaxis, cure, and prevention of SARS-CoV-2 infection. In addition to it, clinical studies have confirmed its activity against the most common variants of SARSCoV- 2.

Objective: The manuscript aims to demonstrate the rationale behind the clinical use of Molnupiravir in the treatment of COVID-19 infection at the early stage of the onset of symptoms specific to five days.

Methodology: A thorough literature search has been carried out using various suitable keywords to extract details on the antiviral mechanism, preclinical, and clinical use of Molnupiravir, its safety, tolerability, dosage, duration of treatment, etc.

Results: The reported studies demonstrate the antiviral action of Molnupiravir by viral error catastrophe mechanism which results in the inhibition of the viral multiplication activity when it enters inside the host cells. The manuscript delivers complete detail regarding pharmacokinetic and pharmacological actions, usage, and various preclinical and clinical studies reported for this newly evaluated drug for the treatment of COVID-19 infection.

Conclusion: The study concludes Molnupiravir has the potential in the treatment of COVID-19 infection. When used along with vaccines, it would be a low-cost, valuable, and incredible asset as an oral anti-COVID drug for saving human life.

Keywords: Molnupiravir, COVID-19, SARS-CoV-2, clinical studies, mechanism of action, ribonucleoside antiviral analog.

[1]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) out-break in China: Summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[2]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[3]
Shang, Y.; Li, H.; Zhang, R. Effects of pandemic outbreak on economies: Evidence from business history context. Front. Public Health, 2021, 9, 632043.
[http://dx.doi.org/10.3389/fpubh.2021.632043] [PMID: 33777885]
[4]
World Health Organization (WHO). Coronavirus disease (COVID-19). Situation Report 184. 2020.
[5]
World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int/ (Assessed on 9th January 2023).
[6]
Habas, K.; Nganwuchu, C.; Shahzad, F.; Gopalan, R.; Haque, M.; Rahman, S.; Majumder, A.A.; Nasim, T. Resolution of coronavirus dis-ease 2019 (COVID-19). Expert Rev. Anti Infect. Ther., 2020, 18(12), 1201-1211.
[http://dx.doi.org/10.1080/14787210.2020.1797487] [PMID: 32749914]
[7]
Cascella, M.; Rajnik, M.; Aleem, A. Features, Evaluation, and Treatment of Coronavirus (COVID-19).StatPearls; StatPearls Publishing: Treasure Island, FL, 2022. Updated 2022 Oct 13 Internet
[8]
Narkhede, R.R.; Cheke, R.S.; Shinde, S.D.; Kuchake, V.G.; Mahajan, N.M.; Patil, V.M. Understanding the dynamics of COVID-19 out-break: Structure, diagnosis, prevention and treatment. Antiinfect. Agents, 2021, 19(4), e130621190363.
[http://dx.doi.org/10.2174/2211352519666210118094054]
[9]
Verma, S.; Patil, V.M.; Gupta, M.K. Mutation informatics: SARS-CoV-2 receptor-binding domain of the spike protein. Drug Discov. Today, 2022, 27(10), 103312.
[http://dx.doi.org/10.1016/j.drudis.2022.06.012] [PMID: 35787481]
[10]
Fontes, T.; Dourado, E.; Barreira, S.; Gregório, C.; Plácido, R.; Fonseca, J.E.; Romeu, J.C. Oral antiviral treatments for COVID-19 during severe connective tissue disease flares: Report of two cases. ARP Rheumatol., 2022, 1(4), 332-333.
[PMID: 36617316]
[11]
Namiot, E.D.; Sokolov, A.V.; Chubarev, V.N.; Tarasov, V.V.; Schiöth, H.B. Nanoparticles in clinical trials: Analysis of clinical trials, FDA approvals and use for COVID-19 vaccines. Int. J. Mol. Sci., 2023, 24(1), 787.
[http://dx.doi.org/10.3390/ijms24010787] [PMID: 36614230]
[12]
Hassan, M.; Zalkifal, M.; Wahab, A.; Afzal, S.; Rafique, S.; Shahid, M.; Khan, M.A.; Ahmed, N.; Idrees, M.; Shahid, A.A. Novel corona-virus: A review from origin to current status of therapeutic strategies. Crit. Rev. Eukaryot. Gene Expr., 2022, 31(3), 21-34.
[13]
Santos, J.; Brierley, S.; Gandhi, M.J.; Cohen, M.A.; Moschella, P.C.; Declan, A.B.L. Repurposing therapeutics for potential treatment of SARS-CoV-2: A review. Viruses, 2020, 12(7), 705.
[http://dx.doi.org/10.3390/v12070705] [PMID: 32629804]
[14]
Patil, V.M.; Singhal, S.; Masand, N. A systematic review on use of aminoquinolines for the therapeutic management of COVID-19: Efficacy, safety and clinical trials. Life Sci., 2020, 254, 117775.
[http://dx.doi.org/10.1016/j.lfs.2020.117775] [PMID: 32418894]
[15]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E. Remdesivir for the treatment of COVID-19-preliminary report. N. Engl. J. Med., 2020, 383(10), 994.
[PMID: 32649078]
[16]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R.W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T.F.; Paredes, R.; Sweeney, D.A.; Short, W.R.; Tou-loumi, G.; Lye, D.C.; Ohmagari, N.; Oh, M.; Ruiz-Palacios, G.M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M.G.; Atmar, R.L.; Creech, C.B.; Lundgren, J.; Babiker, A.G.; Pett, S.; Neaton, J.D.; Burgess, T.H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; Lane, H.C. Remdesivir for the treatment of COVID-19-preliminary report. N. Engl. J. Med., 2020, 383(19), 1813-1826.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[17]
Hoffmann, M.; Hofmann-Winkler, H.; Smith, J.C.; Krüger, N.; Arora, P.; Sørensen, L.K.; Søgaard, O.S.; Hasselstrøm, J.B.; Winkler, M.; Hempel, T.; Raich, L.; Olsson, S.; Danov, O.; Jonigk, D.; Yamazoe, T.; Yamatsuta, K.; Mizuno, H.; Ludwig, S.; Noé, F.; Kjolby, M.; Braun, A.; Sheltzer, J.M.; Pöhlmann, S. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine, 2021, 65, 103255.
[http://dx.doi.org/10.1016/j.ebiom.2021.103255] [PMID: 33676899]
[18]
Oliver, M.E.; Hinks, T.S.C. Azithromycin in viral infections. Rev. Med. Virol., 2021, 31(2), e2163.
[http://dx.doi.org/10.1002/rmv.2163] [PMID: 32969125]
[19]
Patil, V.M.; Verma, S.; Masand, N. Prospective mode of action of Ivermectin: SARS-CoV-2. Europ. J. Med. Chem. Reports, 2022, 4, 100018.
[http://dx.doi.org/10.1016/j.ejmcr.2021.100018] [PMID: 36593981]
[20]
Reis, G.; Silva, E.A.S.M.; Silva, D.C.M.; Thabane, L.; Milagres, A.C.; Ferreira, T.S.; dos Santos, C.V.Q.; Campos, V.H.S.; Nogueira, A.M.R.; de Almeida, A.P.F.G.; Callegari, E.D.; Neto, A.D.F.; Savassi, L.C.M.; Simplicio, M.I.C.; Ribeiro, L.B.; Oliveira, R.; Harari, O.; For-rest, J.I.; Ruton, H.; Sprague, S.; McKay, P.; Guo, C.M.; Rowland-Yeo, K.; Guyatt, G.H.; Boulware, D.R.; Rayner, C.R.; Mills, E.J. Effect of early treatment with ivermectin among patients with COVID-19. N. Engl. J. Med., 2022, 386(18), 1721-1731.
[http://dx.doi.org/10.1056/NEJMoa2115869] [PMID: 35353979]
[21]
Burki, T. The future of Paxlovid for COVID-19. Lancet Respir. Med., 2022, 10(7), e68.
[http://dx.doi.org/10.1016/S2213-2600(22)00192-8] [PMID: 35623373]
[22]
Case, J.B.; Chen, R.E.; Cao, L.; Ying, B.; Winkler, E.S.; Johnson, M.; Goreshnik, I.; Pham, M.N.; Shrihari, S.; Kafai, N.M.; Bailey, A.L.; Xie, X.; Shi, P.Y.; Ravichandran, R.; Carter, L.; Stewart, L.; Baker, D.; Diamond, M.S. Ultrapotent miniproteins targeting the SARS-CoV-2 receptor-binding domain protect against infection and disease. Cell Host Microbe, 2021, 29(7), 1151-1161.e5.
[http://dx.doi.org/10.1016/j.chom.2021.06.008] [PMID: 34192518]
[23]
Klassen, S.A.; Senefeld, J.W.; Senese, K.A.; Johnson, P.W.; Wiggins, C.C.; Baker, S.E.; van Helmond, N.; Bruno, K.A.; Pirofski, L.; Sho-ham, S.; Grossman, B.J.; Henderson, J.P.; Wright, R.S.; Fairweather, D.; Paneth, N.S.; Carter, R.E.; Casadevall, A.; Joyner, M.J. Convalescent plasma therapy for COVID-19: A graphical mosaic of the worldwide evidence. Front. Med., 2021, 8, 684151.
[http://dx.doi.org/10.3389/fmed.2021.684151] [PMID: 34164419]
[24]
Alavi Darazam, I.; Shokouhi, S.; Mardani, M.; Pourhoseingholi, M.A.; Rabiei, M.M.; Hatami, F.; Shabani, M.; Moradi, O.; Gharehbagh, F.J.; Irvani, S.S.N.; Amirdosara, M.; Hajiesmaeili, M.; Rezaei, O.; Khoshkar, A.; Lotfollahi, L.; Gachkar, L.; Dehbsneh, H.S.; Khalili, N.; Soleymaninia, A.; Kusha, A.H.; Shoushtari, M.T.; Torabinavid, P. Umifenovir in hospitalized moderate to severe COVID-19 patients: A randomized clinical trial. Int. Immunopharmacol., 2021, 99, 107969.
[http://dx.doi.org/10.1016/j.intimp.2021.107969] [PMID: 34273635]
[25]
Rocco, P.R.M.; Silva, P.L.; Cruz, F.F.; Melo-Junior, M.A.C.; Tierno, P.F.G.M.M.; Moura, M.A.; De Oliveira, L.F.G.; Lima, C.C.; Dos Santos, E.A.; Junior, W.F.; Fernandes, A.P.S.M.; Franchini, K.G.; Magri, E.; de Moraes, N.F.; Gonçalves, J.M.J.; Carbonieri, M.N.; Dos Santos, I.S.; Paes, N.F.; Maciel, P.V.M.; Rocha, R.P.; de Carvalho, A.F.; Alves, P.A.; Proença-Módena, J.L.; Cordeiro, A.T.; Trivella, D.B.B.; Marques, R.E.; Luiz, R.R.; Pelosi, P.; Lapa e Silva, J.R. Early use of nitazoxanide in mild COVID-19 disease: Randomised, placebo-controlled trial. Eur. Respir. J., 2021, 58(1), 2003725.
[http://dx.doi.org/10.1183/13993003.03725-2020] [PMID: 33361100]
[26]
Campione, E.; Lanna, C.; Cosio, T.; Rosa, L.; Conte, M.P.; Iacovelli, F.; Romeo, A.; Falconi, M.; Del Vecchio, C.; Franchin, E.; Lia, M.S.; Minieri, M.; Chiaramonte, C.; Ciotti, M.; Nuccetelli, M.; Terrinoni, A.; Iannuzzi, I.; Coppeda, L.; Magrini, A.; Bernardini, S.; Sabatini, S.; Rosapepe, F.; Bartoletti, P.L.; Moricca, N.; Di Lorenzo, A.; Andreoni, M.; Sarmati, L.; Miani, A.; Piscitelli, P.; Valenti, P.; Bianchi, L. Lactoferrn against SARS-CoV-2: in vitro and in silico evidences. Front. Pharmacol., 2021, 12, 666600.
[http://dx.doi.org/10.3389/fphar.2021.666600] [PMID: 34220505]
[27]
Bagcchi, S. The world’s largest COVID-19 vaccination campaign. Lancet Infect. Dis., 2021, 21(3), 323.
[http://dx.doi.org/10.1016/S1473-3099(21)00081-5] [PMID: 33639124]
[28]
Patil, V.M.; Narkhede, R.R.; Masand, N.; Cheke, R.S.; Balasubramanian, K. Molecular insights into resveratrol and its analogs as SARS-CoV-2 (COVID-19) protease inhibitors. Coronaviruses, 2021, 2(11), 10-27.
[http://dx.doi.org/10.2174/2666796701999201218142828]
[29]
Seley-Radtke, K.L.; Yates, M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res., 2018, 154, 66-86.
[http://dx.doi.org/10.1016/j.antiviral.2018.04.004] [PMID: 29649496]
[30]
Pourkarim, F.; Pourtaghi-Anvarian, S.; Rezaee, H. Molnupiravir: A new candidate for COVID‐19 treatment. Pharmacol. Res. Perspect., 2022, 10(1), e00909.
[http://dx.doi.org/10.1002/prp2.909] [PMID: 34968008]
[31]
Painter, G.R.; Natchus, M.G.; Cohen, O.; Holman, W.; Painter, W.P. Developing a direct acting, orally available antiviral agent in a pandemic: The evolution of molnupiravir as a potential treatment for COVID-19. Curr. Opin. Virol., 2021, 50, 17-22.
[http://dx.doi.org/10.1016/j.coviro.2021.06.003] [PMID: 34271264]
[32]
Tian, L.; Pang, Z.; Li, M.; Lou, F.; An, X.; Zhu, S.; Song, L.; Tong, Y.; Fan, H.; Fan, J. Molnupiravir and its antiviral activity against COVID-19. Front. Immunol., 2022, 13, 855496.
[http://dx.doi.org/10.3389/fimmu.2022.855496] [PMID: 35444647]
[33]
Wen, W.; Chen, C.; Tang, J.; Wang, C.; Zhou, M.; Cheng, Y.; Zhou, X.; Wu, Q.; Zhang, X.; Feng, Z.; Wang, M.; Mao, Q. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: A meta-analysis. Ann. Med., 2022, 54(1), 516-523.
[http://dx.doi.org/10.1080/07853890.2022.2034936] [PMID: 35118917]
[34]
Sharov, A.; Burkhanova, T.; Taskın Tok, T.; Babashkina, M.; Safin, D. Computational analysis of molnupiravir. Int. J. Mol. Sci., 2022, 23(3), 1508.
[http://dx.doi.org/10.3390/ijms23031508] [PMID: 35163429]
[35]
Ramu, R.; Maruthi, K.R.; Bajpe, S.N.; Vyshali, V.M.; Sushmitha, S.; Akhila, C.; Ramu, R. Comparative molecular docking and simulation analysis of molnupiravir and remdesivir with SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Bioinformation, 2021, 17(11), 932-939.
[http://dx.doi.org/10.6026/97320630017932] [PMID: 35655903]
[36]
Syed, Y.Y. Molnupiravir: First approval. Drugs, 2022, 82(4), 455-460.
[http://dx.doi.org/10.1007/s40265-022-01684-5] [PMID: 35184266]
[38]
Pagliano, P.; Sellitto, C.; Ascione, T.; Scarpati, G.; Folliero, V.; Piazza, O.; Franci, G.; Filippelli, A.; Conti, V. The preclinical discovery and development of molnupiravir for the treatment of SARS-CoV-2 (COVID-19). Expert Opin. Drug Discov., 2022, 17(12), 1299-1311.
[http://dx.doi.org/10.1080/17460441.2022.2153828] [PMID: 36508255]
[39]
Celik, I.; Tallei, T.E. A computational comparative analysis of the binding mechanism of molnupiravir’s active metabolite to RNA‐dependent RNA polymerase of wild‐type and Delta subvariant AY.4 of SARS‐CoV‐2. J. Cell. Biochem., 2022, 123(4), 807-818.
[http://dx.doi.org/10.1002/jcb.30226] [PMID: 35132671]
[40]
Singla, S.; Goyal, S. Antiviral activity of molnupiravir against COVID-19: A schematic review of evidences. Bull. Natl. Res. Cent., 2022, 46(1), 62.
[http://dx.doi.org/10.1186/s42269-022-00753-9] [PMID: 35287311]
[41]
43 Coronavirus (COVID-19) update: FDA authorizes additional oral antiviral for treatment of COVID-19 in certain adults. U.S. Food Drug Administr., 2022. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update
[42]
Kidd, M.R.; Kelly, P.M. PANORAMIC: Important insights into molnupiravir use in COVID-19. Lancet, 2022, 401(10373), 250-251.
[43]
Cox, R.M.; Wolf, J.D.; Plemper, R.K. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nat. Microbiol., 2020, 6(1), 11-18.
[http://dx.doi.org/10.1038/s41564-020-00835-2] [PMID: 33273742]
[44]
Khoo, S.H.; Fitzgerald, R.; Fletcher, T.; Ewings, S.; Jaki, T.; Lyon, R.; Downs, N.; Walker, L.; Tansley-Hancock, O.; Greenhalf, W.; Woods, C.; Reynolds, H.; Marwood, E.; Mozgunov, P.; Adams, E.; Bullock, K.; Holman, W.; Bula, M.D.; Gibney, J.L.; Saunders, G.; Corkhill, A.; Hale, C.; Thorne, K.; Chiong, J.; Condie, S.; Pertinez, H.; Painter, W.; Wrixon, E.; Johnson, L.; Yeats, S.; Mallard, K.; Rad-ford, M.; Fines, K.; Shaw, V.; Owen, A.; Lalloo, D.G.; Jacobs, M.; Griffiths, G. Optimal dose and safety of molnupiravir in patients with early SARS-CoV-2: A Phase I, open-label, dose-escalating, randomized controlled study. J. Antimicrob. Chemother., 2021, 76(12), 3286-3295.
[http://dx.doi.org/10.1093/jac/dkab318] [PMID: 34450619]
[45]
Pupo Correia, M.; Fernandes, S.; Filipe, P. Cutaneous adverse reactions to the new oral antiviral drugs against SARS‐CoV‐2. Clin. Exp. Dermatol., 2022, 47(9), 1738-1740.
[http://dx.doi.org/10.1111/ced.15281] [PMID: 35643856]
[46]
Pontolillo, M.; Ucciferri, C.; Borrelli, P.; Di Nicola, M.; Vecchiet, J.; Falasca, K. Molnupiravir as an early treatment for COVID-19: A real life study. Pathogens, 2022, 11(10), 1121.
[http://dx.doi.org/10.3390/pathogens11101121] [PMID: 36297178]
[47]
Wong, G.L.H.; Hui, V.W.K.; Yip, T.C.F.; Lui, G.C.Y.; Hui, D.S.C.; Wong, V.W.S. Minimal risk of drug-induced liver injury with Molnupiravir and Ritonavir-Boosted Nirmatrelvir. Gastroenterology, 2023, 164(1), 151-153.
[http://dx.doi.org/10.1053/j.gastro.2022.09.008] [PMID: 36126688]
[48]
Mali, K.R.; Eerike, M.; Raj, G.M.; Bisoi, D.; Priyadarshini, R.; Ravi, G.; Chaliserry, L.F.; Janti, S.S. Efficacy and safety of molnupiravir in COVID-19 patients: A systematic review. Ir. J. Med. Sci., 2022, 1-4.
[http://dx.doi.org/10.1007/s11845-022-03139-y] [PMID: 36087236]
[49]
Butler, C.C.; Hobbs, F.D.R.; Gbinigie, O.A.; Rahman, N.M.; Hayward, G.; Richards, D.B.; Dorward, J.; Lowe, D.M.; Standing, J.F.; Breuer, J.; Khoo, S.; Petrou, S.; Hood, K.; Nguyen-Van-Tam, J.S.; Patel, M.G.; Saville, B.R.; Marion, J.; Ogburn, E.; Allen, J.; Rutter, H.; Francis, N.; Thomas, N.P.B.; Evans, P.; Dobson, M.; Madden, T.A.; Holmes, J.; Harris, V.; Png, M.E.; Lown, M.; van Hecke, O.; Detry, M.A.; Saunders, C.T.; Fitzgerald, M.; Berry, N.S.; Mwandigha, L.; Galal, U.; Mort, S.; Jani, B.D.; Hart, N.D.; Ahmed, H.; Butler, D.; McKenna, M.; Chalk, J.; Lavallee, L.; Hadley, E.; Cureton, L.; Benysek, M.; Andersson, M.; Coates, M.; Barrett, S.; Bateman, C.; Davies, J.C.; Raymundo-Wood, I.; Ustianowski, A.; Carson-Stevens, A.; Yu, L.M.; Little, P. PANORAMIC Trial Collaborative Group. Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): An open-label, platform-adaptive randomised controlled trial. Lancet, 2022, 401(10373), 281-293.
[50]
Fischer, W.; Eron, J.J.; Holman, W.; Cohen, M.S.; Fang, L.; Szewczyk, L.J.; Sheahan, T.P.; Baric, R.; Mollan, K.R.; Wolfe, C.R.; Duke, E.R. Molnupiravir, an oral antiviral treatment for COVID-19. MedRxiv, 2021.
[http://dx.doi.org/10.1101/2021.06.17.21258639]
[51]
Singh, A.K.; Singh, A.; Singh, R.; Misra, A. An updated practical guideline on use of molnupiravir and comparison with agents having emergency use authorization for treatment of COVID-19. Diabetes Metab. Syndr., 2022, 16(2), 102396.
[http://dx.doi.org/10.1016/j.dsx.2022.102396] [PMID: 35051686]
[52]
Dolgin, E. The race for antiviral drugs to beat COVID-and the next pandemic. Nature, 2021, 592(7854), 340-343.
[http://dx.doi.org/10.1038/d41586-021-00958-4] [PMID: 33854246]
[53]
Kabinger, F.; Stiller, C.; Schmitzová, J.; Dienemann, C.; Kokic, G.; Hillen, H.S.; Höbartner, C.; Cramer, P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat. Struct. Mol. Biol., 2021, 28(9), 740-746.
[http://dx.doi.org/10.1038/s41594-021-00651-0] [PMID: 34381216]
[54]
Abdelnabi, R.; Foo, C.S.; De Jonghe, S.; Maes, P.; Weynand, B.; Neyts, J. Molnupiravir inhibits replication of the emerging SARS-CoV-2 variants of concern in a hamster infection model. J. Infect. Dis., 2021, 224(5), 749-753.
[http://dx.doi.org/10.1093/infdis/jiab361] [PMID: 34244768]
[55]
Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; Du, J.; Pedley, A.; Assaid, C.; Strizki, J.; Grobler, J.A.; Shamsuddin, H.H.; Tipping, R.; Wan, H.; Paschke, A.; Butterton, J.R.; Johnson, M.G.; De Anda, C. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. N. Engl. J. Med., 2022, 386(6), 509-520.
[http://dx.doi.org/10.1056/NEJMoa2116044] [PMID: 34914868]
[56]
Santi Laurini, G.; Montanaro, N.; Motola, D. Safety profile of molnupiravir in the treatment of COVID-19: A descriptive study based on FAERS data. J. Clin. Med., 2022, 12(1), 34.
[http://dx.doi.org/10.3390/jcm12010034] [PMID: 36614834]
[57]
Sinha, S.N.K.; Suram, V.K.; Chary, S.S.; Naik, S.; Singh, V.B.; Jain, M.K.; Suthar, C.P.; Borthakur, S.; Sawardekar, V.; Sk, N.; Reddy, N.; Talluri, L.; Thakur, P.; Reddy, M.; Panapakam, M.; Vattipalli, R. Efficacy and safety of molnupiravir in Mild COVID-19 patients in India. Cureus, 2022, 14(11), e31508.
[http://dx.doi.org/10.7759/cureus.31508] [PMID: 36532902]
[58]
Bruno, G.; Perelli, S.; Giotta, M.; Bartolomeo, N.; De Vita, G.; Buccoliero, G.B. Efficacy and safety of oral antivirals in individuals aged 80 years or older with mild-to-moderate COVID-19: Preliminary report from an Italian Prescriber Center. Infez. Med., 2022, 30(4), 547-554.
[PMID: 36482949]
[59]
Poznański, P.; Augustyniak-Bartosik, H.; Magiera-Żak, A.; Skalec, K.; Jakuszko, K.; Mazanowska, O.; Janczak, D.; Krajewska, M.; Kamińska, D. Molnupiravir when used alone seems to be safe and effective as outpatient COVID-19 therapy for hemodialyzed patients and kidney transplant recipients. Viruses, 2022, 14(10), 2224.
[http://dx.doi.org/10.3390/v14102224] [PMID: 36298779]
[60]
Goswami, H.; Alsumali, A.; Jiang, Y.; Schindler, M.; Duke, E.R.; Cohen, J.; Briggs, A.; Puenpatom, A. Cost-effectiveness analysis of mol-nupiravir versus best supportive care for the treatment of outpatient COVID-19 in adults in the US. PharmacoEconomics, 2022, 40(7), 699-714.
[http://dx.doi.org/10.1007/s40273-022-01168-0] [PMID: 35779197]
[61]
He, X.; Hong, W.; Pan, X.; Lu, G.; Wei, X. SARS‐CoV‐2 Omicron variant: Characteristics and prevention. MedComm, 2021, 2(4), 838-845.
[http://dx.doi.org/10.1002/mco2.110] [PMID: 34957469]
[62]
Zhang, X.; Wu, S.; Wu, B.; Yang, Q.; Chen, A.; Li, Y.; Zhang, Y.; Pan, T.; Zhang, H.; He, X. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct. Target. Ther., 2021, 6(1), 430.
[http://dx.doi.org/10.1038/s41392-021-00852-5] [PMID: 34921135]
[63]
Chen, S.; Leong, W.F.; Lee, S.S.; Chowbay, B. Pharmacokinetic and pharmacogenomic considerations in managing use of nirmatrelvirritonavir and molnupiravir and dermatological treatments. Ann. Acad. Med. Singap., 2022, 51(12), 752-754.
[http://dx.doi.org/10.47102/annals-acadmedsg.2022430] [PMID: 36592143]
[64]
Bajema, K.L.; Berry, K.; Streja, E.; Rajeevan, N.; Li, Y.; Yan, L.; Cunningham, F.; Hynes, D.M.; Rowneki, M.; Bohnert, A.; Boyko, E.J.; Iwashyna, T.J.; Maciejewski, M.L.; Osborne, T.F.; Viglianti, E.M.; Aslan, M.; Huang, G.D.; Ioannou, G.N. Effectiveness of COVID-19 treatment with nirmatrelvir-ritonavir or molnupiravir among U.S. Veterans: Target trial emulation studies with one-month and six-month outcomes. MedRxiv, 2022.
[http://dx.doi.org/10.1101/2022.12.05.22283134]
[65]
Yip, A.J.W.; Low, Z.Y.; Chow, V.T.K.; Lal, S.K. Repurposing molnupiravir for COVID-19: The mechanisms of antiviral activity. Viruses, 2022, 14(6), 1345.
[http://dx.doi.org/10.3390/v14061345] [PMID: 35746815]
[66]
Painter, W.P.; Holman, W.; Bush, J.A.; Almazedi, F.; Malik, H.; Eraut, N.C.J.E.; Morin, M.J.; Szewczyk, L.J.; Painter, G.R. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrob. Agents Chemother., 2021, 65(5), e02428-e20.
[http://dx.doi.org/10.1128/AAC.02428-20] [PMID: 33649113]
[67]
Aleem, A.; Akbar Samad, A.B.; Slenker, A.K. Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19). StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
[68]
Vitiello, A.; La Porta, R.; Trama, U.; Ferrara, F.; Zovi, A.; Auti, A.M.; Di Domenico, M.; Boccellino, M. Pandemic COVID-19, an update of current status and new therapeutic strategies. Naunyn Schmiedebergs Arch. Pharmacol., 2022, 395(10), 1159-1165.
[http://dx.doi.org/10.1007/s00210-022-02265-9] [PMID: 35779085]
[69]
Masyeni, S.; Iqhrammullah, M.; Frediansyah, A.; Nainu, F.; Tallei, T.; Emran, T.B.; Ophinni, Y.; Dhama, K.; Harapan, H. Molnupiravir: A lethal mutagenic drug against rapidly mutating severe acute respiratory syndrome coronavirus 2-A narrative review. J. Med. Virol., 2022, 94(7), 3006-3016.
[http://dx.doi.org/10.1002/jmv.27730] [PMID: 35315098]
[70]
Bai, Y.; Shen, M.; Zhang, L. Antiviral efficacy of molnupiravir for COVID-19 treatment. Viruses, 2022, 14(4), 763.
[http://dx.doi.org/10.3390/v14040763] [PMID: 35458493]
[71]
Khiali, S.; Khani, E.B.; Rouy, S.; Entezari-Maleki, T. Comprehensive review on molnupiravir in COVID-19: A novel promising antiviral to combat the pandemic. Future Microbiol., 2022, 17(5), 377-391.
[http://dx.doi.org/10.2217/fmb-2021-0252] [PMID: 35199608]
[72]
Lee, C.C.; Hsieh, C.C.; Ko, W.C. Molnupiravir-A novel oral anti-SARS-CoV-2 agent. Antibiotics, 2021, 10(11), 1294.
[http://dx.doi.org/10.3390/antibiotics10111294] [PMID: 34827232]
[73]
Beinfeld, M.; Yeung, K.; Whittington, M.D.; Mohammed, R.; Nhan, E.; Pearson, S.D. Oral treatments for outpatient COVID-19: Effectiveness and value. J. Manag. Care Spec. Pharm., 2022, 28(8), 903-909.
[http://dx.doi.org/10.18553/jmcp.2022.28.8.903] [PMID: 35876296]
[74]
Tanaka, Y. A review of Janus kinase inhibitors for the treatment of COVID-19 pneumonia. Inflamm. Regen., 2023, 43(1), 3.
[http://dx.doi.org/10.1186/s41232-022-00253-3] [PMID: 36617565]
[75]
Tyagi, R.; Paul, A.; Raj, V.S.; Ojha, K.K.; Kumar, S.; Panda, A.K.; Chaurasia, A.; Yadav, M.K. A drug repurposing approach to identify therapeutics by screening pathogen box exploiting SARS-CoV-2 main protease. Chem. Biodivers., 2023, 20(2), e202200600.
[http://dx.doi.org/10.1002/cbdv.202200600] [PMID: 36597267]
[76]
Chary, M.A.; Barbuto, A.F.; Izadmehr, S.; Tarsillo, M.; Fleischer, E.; Burns, M.M. COVID-19 therapeutics: Use, mechanism of action, and toxicity (Xenobiotics). J. Med. Toxicol., 2023, 19(1), 26-36.
[http://dx.doi.org/10.1007/s13181-022-00918-y] [PMID: 36525217]
[77]
Al-Taie, A.; Denkdemir, F.R.; Sharief, Z.; Buyuk, A.S.; Şardaş, S. The Long View on COVID-19 theranostics and oral antivirals: Living with endemic disease and lessons from molnupiravir. OMICS, 2022, 26(6), 324-328.
[http://dx.doi.org/10.1089/omi.2022.0045] [PMID: 35580151]
[78]
Manóchio, C.; Torres-Loureiro, S.; Scudeler, M.M.; Miwa, B.; Souza-Santos, F.C.; Rodrigues-Soares, F. Theranostics for COVID-19 anti-viral drugs: Prospects and challenges for worldwide precision/personalized medicine. OMICS, 2023, 27(1), 6-14. Epub ahead of print
[http://dx.doi.org/10.1089/omi.2022.0151] [PMID: 36602768]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy