Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Efficient Inhibition of Pathologic Angiogenesis using Combination Therapy of Anti-Epcam and Anti-VEGFR2 Nanobodies

Author(s): Elmira Karami, Parisa Azizi, Mahdi Behdani and Fatemeh Kazemi-Lomedasht*

Volume 29, Issue 13, 2023

Published on: 20 April, 2023

Page: [1059 - 1066] Pages: 8

DOI: 10.2174/1381612829666230420083431

Price: $65

Abstract

Background: EpCAM and VEGFR2 play an important role in angiogenesis and tumorigenesis. It is currently of paramount importance to produce new drugs that can inhibit the angiogenesis and proliferation of tumor cells. Nanobodies are potential drug candidates for cancer therapy due to their unique properties.

Objective: This study aimed to investigate the combined inhibitory effect of anti-EpCAM and anti-VEGFR2 nanobodies in cancer cell lines.

Methods: Inhibitory activity of anti-EpCAM and anti-VEGFR2 nanobodies on MDA-MB231, MCF7, and HUVEC cells was investigated using both in vitro (MTT, migration, and tube formation assays) and in vivo assays.

Results: Results showed that the combination of anti-EpCAM and anti-VEGFR2 nanobodies efficiently inhibited proliferation, migration, and tube formation of MDA-MB-231 cells compared to each individual nanobodies (p < 0.05). In addition, the combination of anti-EpCAM and anti-VEGFR2 nanobodies efficiently inhibited tumor growth and volume of Nude mice bearing MDA-MB-231 cells (p < 0.05).

Conclusion: Taken together, the results indicate the potential of combination therapy as an efficient approach to cancer therapy.

Keywords: VEGFR2, EpCAM, angiogenesis, nanobody, target therapy, cancer.

[1]
Jemal A, Siegel R, Ward E, et al. Cancer Statistics, 2008. CA Cancer J Clin 2008; 58(2): 71-96.
[http://dx.doi.org/10.3322/CA.2007.0010] [PMID: 18287387]
[2]
Twombly R. Cancer surpasses heart disease as leading cause of death for all but the very elderly. J Natl Cancer Inst 2005; 97(5): 330-1.
[http://dx.doi.org/10.1093/jnci/97.5.330] [PMID: 15741564]
[3]
Modi SJ, Kulkarni VM. Vascular endothelial growth factor receptor (VEGFR-2)/KDR inhibitors: Medicinal chemistry perspective. Drug Discov Today 2019; 2: 100009.
[http://dx.doi.org/10.1016/j.medidd.2019.100009]
[4]
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes at the intersection between tissue regeneration and pathology: Figure 1. Clin Sci 2015; 128(2): 81-93.
[http://dx.doi.org/10.1042/CS20140278] [PMID: 25236972]
[5]
Birbrair A, Zhang T, Wang ZM, et al. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 2014; 307(1): C25-38.
[http://dx.doi.org/10.1152/ajpcell.00084.2014] [PMID: 24788248]
[6]
Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13(1): 9-22.
[http://dx.doi.org/10.1096/fasebj.13.1.9] [PMID: 9872925]
[7]
Khodabakhsh F, Muyldermans S, Behdani M, Kazemi-Lomedasht F. Liposomal delivery of vascular endothelial growth factor/receptors and their inhibitors. J Drug Target 2020; 28(4): 379-85.
[http://dx.doi.org/10.1080/1061186X.2019.1693578] [PMID: 31822133]
[8]
Wang X, Bove AM, Simone G, Ma B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front Cell Dev Biol 2020; 8: 599281.
[http://dx.doi.org/10.3389/fcell.2020.599281] [PMID: 33304904]
[9]
Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti-and pro-angiogenic therapies. Genes Cancer 2011; 2(12): 1097-105.
[http://dx.doi.org/10.1177/1947601911423031] [PMID: 22866201]
[10]
Miettinen M, Rikala MS, Rys J, Lasota J, Wang ZF. Vascular endothelial growth factor receptor 2 as a marker for malignant vascular tumors and mesothelioma: An immunohistochemical study of 262 vascular endothelial and 1640 nonvascular tumors. Am J Surg Pathol 2012; 36(4): 629-39.
[http://dx.doi.org/10.1097/PAS.0b013e318243555b] [PMID: 22314185]
[11]
Cortés F, Debacker C, Péault B, Labastie MC. Differential expression of KDR/VEGFR-2 and CD34 during mesoderm development of the early human embryo. Mech Dev 1999; 83(1-2): 161-4.
[http://dx.doi.org/10.1016/S0925-4773(99)00030-1] [PMID: 10381576]
[12]
Liu Z, Qi L, Li Y, Zhao X, Sun B. VEGFR2 regulates endothelial differentiation of colon cancer cells. BMC Cancer 2017; 17(1): 593.
[http://dx.doi.org/10.1186/s12885-017-3578-9] [PMID: 28854900]
[13]
Ebos JML, Bocci G, Man S, et al. A naturally occurring soluble form of vascular endothelial growth factor receptor 2 detected in mouse and human plasma. Mol Cancer Res 2004; 2(6): 315-26.
[http://dx.doi.org/10.1158/1541-7786.315.2.6] [PMID: 15235107]
[14]
Fontanella C, Ongaro E, Bolzonello S, Guardascione M, Fasola G, Aprile G. Clinical advances in the development of novel VEGFR2 inhibitors. Ann Transl Med 2014; 2(12): 123.
[PMID: 25568876]
[15]
Herlyn M, Steplewski Z, Herlyn D, Koprowski H. Colorectal carcinoma-specific antigen: Detection by means of monoclonal antibodies. Proc Natl Acad Sci 1979; 76(3): 1438-42.
[http://dx.doi.org/10.1073/pnas.76.3.1438] [PMID: 286328]
[16]
Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: Where are we after 40 years? Cancer Metastasis Rev 2020; 39(3): 969-87.
[http://dx.doi.org/10.1007/s10555-020-09898-3] [PMID: 32507912]
[17]
Strnad J, Hamilton AE, Beavers LS, et al. Molecular cloning and characterization of a human adenocarcinoma/epithelial cell surface antigen complementary DNA. Cancer Res 1989; 49(2): 314-7.
[PMID: 2463074]
[18]
Baeuerle PA, Gires O. EpCAM (CD326) finding its role in cancer. Br J Cancer 2007; 96(3): 417-23.
[http://dx.doi.org/10.1038/sj.bjc.6603494] [PMID: 17211480]
[19]
Pavšič M, Gunčar G, Djinović-Carugo K, Lenarčič B. Crystal structure and its bearing towards an understanding of key biological functions of EpCAM. Nat Commun 2014; 5(1): 4764.
[http://dx.doi.org/10.1038/ncomms5764] [PMID: 25163760]
[20]
Mohtar M, Syafruddin S, Nasir S, Low TY. Revisiting the roles of pro-metastatic EpCAM in cancer. Biomolecules 2020; 10(2): 255.
[http://dx.doi.org/10.3390/biom10020255] [PMID: 32046162]
[21]
Brown TC, Sankpal NV, Gillanders WE. Functional implications of the dynamic regulation of EpCAM during epithelial-to-mesenchymal transition. Biomolecules 2021; 11(7): 956.
[http://dx.doi.org/10.3390/biom11070956] [PMID: 34209658]
[22]
Keller L, Werner S, Pantel K. Biology and clinical relevance of EpCAM. Cell Stress 2019; 3(6): 165-80.
[http://dx.doi.org/10.15698/cst2019.06.188] [PMID: 31225512]
[23]
Spizzo G, Gastl G, Obrist P, et al. High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Res Treat 2004; 86(3): 207-13.
[http://dx.doi.org/10.1023/B:BREA.0000036787.59816.01] [PMID: 15567937]
[24]
Seeber A, Untergasser G, Spizzo G, et al. Predominant expression of truncated EpCAM is associated with a more aggressive phenotype and predicts poor overall survival in colorectal cancer. Int J Cancer 2016; 139(3): 657-63.
[http://dx.doi.org/10.1002/ijc.30099] [PMID: 26996277]
[25]
Massoner P, Thomm T, Mack B, et al. EpCAM is overexpressed in local and metastatic prostate cancer, suppressed by chemotherapy and modulated by MET-associated miRNA-200c/205. Br J Cancer 2014; 111(5): 955-64.
[http://dx.doi.org/10.1038/bjc.2014.366] [PMID: 24992580]
[26]
Varga M, Obrist P, Schneeberger S, et al. Overexpression of epithelial cell adhesion molecule antigen in gallbladder carcinoma is an independent marker for poor survival. Clin Cancer Res 2004; 10(9): 3131-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0528] [PMID: 15131054]
[27]
Spizzo G, Went P, Dirnhofer S, et al. Overexpression of epithelial cell adhesion molecule (Ep-CAM) is an independent prognostic marker for reduced survival of patients with epithelial ovarian cancer. Gynecol Oncol 2006; 103(2): 483-8.
[http://dx.doi.org/10.1016/j.ygyno.2006.03.035] [PMID: 16678891]
[28]
Brunner A, Prelog M, Verdorfer I, Tzankov A, Mikuz G, Ensinger C. EpCAM is predominantly expressed in high grade and advanced stage urothelial carcinoma of the bladder. J Clin Pathol 2007; 61(3): 307-10.
[http://dx.doi.org/10.1136/jcp.2007.049460] [PMID: 17586680]
[29]
Fong D, Moser P, Kasal A, et al. Loss of membranous expression of the intracellular domain of EpCAM is a frequent event and predicts poor survival in patients with pancreatic cancer. Histopathology 2014; 64(5): 683-92.
[http://dx.doi.org/10.1111/his.12307] [PMID: 24117877]
[30]
Farnoodian M, Wang S, Dietz J, Nickells RW, Sorenson CM, Sheibani N. Negative regulators of angiogenesis: Important targets for treatment of exudative AMD. Clin Sci 2017; 131(15): 1763-80.
[http://dx.doi.org/10.1042/CS20170066] [PMID: 28679845]
[31]
Cortez-Retamozo V, Lauwereys M, Hassanzadeh Gh G, et al. Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer 2002; 98(3): 456-62.
[http://dx.doi.org/10.1002/ijc.10212] [PMID: 11920600]
[32]
Nguyen VK, Hamers R, Wyns L, Muyldermans S. Camel heavy-chain antibodies: Diverse germline VHH and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 2000; 19(5): 921-30.
[http://dx.doi.org/10.1093/emboj/19.5.921] [PMID: 10698934]
[33]
Karami E, Sabatier JM, Behdani M, Irani S, Kazemi-Lomedasht F. A nanobody-derived mimotope against VEGF inhibits cancer angiogenesis. J Enzyme Inhib Med Chem 2020; 35(1): 1233-9.
[http://dx.doi.org/10.1080/14756366.2020.1758690] [PMID: 32441172]
[34]
Walper SA, Anderson GP, Brozozog Lee PA, et al. Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells. PLoS One 2012; 7(3): e32801.
[http://dx.doi.org/10.1371/journal.pone.0032801] [PMID: 22412927]
[35]
Kontermann R. Therapeutic proteins: Strategies to modulate their plasma half-lives. John Wiley & Sons: New York, USA 2012.
[http://dx.doi.org/10.1002/9783527644827]
[36]
Bagheri M, Babaei E, Shahbazzadeh D, et al. Development of a recombinant camelid specific diabody against the heminecrolysin fraction of Hemiscorpius lepturus scorpion. Toxin Rev 2017; 36(1): 7-11.
[http://dx.doi.org/10.1080/15569543.2016.1244552]
[37]
Sadeghi A, Behdani M, Muyldermans S, Habibi-Anbouhi M, Kazemi-Lomedasht F. Development of a mono-specific anti-VEGF bivalent nanobody with extended plasma half-life for treatment of pathologic neovascularization. Drug Test Anal 2020; 12(1): 92-100.
[http://dx.doi.org/10.1002/dta.2693] [PMID: 31476257]
[38]
Kontermann RE. Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs 2009; 23(2): 93-109.
[http://dx.doi.org/10.2165/00063030-200923020-00003] [PMID: 19489651]
[39]
Duggan S. Caplacizumab: First global approval. Drugs 2018; 78(15): 1639-42.
[http://dx.doi.org/10.1007/s40265-018-0989-0] [PMID: 30298461]
[40]
Scully M, Cataland SR, Peyvandi F, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2019; 380(4): 335-46.
[http://dx.doi.org/10.1056/NEJMoa1806311] [PMID: 30625070]
[41]
Roshan R, Naderi S, Behdani M, et al. Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy. Mol Immunol 2021; 129: 70-7.
[http://dx.doi.org/10.1016/j.molimm.2020.10.021] [PMID: 33183767]
[42]
Kazemi-Lomedasht F, Behdani M, Bagheri KP, et al. Inhibition of angiogenesis in human endothelial cell using VEGF specific nanobody. Mol Immunol 2015; 65(1): 58-67.
[http://dx.doi.org/10.1016/j.molimm.2015.01.010] [PMID: 25645505]
[43]
Behdani M, Zeinali S, Khanahmad H, et al. Generation and characterization of a functional nanobody against the vascular endothelial growth factor receptor-2; angiogenesis cell receptor. Mol Immunol 2012; 50(1-2): 35-41.
[http://dx.doi.org/10.1016/j.molimm.2011.11.013] [PMID: 22208996]
[44]
Roshan R, Naderi S, Behdani M, Ahangari CR, Kazemi-Lomedasht F. A novel immunotoxin targeting epithelial cell adhesion molecule using single domain antibody fused to diphtheria toxin. Mol Biotechnol 2022; 65(4): 637-44.
[http://dx.doi.org/10.1007/s12033-022-00565-2] [PMID: 36129635]
[45]
Baharlou R, Tajik N, Behdani M, et al. An antibody fragment against human delta-like ligand-4 for inhibition of cell proliferation and neovascularization. Immunopharmacol Immunotoxicol 2018; 40(5): 368-74.
[http://dx.doi.org/10.1080/08923973.2018.1505907] [PMID: 30183441]
[46]
Beatty JD, Beatty BG, Vlahos WG. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J Immunol Methods 1987; 100(1-2): 173-9.
[http://dx.doi.org/10.1016/0022-1759(87)90187-6] [PMID: 2439600]
[47]
Karami E, Naderi S, Roshan R, Behdani M, Kazemi-Lomedasht F. Targeted therapy of angiogenesis using anti-VEGFR2 and anti-NRP-1 nanobodies. Cancer Chemother Pharmacol 2022; 89(2): 165-72.
[http://dx.doi.org/10.1007/s00280-021-04372-5] [PMID: 34988654]
[48]
Mohseni N, Roshan R, Naderi S, Behdani M, Kazemi-Lomedasht F. In vitro combination therapy of pathologic angiogenesis using anti-vascular endothelial growth factor and anti-neuropilin-1 nanobodies. Iran J Basic Med Sci 2020; 23(10): 1335-9.
[PMID: 33149867]
[49]
Kazemi-Lomedasht F, Pooshang-Bagheri K, Habibi-Anbouhi M, et al. In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies. Iran J Basic Med Sci 2017; 20(5): 489-96.
[PMID: 28656083]
[50]
Shibuya M. Vascular endothelial growth factor and its receptor system: Physiological functions in angiogenesis and pathological roles in various diseases. J Biochem 2013; 153(1): 13-9.
[http://dx.doi.org/10.1093/jb/mvs136] [PMID: 23172303]
[51]
Mirshafiey A, Ghalamfarsa G, Asghari B, Azizi G. Receptor tyrosine kinase and tyrosine kinase inhibitors: New hope for success in multiple sclerosis therapy. Innov Clin Neurosci 2014; 11(7-8): 23-36.
[PMID: 25337443]
[52]
Park SA, Jeong MS, Ha KT, Jang SB. Structure and function of vascular endothelial growth factor and its receptor system. BMB Rep 2018; 51(2): 73-8.
[http://dx.doi.org/10.5483/BMBRep.2018.51.2.233] [PMID: 29397867]
[53]
Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 2006; 312(5): 549-60.
[http://dx.doi.org/10.1016/j.yexcr.2005.11.012] [PMID: 16336962]
[54]
Alirahimi E, Kazemi-Lomedasht F, Shahbazzadeh D, et al. Nanobodies as novel therapeutic agents in envenomation. Biochim Biophys Acta, Gen Subj 2018; 1862(12): 2955-65.
[http://dx.doi.org/10.1016/j.bbagen.2018.08.019] [PMID: 30309831]
[55]
Naderi S, Roshan R, Ghaderi H, et al. Selection and characterization of specific nanobody against neuropilin-1 for inhibition of angiogenesis. Mol Immunol 2020; 128: 56-63.
[http://dx.doi.org/10.1016/j.molimm.2020.10.004] [PMID: 33070092]
[56]
Ahadi M, Ghasemian H, Behdani M, Kazemi-Lomedasht F. Oligoclonal selection of nanobodies targeting vascular endothelial growth factor. J Immunotoxicol 2019; 16(1): 34-42.
[http://dx.doi.org/10.1080/1547691X.2018.1526234] [PMID: 30409071]
[57]
Huang S, Shao K, Liu Y, et al. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano 2013; 7(3): 2860-71.
[http://dx.doi.org/10.1021/nn400548g] [PMID: 23451830]
[58]
Cloughesy TF, Finocchiaro G, Belda C, et al. Onartuzumab plus bevacizumab versus placebo plus bevacizumab in recurrent glioblastoma (GBM): HGF and MGMT biomarker data. American Society of Clinical Oncology 2015.
[59]
Lassen U, Chinot OL, McBain C, et al. Phase 1 dose-escalation study of the antiplacental growth factor monoclonal antibody RO5323441 combined with bevacizumab in patients with recurrent glioblastoma. Neuro-oncol 2015; 17(7): 1007-15.
[http://dx.doi.org/10.1093/neuonc/nov019] [PMID: 25665807]
[60]
Bhattarai P, Hameed S, Dai Z. Recent advances in anti-angiogenic nanomedicines for cancer therapy. Nanoscale 2018; 10(12): 5393-423.
[http://dx.doi.org/10.1039/C7NR09612G] [PMID: 29528075]
[61]
Liao MY, Lai JK, Kuo MYP, et al. An anti-EpCAM antibody EpAb2-6 for the treatment of colon cancer. Oncotarget 2015; 6(28): 24947-68.
[http://dx.doi.org/10.18632/oncotarget.4453] [PMID: 26317650]
[62]
Schmidt M, Scheulen ME, Dittrich C, et al. An open-label, randomized phase II study of adecatumumab, a fully human anti-EpCAM antibody, as monotherapy in patients with metastatic breast cancer. Ann Oncol 2010; 21(2): 275-82.
[http://dx.doi.org/10.1093/annonc/mdp314] [PMID: 19633042]
[63]
Bokemeyer C. Catumaxomab – trifunctional anti-EpCAM antibody used to treat malignant ascites. Expert Opin Biol Ther 2010; 10(8): 1259-69.
[http://dx.doi.org/10.1517/14712598.2010.504706] [PMID: 20624115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy