Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Applications of CRISPR/Cas9 System for Urinary System Tumor

Author(s): Shulin Li, Yuqi Wu and Xiangwei Wang*

Volume 23, Issue 10, 2023

Published on: 31 May, 2023

Page: [897 - 906] Pages: 10

DOI: 10.2174/1568026623666230504100706

Price: $65

Abstract

Tumors of the urinary system include those in the urinary and reproductive systems, of which tumors of the prostate, bladder, and kidney have the highest incidence. In recent years, due to changes in dietary structure, prostate cancer has become the most common type of male genitourinary system cancer. Furthermore, due to tobacco consumption, increases in industrialization, and the age of the population, the incidence of bladder cancer in both males and females in both urban and rural areas, has shown an increasing trend. The incidence and mortality of kidney cancer have also increased and negatively affected the lives and health of all residents. While surgery, radiotherapy, and chemotherapy have greatly improved the cure and survival rates of patients with urinary tumors, we lack methods for early detection and effective long-term treatment. New tools and methods for diagnosis and treatment are thus urgently needed. Recently, CRISPR/Cas9 has become an efficient method to alter the genome in many organisms. It can be used to activate or inhibit gene expression, which greatly facilitates the editing of targeted genes, both in vivo and in vitro. It provides a powerful scientific research tool to analyze the mechanisms of disease occurrence and development and to develop advanced targeted drug delivery. The diagnosis and treatment of human tumors will consequently be improved as this technology will surely accelerate cancer research. In this article, we discuss how CRISPR/Cas9 technology can be used to research and treat genitourinary system tumors will consequently be improved as this technology will surely accelerate cancer research. Here, we review the current applications of CRISPR/Cas9 technology for genitourinary system tumor research and therapy.

Keywords: Urinary system tumor, CRISPR-Cas9, Gene editing, Gene therapy, Library screening, Genitourinary.

Graphical Abstract
[1]
Jansen, R.; Embden, J.D.A.; Gaastra, W.; Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol., 2002, 43(6), 1565-1575.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x] [PMID: 11952905]
[2]
Mojica, F.J.; Díez-Villaseñor, C.; García-Martínez, J.; Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol., 2005, 60(2), 174-182.
[http://dx.doi.org/10.1007/s00239-004-0046-3] [PMID: 15791728]
[3]
Pourcel, C.; Salvignol, G.; Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 2005, 151(3), 653-663.
[http://dx.doi.org/10.1099/mic.0.27437-0] [PMID: 15758212]
[4]
Bolotin, A.; Quinquis, B.; Sorokin, A.; Ehrlich, S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading), 2005, 151(8), 2551-2561.
[http://dx.doi.org/10.1099/mic.0.28048-0] [PMID: 16079334]
[5]
Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819), 1709-1712.
[http://dx.doi.org/10.1126/science.1138140] [PMID: 17379808]
[6]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[7]
Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121), 819-823.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[8]
Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121), 823-826.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[9]
Gebler, C.; Lohoff, T.; Paszkowski-Rogacz, M.; Mircetic, J.; Chakraborty, D.; Camgoz, A.; Hamann, M.V.; Theis, M.; Thiede, C.; Buchholz, F. Inactivation of cancer mutations utilizing CRISPR/Cas9. J. Natl. Cancer Inst., 2016, 109(1), djw183.
[PMID: 27576906]
[10]
Demirci, S.; Uchida, N.; Tisdale, J.F. Gene therapy for sickle cell disease: An update. Cytotherapy, 2018, 20(7), 899-910.
[http://dx.doi.org/10.1016/j.jcyt.2018.04.003] [PMID: 29859773]
[11]
Makarova, K.S.; Wolf, Y.I.; Alkhnbashi, O.S.; Costa, F.; Shah, S.A.; Saunders, S.J.; Barrangou, R.; Brouns, S.J.J.; Charpentier, E.; Haft, D.H.; Horvath, P.; Moineau, S.; Mojica, F.J.M.; Terns, R.M.; Terns, M.P.; White, M.F.; Yakunin, A.F.; Garrett, R.A.; van der Oost, J.; Backofen, R.; Koonin, E.V. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol., 2015, 13(11), 722-736.
[http://dx.doi.org/10.1038/nrmicro3569] [PMID: 26411297]
[12]
Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; Koonin, E.V.; Zhang, F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163(3), 759-771.
[http://dx.doi.org/10.1016/j.cell.2015.09.038] [PMID: 26422227]
[13]
Barrangou, R.; Marraffini, L.A. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell, 2014, 54(2), 234-244.
[http://dx.doi.org/10.1016/j.molcel.2014.03.011] [PMID: 24766887]
[14]
Shah, S.A.; Erdmann, S.; Mojica, F.J.M.; Garrett, R.A. Protospacer recognition motifs. RNA Biol., 2013, 10(5), 891-899.
[http://dx.doi.org/10.4161/rna.23764] [PMID: 23403393]
[15]
Yang, Z.; Li, C.; Fan, Z.; Liu, H.; Zhang, X.; Cai, Z.; Xu, L.; Luo, J.; Huang, Y.; He, L.; Liu, C.; Wu, S. Single-cell sequencing reveals variants in ARID1A, GPRC5A and MLL2 driving self-renewal of human bladder cancer stem cells. Eur. Urol., 2017, 71(1), 8-12.
[http://dx.doi.org/10.1016/j.eururo.2016.06.025] [PMID: 27387124]
[16]
Kallifatidis, G. Smith, D.K.; Morera, D.S.; Gao, J.; Hennig, M.J.; Hoy, J.J.; Pearce, R.F.; Dabke, I.R.; Li, J.; Merseburger, A.S.; Kuczyk, M.A.; Lokeshwar, V.B.; Lokeshwar, B.L. β-Arrestins regulate stem cell-like phenotype and response to chemotherapy in bladder cancer. Mol. Cancer Ther., 2019, 18(4), 801-811.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1167] [PMID: 30787175]
[17]
Chen, C.H.; Changou, C.A.; Hsieh, T.H.; Lee, Y.C.; Chu, C.Y.; Hsu, K.C.; Wang, H.C.; Lin, Y.C.; Lo, Y.N.; Liu, Y.R.; Liou, J.P.; Yen, Y. Dual inhibition of PIK3C3 and FGFR as a new therapeutic approach to treat bladder cancer. Clin. Cancer Res., 2018, 24(5), 1176-1189.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2066] [PMID: 29222162]
[18]
Li, A.; Yao, L.; Fang, Y.; Yang, K.; Jiang, W.; Huang, W.; Cai, Z. Specifically blocking the fatty acid synthesis to inhibit the malignant phenotype of bladder cancer. Int. J. Biol. Sci., 2019, 15(8), 1610-1617.
[http://dx.doi.org/10.7150/ijbs.32518] [PMID: 31360104]
[19]
Dudek, A.M.; Vermeulen, S.H.; Kolev, D.; Grotenhuis, A.J.; Kiemeney, L.A.L.M.; Verhaegh, G.W. Identification of an enhancer region within the TP63/LEPREL1 locus containing genetic variants associated with bladder cancer risk. Cell. Oncol., 2018, 41(5), 555-568.
[http://dx.doi.org/10.1007/s13402-018-0393-5] [PMID: 29956121]
[20]
Pattison, J.M.; Posternak, V.; Cole, M.D. Transcription factor KLF5 binds a cyclin E1 polymorphic intronic enhancer to confer increased bladder cancer risk. Mol. Cancer Res., 2016, 14(11), 1078-1086.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0123] [PMID: 27514407]
[21]
Shi, H.; Xie, J.; Wang, K.; Li, W.; Yin, L.; Wang, G.; Wu, Z.; Ni, J.; Mao, W.; Guo, C.; Peng, B. LINC01451 drives epithelial-mesenchymal transition and progression in bladder cancer cells via LIN28/TGF-β/Smad pathway. Cell. Signal., 2021, 81, 109932.
[http://dx.doi.org/10.1016/j.cellsig.2021.109932] [PMID: 33516780]
[22]
Zhen, S.; Hua, L.; Liu, Y.H.; Sun, X.M.; Jiang, M.M.; Chen, W.; Zhao, L.; Li, X. Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer. Oncotarget, 2017, 8(6), 9634-9646.
[http://dx.doi.org/10.18632/oncotarget.14176] [PMID: 28038452]
[23]
Richter, C.; Marquardt, S.; Li, F.; Spitschak, A.; Murr, N.; Edelhäuser, B.A.H.; Iliakis, G.; Pützer, B.M.; Logotheti, S. Rewiring E2F1 with classical NHEJ via APLF suppression promotes bladder cancer invasiveness. J. Exp. Clin. Cancer Res., 2019, 38(1), 292.
[http://dx.doi.org/10.1186/s13046-019-1286-9] [PMID: 31287003]
[24]
Zhang, W.; Shi, L.; Zhao, Z.; Du, P.; Ye, X.; Li, D.; Cai, Z.; Han, J.; Cai, J. Disruption of CTLA-4 expression on peripheral blood CD8 + T cell enhances anti-tumor efficacy in bladder cancer. Cancer Chemother. Pharmacol., 2019, 83(5), 911-920.
[http://dx.doi.org/10.1007/s00280-019-03800-x] [PMID: 30848330]
[25]
Chakraborty, G.; Armenia, J.; Mazzu, Y.Z.; Nandakumar, S.; Stopsack, K.H.; Atiq, M.O.; Komura, K.; Jehane, L.; Hirani, R.; Chadalavada, K.; Yoshikawa, Y.; Khan, N.A.; Chen, Y.; Abida, W.; Mucci, L.A.; Lee, G.S.M.; Nanjangud, G.J.; Kantoff, P.W. Significance of BRCA2 and RB1 co-loss in aggressive prostate cancer progression. Clin. Cancer Res., 2020, 26(8), 2047-2064.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1570] [PMID: 31796516]
[26]
Rahimi, S.; Roushandeh, A.M.; Ebrahimi, A.; Samadani, A.A.; Kuwahara, Y.; Roudkenar, M.H. CRISPR/Cas9-mediated knockout of Lcn2 effectively enhanced CDDP-induced apoptosis and reduced cell migration capacity of PC3 cells. Life Sci., 2019, 231, 116586.
[http://dx.doi.org/10.1016/j.lfs.2019.116586] [PMID: 31220528]
[27]
Ye, R.; Pi, M.; Cox, J.V.; Nishimoto, S.K.; Quarles, L.D. CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model. J. Exp. Clin. Cancer Res., 2017, 36(1), 90.
[http://dx.doi.org/10.1186/s13046-017-0561-x] [PMID: 28659174]
[28]
Neeb, A.; Herranz, N.; Arce-Gallego, S.; Miranda, S.; Buroni, L.; Yuan, W.; Athie, A.; Casals, T.; Carmichael, J.; Rodrigues, D.N.; Gurel, B.; Rescigno, P.; Rekowski, J.; Welti, J.; Riisnaes, R.; Gil, V.; Ning, J.; Wagner, V.; Casanova-Salas, I.; Cordoba, S.; Castro, N.; Fenor de la Maza, M.D.; Seed, G.; Chandran, K.; Ferreira, A.; Figueiredo, I.; Bertan, C.; Bianchini, D.; Aversa, C.; Paschalis, A.; Gonzalez, M.; Morales-Barrera, R.; Suarez, C.; Carles, J.; Swain, A.; Sharp, A.; Gil, J.; Serra, V.; Lord, C.; Carreira, S.; Mateo, J.; de Bono, J.S. Advanced prostate cancer with ATM loss: PARP and ATR inhibitors. Eur. Urol., 2021, 79(2), 200-211.
[http://dx.doi.org/10.1016/j.eururo.2020.10.029] [PMID: 33176972]
[29]
Albayrak, G.; Konac, E.; Ugras Dikmen, A.; Bilen, C.Y. FOXA1 knock-out via CRISPR/Cas9 altered Casp-9, Bax, CCND1, CDK4, and fibronectin expressions in LNCaP cells. Exp. Biol. Med., 2018, 243(12), 990-994.
[http://dx.doi.org/10.1177/1535370218791797] [PMID: 30043639]
[30]
Khater, M.; Wei, Z.; Xu, X.; Huang, W.; Lokeshwar, B.L.; Lambert, N.A.; Wu, G. G protein βγ translocation to the Golgi apparatus activates MAPK via p110γ-p101 heterodimers. J. Biol. Chem., 2021, 296, 100325.
[http://dx.doi.org/10.1016/j.jbc.2021.100325] [PMID: 33493514]
[31]
Khater, M. Bryant, C.N.; Wu, G. Gβγ translocation to the Golgi apparatus activates ARF1 to spatiotemporally regulate G protein–coupled receptor signaling to MAPK. J. Biol. Chem., 2021, 296, 100805.
[http://dx.doi.org/10.1016/j.jbc.2021.100805] [PMID: 34022220]
[32]
Moser, B.; Hochreiter, B.; Basílio, J.; Gleitsmann, V.; Panhuber, A.; Pardo-Garcia, A.; Hoesel, B.; Salzmann, M.; Resch, U.; Noreen, M.; Schmid, J.A. The inflammatory kinase IKKα phosphorylates and stabilizes c-Myc and enhances its activity. Mol. Cancer, 2021, 20(1), 16.
[http://dx.doi.org/10.1186/s12943-021-01308-8] [PMID: 33461590]
[33]
Conteduca, V.; Ku, S.Y.; Puca, L.; Slade, M.; Fernandez, L.; Hess, J.; Bareja, R.; Vlachostergios, P.J.; Sigouros, M.; Mosquera, J.M.; Sboner, A.; Nanus, D.M.; Elemento, O.; Dittamore, R.; Tagawa, S.T.; Beltran, H. SLFN11 expression in advanced prostate cancer and response to platinum-based chemotherapy. Mol. Cancer Ther., 2020, 19(5), 1157-1164.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0926] [PMID: 32127465]
[34]
Wang, Y.; Li, X.; Liu, W.; Li, B.; Chen, D.; Hu, F.; Wang, L.; Liu, X.M.; Cui, R.; Liu, R. MicroRNA-1205, encoded on chromosome 8q24, targets EGLN3 to induce cell growth and contributes to risk of castration-resistant prostate cancer. Oncogene, 2019, 38(24), 4820-4834.
[http://dx.doi.org/10.1038/s41388-019-0760-3] [PMID: 30808975]
[35]
Poddar, A.; Pyreddy, S.; Carraro, F.; Dhakal, S.; Rassell, A.; Field, M.R.; Reddy, T.S.; Falcaro, P.; Doherty, C.M.; Shukla, R. ZIF-C for targeted RNA interference and CRISPR/Cas9 based gene editing in prostate cancer. Chem. Commun., 2020, 56(98), 15406-15409.
[http://dx.doi.org/10.1039/D0CC06241C] [PMID: 33196071]
[36]
Haldrup, J.; Strand, S.H.; Cieza-Borrella, C.; Jakobsson, M.E.; Riedel, M.; Norgaard, M.; Hedensted, S.; Dagnaes-Hansen, F.; Ulhoi, B.P.; Eeles, R.; Borre, M.; Olsen, J.V.; Thomsen, M.; Kote-Jarai, Z.; Sorensen, K.D. FRMD6 has tumor suppressor functions in prostate cancer. Oncogene, 2021, 40(4), 763-776.
[http://dx.doi.org/10.1038/s41388-020-01548-w] [PMID: 33249427]
[37]
Nazıroğlu, M.; Blum, W.; Jósvay, K.; Çiğ B.; Henzi, T.; Oláh, Z.; Vizler, C.; Schwaller, B.; Pecze, L. Menthol evokes Ca2+ signals and induces oxidative stress independently of the presence of TRPM8 (menthol) receptor in cancer cells. Redox Biol., 2018, 14, 439-449.
[http://dx.doi.org/10.1016/j.redox.2017.10.009] [PMID: 29078169]
[38]
Qi, J.C.; Yang, Z.; Lin, T.; Ma, L.; Wang, Y.X.; Zhang, Y.; Gao, C.C.; Liu, K.L.; Li, W.; Zhao, A.N.; Shi, B.; Zhang, H.; Wang, D.D.; Wang, X.L.; Wen, J.K.; Qu, C.B. CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 contributes to prostate carcinogenesis. J. Exp. Clin. Cancer Res., 2021, 40(1), 2.
[http://dx.doi.org/10.1186/s13046-020-01814-5] [PMID: 33390186]
[39]
Wang, T.; Wei, J.J.; Sabatini, D.M.; Lander, E.S. Genetic screens in human cells using the CRISPR-Cas9 system. Science, 2014, 343(6166), 80-84.
[http://dx.doi.org/10.1126/science.1246981] [PMID: 24336569]
[40]
Koike-Yusa, H.; Li, Y.; Tan, E.P.; Velasco-Herrera, M.D.C.; Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol., 2014, 32(3), 267-273.
[http://dx.doi.org/10.1038/nbt.2800] [PMID: 24535568]
[41]
Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelsen, T.S.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; Zhang, F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014, 343(6166), 84-87.
[http://dx.doi.org/10.1126/science.1247005] [PMID: 24336571]
[42]
Zhou, Y.; Zhu, S.; Cai, C.; Yuan, P.; Li, C.; Huang, Y.; Wei, W. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature, 2014, 509(7501), 487-491.
[http://dx.doi.org/10.1038/nature13166] [PMID: 24717434]
[43]
Chen, S.; Sanjana, N.E.; Zheng, K.; Shalem, O.; Lee, K.; Shi, X.; Scott, D.A.; Song, J.; Pan, J.Q.; Weissleder, R.; Lee, H.; Zhang, F.; Sharp, P.A. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 2015, 160(6), 1246-1260.
[http://dx.doi.org/10.1016/j.cell.2015.02.038] [PMID: 25748654]
[44]
Parnas, O.; Jovanovic, M.; Eisenhaure, T.M.; Herbst, R.H.; Dixit, A.; Ye, C.J.; Przybylski, D.; Platt, R.J.; Tirosh, I.; Sanjana, N.E.; Shalem, O.; Satija, R.; Raychowdhury, R.; Mertins, P.; Carr, S.A.; Zhang, F.; Hacohen, N.; Regev, A. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell, 2015, 162(3), 675-686.
[http://dx.doi.org/10.1016/j.cell.2015.06.059] [PMID: 26189680]
[45]
Fei, T.; Chen, Y.; Xiao, T.; Li, W.; Cato, L.; Zhang, P.; Cotter, M.B.; Bowden, M.; Lis, R.T.; Zhao, S.G.; Wu, Q.; Feng, F.Y.; Loda, M.; He, H.H.; Liu, X.S.; Brown, M. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc. Natl. Acad. Sci. USA, 2017, 114(26), E5207-E5215.
[http://dx.doi.org/10.1073/pnas.1617467114] [PMID: 28611215]
[46]
Sawada, Y.; Kikugawa, T.; Iio, H.; Sakakibara, I.; Yoshida, S.; Ikedo, A.; Yanagihara, Y.; Saeki, N. Győrffy, B.; Kishida, T.; Okubo, Y.; Nakamura, Y.; Miyagi, Y.; Saika, T.; Imai, Y. GPRC5A facilitates cell proliferation through cell cycle regulation and correlates with bone metastasis in prostate cancer. Int. J. Cancer, 2020, 146(5), 1369-1382.
[http://dx.doi.org/10.1002/ijc.32554] [PMID: 31276604]
[47]
Valcarcel-Jimenez, L.; Macchia, A.; Crosas-Molist, E.; Schaub-Clerigué, A.; Camacho, L.; Martín-Martín, N.; Cicogna, P.; Viera-Bardón, C.; Fernández-Ruiz, S.; Rodriguez-Hernandez, I.; Hermanova, I.; Astobiza, I.; Cortazar, A.R.; Corres-Mendizabal, J.; Gomez-Muñoz, A.; Sanz-Moreno, V.; Torrano, V.; Carracedo, A. PGC1α suppresses prostate cancer cell invasion through ERRα transcriptional control. Cancer Res., 2019, 79(24), 6153-6165.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1231] [PMID: 31594836]
[48]
Rushworth, L.K.; Harle, V.; Repiscak, P.; Clark, W.; Shaw, R.; Hall, H.; Bushell, M.; Leung, H.Y.; Patel, R. In vivo CRISPR/Cas9 knockout screen: TCEAL1 silencing enhances docetaxel efficacy in prostate cancer. Life Sci. Alliance, 2020, 3(12), e202000770.
[http://dx.doi.org/10.26508/lsa.202000770] [PMID: 33033111]
[49]
Jiang, F.N.; Liang, Y.X.; Wei, W.; Zou, C.Y.; Chen, G.X.; Wan, Y.P.; Liu, Z.Z.; Yang, Y.; Han, Z.D.; Zhu, J.G.; Zhong, W.D. Functional classification of prostate cancer associated miRNAs through CRISPR/Cas9 mediated gene knockout. Mol. Med. Rep., 2020, 22(5), 3777-3784.
[http://dx.doi.org/10.3892/mmr.2020.11491] [PMID: 32901864]
[50]
Kawamura, N.; Nimura, K.; Saga, K.; Ishibashi, A.; Kitamura, K.; Nagano, H.; Yoshikawa, Y.; Ishida, K.; Nonomura, N.; Arisawa, M.; Luo, J.; Kaneda, Y. SF3B2-mediated RNA splicing drives human prostate cancer progression. Cancer Res., 2019, 79(20), 5204-5217.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3965] [PMID: 31431456]
[51]
Anguela, X.M.; High, K.A. Entering the modern era of gene therapy. Annu. Rev. Med., 2019, 70(1), 273-288.
[http://dx.doi.org/10.1146/annurev-med-012017-043332] [PMID: 30477394]
[52]
Wang, G.; Zhao, D.; Spring, D.J.; DePinho, R.A. Genetics and biology of prostate cancer. Genes Dev., 2018, 32(17-18), 1105-1140.
[http://dx.doi.org/10.1101/gad.315739.118] [PMID: 30181359]
[53]
Altwaijry, N.; Somani, S.; Dufès, C. Targeted nonviral gene therapy in prostate cancer. Int. J. Nanomedicine, 2018, 13, 5753-5767.
[http://dx.doi.org/10.2147/IJN.S139080] [PMID: 30310278]
[54]
Shukla, R.; Chanda, N.; Zambre, A.; Upendran, A.; Katti, K.; Kulkarni, R.R.; Nune, S.K.; Casteel, S.W.; Smith, C.J.; Vimal, J.; Boote, E.; Robertson, J.D.; Kan, P.; Engelbrecht, H.; Watkinson, L.D.; Carmack, T.L.; Lever, J.R.; Cutler, C.S.; Caldwell, C.; Kannan, R.; Katti, K.V. Laminin receptor specific therapeutic gold nanoparticles (198 AuNP-EGCg) show efficacy in treating prostate cancer. Proc. Natl. Acad. Sci. USA, 2012, 109(31), 12426-12431.
[http://dx.doi.org/10.1073/pnas.1121174109] [PMID: 22802668]
[55]
Batır, M.B.; Şahin, E.; Çam, F.S. Evaluation of the CRISPR/Cas9 directed mutant TP53 gene repairing effect in human prostate cancer cell line PC-3. Mol. Biol. Rep., 2019, 46(6), 6471-6484.
[http://dx.doi.org/10.1007/s11033-019-05093-y] [PMID: 31571107]
[56]
Wei, C.; Wang, F.; Liu, W.; Zhao, W.; Yang, Y.; Li, K.; Xiao, L.; Shen, J. CRISPR/Cas9 targeting of the androgen receptor suppresses the growth of LNCaP human prostate cancer cells. Mol. Med. Rep., 2018, 17(2), 2901-2906.
[PMID: 29257308]
[57]
Peng, L.; Pan, P.; Chen, J.; Yu, X.; Wu, J.; Chen, Y. A tetracycline inducible CRISPR/Cas9 system, targeting two long non coding RNAs, suppresses the malignant behavior of bladder cancer cells. Oncol. Lett., 2018, 16(4), 4309-4316.
[http://dx.doi.org/10.3892/ol.2018.9157] [PMID: 30214566]
[58]
Zhen, S.; Lu, J.; Chen, W.; Zhao, L.; Li, X. Synergistic antitumor effect on bladder cancer by rational combination of programmed cell death 1 blockade and CRISPR-Cas9-mediated long non-coding RNA urothelial carcinoma associated 1 knockout. Hum. Gene Ther., 2018, 29(12), 1352-1363.
[http://dx.doi.org/10.1089/hum.2018.048] [PMID: 30457360]
[59]
Xu, C.F.; Chen, G.J.; Luo, Y.L.; Zhang, Y.; Zhao, G.; Lu, Z.D.; Czarna, A.; Gu, Z.; Wang, J. Rational designs of in vivo CRISPR-Cas delivery systems. Adv. Drug Deliv. Rev., 2021, 168, 3-29.
[http://dx.doi.org/10.1016/j.addr.2019.11.005] [PMID: 31759123]
[60]
Zeballos, C.M.; Gaj, T. Next-Generation CRISPR technologies and their applications in gene and cell therapy. Trends Biotechnol., 2020.
[61]
Huang, X.; Zhuang, C.; Zhuang, C.; Xiong, T.; Li, Y.; Gui, Y. An enhanced hTERT promoter-driven CRISPR/Cas9 system selectively inhibits the progression of bladder cancer cells. Mol. Biosyst., 2017, 13(9), 1713-1721.
[http://dx.doi.org/10.1039/C7MB00354D] [PMID: 28702647]
[62]
Liu, Y.; Huang, W.; Cai, Z. Synthesizing AND gate minigene circuits based on CRISPReader for identification of bladder cancer cells. Nat. Commun., 2020, 11(1), 5486.
[http://dx.doi.org/10.1038/s41467-020-19314-7] [PMID: 33127914]
[63]
Lin, F.; Dong, L.; Wang, W.; Liu, Y.; Huang, W.; Cai, Z. An efficient light-inducible P53 expression system for inhibiting proliferation of bladder cancer cell. Int. J. Biol. Sci., 2016, 12(10), 1273-1278.
[http://dx.doi.org/10.7150/ijbs.16162] [PMID: 27766041]
[64]
Frangoul, H.; Altshuler, D.; Cappellini, M.D.; Chen, Y.S.; Domm, J.; Eustace, B.K.; Foell, J.; de la Fuente, J.; Grupp, S.; Handgretinger, R.; Ho, T.W.; Kattamis, A.; Kernytsky, A.; Lekstrom-Himes, J.; Li, A.M.; Locatelli, F.; Mapara, M.Y.; de Montalembert, M.; Rondelli, D.; Sharma, A.; Sheth, S.; Soni, S.; Steinberg, M.H.; Wall, D.; Yen, A.; Corbacioglu, S. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med., 2021, 384(3), 252-260.
[http://dx.doi.org/10.1056/NEJMoa2031054] [PMID: 33283989]
[65]
Haapaniemi, E.; Botla, S.; Persson, J.; Schmierer, B.; Taipale, J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med., 2018, 24(7), 927-930.
[http://dx.doi.org/10.1038/s41591-018-0049-z] [PMID: 29892067]
[66]
Ihry, R.J.; Worringer, K.A.; Salick, M.R.; Frias, E.; Ho, D.; Theriault, K.; Kommineni, S.; Chen, J.; Sondey, M.; Ye, C.; Randhawa, R.; Kulkarni, T.; Yang, Z.; McAllister, G.; Russ, C.; Reece-Hoyes, J.; Forrester, W.; Hoffman, G.R.; Dolmetsch, R.; Kaykas, A. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med., 2018, 24(7), 939-946.
[http://dx.doi.org/10.1038/s41591-018-0050-6] [PMID: 29892062]
[67]
Zuccaro, M.V.; Xu, J.; Mitchell, C.; Marin, D.; Zimmerman, R.; Rana, B.; Weinstein, E.; King, R.T.; Palmerola, K.L.; Smith, M.E.; Tsang, S.H.; Goland, R.; Jasin, M.; Lobo, R.; Treff, N.; Egli, D. Allele-specific chromosome removal after Cas9 cleavage in human embryos. Cell, 2020, 183(6), 1650-1664.e15.
[http://dx.doi.org/10.1016/j.cell.2020.10.025] [PMID: 33125898]
[68]
Xu, S.; Kim, J.; Tang, Q.; Chen, Q.; Liu, J.; Xu, Y.; Fu, X. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway. Protein Cell, 2020, 11(5), 352-365.
[http://dx.doi.org/10.1007/s13238-020-00699-6] [PMID: 32170574]
[69]
Hu, J.H.; Miller, S.M.; Geurts, M.H.; Tang, W.; Chen, L.; Sun, N.; Zeina, C.M.; Gao, X.; Rees, H.A.; Lin, Z.; Liu, D.R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018, 556(7699), 57-63.
[http://dx.doi.org/10.1038/nature26155] [PMID: 29512652]
[70]
Klein, M.; Eslami-Mossallam, B.; Arroyo, D.G.; Depken, M. Hybridization kinetics explains CRISPR-Cas off-targeting rules. Cell Rep., 2018, 22(6), 1413-1423.
[http://dx.doi.org/10.1016/j.celrep.2018.01.045] [PMID: 29425498]
[71]
Kosicki, M.; Tomberg, K.; Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol., 2018, 36(8), 765-771.
[http://dx.doi.org/10.1038/nbt.4192] [PMID: 30010673]
[72]
Leibowitz, M.L.; Papathanasiou, S.; Doerfler, P.A.; Blaine, L.J.; Sun, L.; Yao, Y.; Zhang, C.Z.; Weiss, M.J.; Pellman, D. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet., 2021, 53(6), 895-905.
[http://dx.doi.org/10.1038/s41588-021-00838-7] [PMID: 33846636]
[73]
Kouranova, E.; Forbes, K.; Zhao, G.; Warren, J.; Bartels, A.; Wu, Y.; Cui, X. CRISPRs for optimal targeting: Delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. Hum. Gene Ther., 2016, 27(6), 464-475.
[http://dx.doi.org/10.1089/hum.2016.009] [PMID: 27094534]
[74]
Kim, S.; Koo, T.; Jee, H.G.; Cho, H.Y.; Lee, G.; Lim, D.G.; Shin, H.S.; Kim, J.S. CRISPR RNAs trigger innate immune responses in human cells. Genome Res., 2018, 28(3), 367-373.
[http://dx.doi.org/10.1101/gr.231936.117] [PMID: 29472270]
[75]
Gibson, G.J.; Yang, M. What rheumatologists need to know about CRISPR/Cas9. Nat. Rev. Rheumatol., 2017, 13(4), 205-216.
[http://dx.doi.org/10.1038/nrrheum.2017.6] [PMID: 28202911]
[76]
Shmakov, S.; Smargon, A.; Scott, D.; Cox, D.; Pyzocha, N.; Yan, W.; Abudayyeh, O.O.; Gootenberg, J.S.; Makarova, K.S.; Wolf, Y.I.; Severinov, K.; Zhang, F.; Koonin, E.V. Diversity and evolution of class 2 CRISPR–Cas systems. Nat. Rev. Microbiol., 2017, 15(3), 169-182.
[http://dx.doi.org/10.1038/nrmicro.2016.184] [PMID: 28111461]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy