Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Anti-tumoral Titanium(IV) Complexes Stabilized with Phenolato Ligands and Structure-Activity Relationship

Author(s): Tiankun Zhao*, Peng Wang, Xupeng Zhang, Nan Liu, Wenzhuo Zhao, Yong Zhang, Pengpeng Yuan, Shanjia Li, Mingjun Yang, Zhongduo Yang and Thomas Huhn*

Volume 23, Issue 19, 2023

Published on: 19 May, 2023

Page: [1835 - 1849] Pages: 15

DOI: 10.2174/1568026623666230505104626

Price: $65

Abstract

Titanocene dichloride and budotitane have opened a new chapter in medicinal chemistry of titanium(IV) complexes being novel non-platinum antitumor metallic agents. Numerous efforts have led to the discovery of the diamino bis-phenolato titanium(IV) complexes. Among which, the [ONNO] and [ONON] type ligands namely Salan, Salen and Salalen coordinated titanium(IV) alkoxyl complexes have demonstrated significantly enhanced aqueous stability, their in vitro and in vivo antitumor efficacy, mechanism of action, structure-activity relationships and combined tumor therapy have been intensively investigated. Replacement of the labile alkoxyls with a second chelator resulted in structural rigid titanium(IV) complexes, which showed exceedingly good aqueous stability and potent antitumor activity both in vitro and in vivo. The unique ligand system successfully allowed the access of isotopic [45Ti]Titanium(IV) complexes, post-synthetic modification, facile synthetic protocols and antitumor congeneric zirconium(IV) and hafnium(IV) complexes. This review presents recent research progress in the field of antitumor group 4 metal complexes stabilized with phenolato ligands; especially their structure-activity relationships are summarized.

Keywords: Group 4, Titanium complexes, Phenolato, Antitumor activity, Structure-activity relationship, Zirconium complex-es, Hafnium complexes

Graphical Abstract
[1]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[2]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[3]
Mayburd, A.L.; Golovchikova, I.; Mulshine, J.L. Successful anti-cancer drug targets able to pass FDA review demonstrate the identifiable signature distinct from the signatures of random genes and initially proposed targets. Bioinformatics, 2008, 24(3), 389-395.
[http://dx.doi.org/10.1093/bioinformatics/btm447] [PMID: 17925305]
[4]
Simpson, P.V.; Desai, N.M.; Casari, I.; Massi, M.; Falasca, M. Metal-based antitumor compounds: Beyond cisplatin. Future Med. Chem., 2019, 11(2), 119-135.
[http://dx.doi.org/10.4155/fmc-2018-0248] [PMID: 30644327]
[5]
Wang, X.; Wang, X.; Jin, S.; Muhammad, N.; Guo, Z. Stimuli-responsive therapeutic metallodrugs. Chem. Rev., 2019, 119(2), 1138-1192.
[http://dx.doi.org/10.1021/acs.chemrev.8b00209] [PMID: 30299085]
[6]
de Vries, G.; Rosas-Plaza, X.; van Vugt, M.A.T.M.; Gietema, J.A.; de Jong, S. Testicular cancer: Determinants of cisplatin sensitivity and novel therapeutic opportunities. Cancer Treat. Rev., 2020, 88, 102054.
[http://dx.doi.org/10.1016/j.ctrv.2020.102054] [PMID: 32593915]
[7]
Zhou, F.; Yang, X.; Zhao, H.; Liu, Y.; Feng, Y.; An, R.; Lv, X.; Li, J.; Chen, B. Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer. Theranostics, 2018, 8(19), 5200-5212.
[http://dx.doi.org/10.7150/thno.27806] [PMID: 30555541]
[8]
Shi, Z.; Hao, L.; Han, X.; Wu, Z.X.; Pang, K.; Dong, Y.; Qin, J.; Wang, G.; Zhang, X.; Xia, T.; Liang, Q.; Zhao, Y.; Li, R.; Zhang, S.; Zhang, J.; Chen, J.; Wang, G.; Chen, Z.S.; Han, C. Targeting HNRNPU to overcome cisplatin resistance in bladder cancer. Mol. Cancer, 2022, 21(1), 37.
[http://dx.doi.org/10.1186/s12943-022-01517-9] [PMID: 35130920]
[9]
Wang, X.; Guo, Z. New strategies and trends for the design of metal-based anticancer drugs. Huaxue Jinzhan, 2009, 021(5), 845-855.
[http://dx.doi.org/10.1016/S1874-8651(10)60079-8]
[10]
Sinha, A.; Banerjee, K.; Banerjee, A.; Das, S.; Choudhuri, S.K. Synthesis, characterization and biological evaluation of a novel vanadium complex as a possible anticancer agent. J. Organomet. Chem., 2014, 772-773, 34-41.
[http://dx.doi.org/10.1016/j.jorganchem.2014.08.032]
[11]
Lin, Y.; Wang, J.; Zheng, W.; Luo, Q.; Wu, K.; Du, J.; Zhao, Y.; Wang, F. Organometallic ruthenium anticancer complexes inhibit human peroxiredoxin I activity by binding to and inducing oxidation of its catalytic cysteine residue. Metallomics, 2019, 11(3), 546-555.
[http://dx.doi.org/10.1039/c8mt00352a] [PMID: 30693924]
[12]
Shangguan, G.Q.; Huang, L.L.; Qu, X.G. The synthesis and cytotoxic activity of novel organogermanium sesquioxides with anthraquinone or naphthalene moiety. Chin. Chem. Lett., 2007, 18(11), 1347-1350.
[http://dx.doi.org/10.1016/j.cclet.2007.09.029]
[13]
Chitambar, C.R.; Purpi, D.P.; Woodliff, J.; Yang, M.; Wereley, J.P. Development of gallium compounds for treatment of lymphoma: Gallium maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate. J. Pharmacol. Exp. Ther., 2007, 322(3), 1228-1236.
[http://dx.doi.org/10.1124/jpet.107.126342] [PMID: 17600139]
[14]
Fontinha, D.; Sousa, S.A.; Morais, T.S.; Prudêncio, M.; Leitão, J.H.; Le Gal, Y.; Lorcy, D.; Silva, R.A.L.; Velho, M.F.G.; Belo, D.; Almeida, M.; Guerreiro, J.F.; Pinheiro, T.; Marques, F. Gold(III) bis(dithiolene) complexes: From molecular conductors to prospective anticancer, antimicrobial and antiplasmodial agents. Metallomics, 2020, 12(6), 974-987.
[http://dx.doi.org/10.1039/d0mt00064g] [PMID: 32391537]
[15]
Tshuva, E.Y.; Miller, M. Coordination complexes of titanium(IV) for anticancer therapy. Met. Ions Life Sci., 2018, 18, 219-250.
[http://dx.doi.org/10.1515/9783110470734-008] [PMID: 29394027]
[16]
Liang, J.X.; Zhong, H.J.; Yang, G.; Vellaisamy, K.; Ma, D.L.; Leung, C.H. Recent development of transition metal complexes with in vivo antitumor activity. J. Inorg. Biochem., 2017, 177, 276-286.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.06.002] [PMID: 28641893]
[17]
Köpf, H.; Köpf-Maier, P. Titanocene dichloride-the first metallocene with cancerostatic activity. Angew. Chem. Int. Ed. Engl., 1979, 18(6), 477-478.
[http://dx.doi.org/10.1002/anie.197904771] [PMID: 111586]
[18]
Keller, H.J.; Keppler, B.; Schmähl, D. Antitumor activity of cis-dihalogenobis(1-phenyl-1,3-butanedionato)titanium (IV) compounds. A new class of antineoplastic agents. J. Cancer Res. Clin. Oncol., 1983, 105(1), 109-110.
[http://dx.doi.org/10.1007/BF00391842] [PMID: 6682104]
[19]
Boyles, J.R.; Baird, M.C.; Campling, B.G.; Jain, N. Enhanced anti-cancer activities of some derivatives of titanocene dichloride. J. Inorg. Biochem., 2001, 84(1-2), 159-162.
[http://dx.doi.org/10.1016/S0162-0134(00)00203-8] [PMID: 11330477]
[20]
Keppler, B.K.; Friesen, C.; Moritz, H.G.; Vongerichten, H.; Vogel, E. Tumor-inhibiting bis(β-Diketonato) metal complexes. Budotitane, cis-diethoxybis(1-phenylbutane-1,3-dionato)titanium(IV). In: Bioinorganic Chemistry; Springer Berlin Heidelberg: Berlin, Heidelberg, 1991; pp. 97-127.
[http://dx.doi.org/10.1007/3-540-54261-2_2]
[21]
Wang, P.; Zhao, T.; Ji, M.; Yang, M.; Pu, X. Research progress in cyclopentadienyl and β-diketonato titanium, zirconium and hafnium complexes with antitumor activity. Chemistry, 2021, 84(11), 1163-1172.
[http://dx.doi.org/10.14159/j.cnki.0441-3776.2021.11.005]
[22]
Tshuva, E.Y.; Ashenhurst, J.A. Cytotoxic titanium(IV) complexes: Renaissance. Eur. J. Inorg. Chem., 2009, 2009(15), 2203-2218.
[http://dx.doi.org/10.1002/ejic.200900198]
[23]
Köpf-Maier, P.; Grabowski, S.; Liegener, J.; Köpf, H. New antitumor titanocene derivatives containing hydrophilic ligands. Inorg. Chim. Acta, 1985, 108(2), 99-103.
[http://dx.doi.org/10.1016/S0020-1693(00)81620-5]
[24]
Hernández, R.; Lamboy, J.; Gao, L.M.; Matta, J.; Román, F.R.; Meléndez, E. Structure-activity studies of Ti(IV) complexes: Aqueous stability and cytotoxic properties in colon cancer HT-29 cells. J. Biol. Inorg. Chem., 2008, 13(5), 685-692.
[http://dx.doi.org/10.1007/s00775-008-0353-z] [PMID: 18288505]
[25]
Lu, Z.; Lu, C.; Ren, X.; Meng, Q. New metallocene-bridged cyclodextrin dimer: A stable derivative of the antitumor drug titanocene dichloride and its potent cytotoxity against human breast cancer (MCF-7) cells. J. Organomet. Chem., 2006, 691(26), 5895-5899.
[http://dx.doi.org/10.1016/j.jorganchem.2006.09.052]
[26]
Meyer, R.; Brink, S.; van Rensburg, C.E.J.; Jooné, G.K.; Görls, H.; Lotz, S. Synthesis, characterization and antitumor properties of titanocene derivatives with thiophene containing ligands. J. Organomet. Chem., 2005, 690(1), 117-125.
[http://dx.doi.org/10.1016/j.jorganchem.2004.08.046]
[27]
Köpf-Maier, P.; Hesse, B.; Voigtländer, R.; Köpf, H. Tumor inhibition by metallocenes: antitumor activity of titanocene dihalides (C5H5)2TiX2 (X=F, Cl, Br, I, NCS) and their application in buffered solutions as a method for suppressing drug-induced side effects. J. Cancer Res. Clin. Oncol., 1980, 97(1), 31-39.
[http://dx.doi.org/10.1007/BF00411276] [PMID: 7400205]
[28]
Mokdsi, G.; Harding, M.M. Water soluble, hydrolytically stable derivatives of the antitumor drug titanocene dichloride and binding studies with nucleotides. J. Organomet. Chem., 1998, 565(1-2), 29-35.
[http://dx.doi.org/10.1016/S0022-328X(98)00441-0]
[29]
Gao, L.M.; Vera, J.L.; Matta, J.; Meléndez, E. Synthesis and cytotoxicity studies of steroid-functionalized titanocenes as potential anticancer drugs: Sex steroids as potential vectors for titanocenes. J. Biol. Inorg. Chem., 2010, 15(6), 851-859.
[http://dx.doi.org/10.1007/s00775-010-0649-7] [PMID: 20349254]
[30]
Potter, G.D.; Baird, M.C.; Cole, S.P.C. A new series of titanocene dichloride derivatives bearing chiral alkylammonium groups; assessment of their cytotoxic properties. Inorg. Chim. Acta, 2010, 364(1), 16-22.
[http://dx.doi.org/10.1016/j.ica.2010.05.020]
[31]
Hackenberg, F.; Deally, A.; Lally, G.; Malenke, S.; Müller-Bunz, H.; Paradisi, F.; Patil, S.; Quaglia, D.; Tacke, M. Novel nonsymmetrically p-benzyl-substituted (benz)imidazole N-heterocyclic carbene-silver(I) acetate complexes: Synthesis and biological evaluation. Int. J. Inorg. Chem., 2012, 2012, 1-13.
[http://dx.doi.org/10.1155/2012/121540]
[32]
Shavit, M.; Peri, D.; Manna, C.M.; Alexander, J.S.; Tshuva, E.Y. Active cytotoxic reagents based on non-metallocene non-diketonato well-defined C2-symmetrical titanium complexes of tetradentate bis(phenolato) ligands. J. Am. Chem. Soc., 2007, 129(40), 12098-12099.
[http://dx.doi.org/10.1021/ja0753086] [PMID: 17877357]
[33]
Immel, T.A.; Groth, U.; Huhn, T. Cytotoxic titanium salan complexes: Surprising interaction of salan and alkoxy ligands. Chemistry, 2010, 16(9), 2775-2789.
[http://dx.doi.org/10.1002/chem.200902312] [PMID: 20104550]
[34]
Glasner, H.; Tshuva, E.Y. C1-symmetrical titanium (IV) complexes of salan ligands with differently substituted aromatic rings: Enhanced cytotoxic activity. Inorg. Chem., 2014, 53(6), 3170-3176.
[http://dx.doi.org/10.1021/ic500001j] [PMID: 24588655]
[35]
Tshuva, E.Y.; Peri, D. Modern cytotoxic titanium (IV) complexes; Insights on the enigmatic involvement of hydrolysis. Coord. Chem. Rev., 2009, 253(15-16), 2098-2115.
[http://dx.doi.org/10.1016/j.ccr.2008.11.015]
[36]
Nahari, G.; Tshuva, E.Y. Synthesis of asymmetrical diaminobis (alkoxo)-bisphenol compounds and their C1 -symmetrical mono-ligated titanium(IV) complexes as highly stable highly active antitumor compounds. Dalton Trans., 2021, 50(19), 6423-6426.
[http://dx.doi.org/10.1039/D1DT00219H] [PMID: 33949509]
[37]
Manne, R.; Miller, M.; Duthie, A.; Guedes da Silva, M.F.C.; Tshuva, E.Y.; Basu Baul, T.S. Cytotoxic homoleptic Ti(IV) compounds of ONO-type ligands: synthesis, structures and anti-cancer activity. Dalton Trans., 2019, 48(1), 304-314.
[http://dx.doi.org/10.1039/C8DT03747G] [PMID: 30516219]
[38]
Ganot, N.; Tshuva, E.Y. In vitro combinations of inert phenolato Ti (IV) complexes with clinically employed anticancer chemotherapy: Synergy with oxaliplatin on colon cells. RSC Advances, 2018, 8(11), 5822-5827.
[http://dx.doi.org/10.1039/C8RA00229K] [PMID: 30009018]
[39]
Nahari, G.; Braitbard, O.; Larush, L.; Hochman, J.; Tshuva, E.Y. Effective Oral Administration of an Antitumorigenic nanoformulated titanium complex. ChemMedChem, 2021, 16(1), 108-112.
[http://dx.doi.org/10.1002/cmdc.202000384] [PMID: 32657024]
[40]
Zhao, T.; Grützke, M.; Götz, K.H.; Druzhenko, T.; Huhn, T. Synthesis and X-ray structure analysis of cytotoxic heptacoordinate sulfonamide salan titanium (IV)-bis-chelates. Dalton Trans., 2015, 44(37), 16475-16485.
[http://dx.doi.org/10.1039/C5DT01618E] [PMID: 26325575]
[41]
Immel, T.A.; Grützke, M.; Späte, A.K.; Groth, U.; Öhlschläger, P.; Huhn, T. Synthesis and X-ray structure analysis of a heptacoordinate titanium(iv)-bis-chelate with enhanced in vivo antitumor efficacy. Chem. Commun., 2012, 48(46), 5790-5792.
[http://dx.doi.org/10.1039/c2cc31624b] [PMID: 22549385]
[42]
Sun, H.; Li, H.; Weir, R.A.; Sadler, P.J. The first specific TiIV-protein complex: Potential relevance to anticancer activity of titanocenes. Angew. Chem. Int. Ed., 1998, 37(11), 1577-1579.
[43]
Guo, M.; Sun, H.; McArdle, H.J.; Gambling, L.; Sadler, P.J. Ti(IV) uptake and release by human serum transferrin and recognition of Ti(IV)-transferrin by cancer cells: Understanding the mechanism of action of the anticancer drug titanocene dichloride. Biochemistry, 2000, 39(33), 10023-10033.
[http://dx.doi.org/10.1021/bi000798z] [PMID: 10955990]
[44]
Tinoco, A.D.; Incarvito, C.D.; Valentine, A.M. Calorimetric, spectroscopic, and model studies provide insight into the transport of Ti (IV) by human serum transferrin. J. Am. Chem. Soc., 2007, 129(11), 3444-3454.
[http://dx.doi.org/10.1021/ja068149j] [PMID: 17315875]
[45]
Collins, J.M.; Uppal, R.; Incarvito, C.D.; Valentine, A.M. Titanium (IV) citrate speciation and structure under environmentally and biologically relevant conditions. Inorg. Chem., 2005, 44(10), 3431-3440.
[http://dx.doi.org/10.1021/ic048158y] [PMID: 15877423]
[46]
Guo, M.; Guo, Z.; Sadler, P. Titanium (IV) targets phosphoesters on nucleotides: Implications for the mechanism of action of the anticancer drug titanocene dichloride. J. Biol. Inorg. Chem., 2001, 6(7), 698-707.
[http://dx.doi.org/10.1007/s007750100248] [PMID: 11681703]
[47]
Erxleben, A.; Claffey, J.; Tacke, M. Binding and hydrolysis studies of antitumoural titanocene dichloride and Titanocene Y with phosphate diesters. J. Inorg. Biochem., 2010, 104(4), 390-396.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.11.010] [PMID: 20036426]
[48]
Gaur, K.; Pérez Otero, S.C.; Benjamín-Rivera, J.A.; Rodríguez, I.; Loza-Rosas, S.A.; Vázquez Salgado, A.M.; Akam, E.A.; Hernández-Matias, L.; Sharma, R.K.; Alicea, N.; Kowaleff, M.; Washington, A.V.; Astashkin, A.V.; Tomat, E.; Tinoco, A.D. Iron chelator transmetalative approach to inhibit human ribonucleotide reductase. JACS Au, 2021, 1(6), 865-878.
[http://dx.doi.org/10.1021/jacsau.1c00078] [PMID: 34240081]
[49]
Tinoco, A.D.; Eames, E.V.; Valentine, A.M. Reconsideration of serum Ti (IV) transport: Albumin and transferrin trafficking of Ti (IV) and its complexes. J. Am. Chem. Soc., 2008, 130(7), 2262-2270.
[http://dx.doi.org/10.1021/ja076364+] [PMID: 18225897]
[50]
Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[51]
Olszewski, U.; Hamilton, G. Mechanisms of cytotoxicity of anticancer titanocenes. Anticancer. Agents Med. Chem., 2010, 10(4), 302-311.
[http://dx.doi.org/10.2174/187152010791162261] [PMID: 20380637]
[52]
Olszewski, U.; Claffey, J.; Hogan, M.; Tacke, M.; Zeillinger, R.; Bednarski, P.J.; Hamilton, G. Anticancer activity and mode of action of titanocene C. Invest. New Drugs, 2011, 29(4), 607-614.
[http://dx.doi.org/10.1007/s10637-010-9395-5] [PMID: 20162321]
[53]
Fernández-Gallardo, J.; Elie, B.T.; Sadhukha, T.; Prabha, S.; Sanaú, M.; Rotenberg, S.A.; Ramos, J.W.; Contel, M. Heterometallic titanium-gold complexes inhibit renal cancer cells in vitro and in vivo. Chem. Sci., 2015, 6(9), 5269-5283.
[http://dx.doi.org/10.1039/C5SC01753J] [PMID: 27213034]
[54]
Ceballos-Torres, J.; Virag, P.; Cenariu, M.; Prashar, S.; Fajardo, M.; Fischer-Fodor, E.; Gómez-Ruiz, S. Anti-cancer applications of titanocene-functionalised nanostructured systems: An insight into cell death mechanisms. Chemistry, 2014, 20(34), 10811-10828.
[http://dx.doi.org/10.1002/chem.201400300] [PMID: 24715574]
[55]
O’Connor, K.; Gill, C.; Tacke, M.; Rehmann, F.J.K.; Strohfeldt, K.; Sweeney, N.; Fitzpatrick, J.M.; Watson, R.W.G. Novel titanocene anti-cancer drugs and their effect on apoptosis and the apoptotic pathway in prostate cancer cells. Apoptosis, 2006, 11(7), 1205-1214.
[http://dx.doi.org/10.1007/s10495-006-6796-1] [PMID: 16699961]
[56]
Manna, C.M.; Braitbard, O.; Weiss, E.; Hochman, J.; Tshuva, E.Y. Cytotoxic salan-titanium(IV) complexes: High activity toward a range of sensitive and drug-resistant cell lines, and mechanistic insights. ChemMedChem, 2012, 7(4), 703-708.
[http://dx.doi.org/10.1002/cmdc.201100593] [PMID: 22262543]
[57]
Pesch, T.; Schuhwerk, H.; Wyrsch, P.; Immel, T.; Dirks, W.; Bürkle, A.; Huhn, T.; Beneke, S. Differential cytotoxicity induced by the Titanium (IV)Salan complex Tc52 in G2-phase independent of DNA damage. BMC Cancer, 2016, 16(1), 469.
[http://dx.doi.org/10.1186/s12885-016-2538-0] [PMID: 27412346]
[58]
Immel, T.A.; Debiak, M.; Groth, U.; Bürkle, A.; Huhn, T. Highly selective apoptotic cell death induced by halo-salane titanium complexes. ChemMedChem, 2009, 4(5), 738-741.
[http://dx.doi.org/10.1002/cmdc.200900038] [PMID: 19343766]
[59]
Miller, M.; Braitbard, O.; Hochman, J.; Tshuva, E.Y. Insights into molecular mechanism of action of salan titanium(IV) complex with in vitro and in vivo anticancer activity. J. Inorg. Biochem., 2016, 163, 250-257.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.04.007] [PMID: 27090292]
[60]
Meker, S.; Braitbard, O.; Hall, M.D.; Hochman, J.; Tshuva, E.Y. Specific design of titanium(IV) phenolato chelates yields stable and accessible, effective and selective anticancer agents. Chemistry, 2016, 22(29), 9986-9995.
[http://dx.doi.org/10.1002/chem.201601389] [PMID: 27320784]
[61]
Schur, J.; Manna, C.M.; Deally, A.; Köster, R.W.; Tacke, M.; Tshuva, E.Y.; Ott, I. A comparative chemical-biological evaluation of titanium(iv) complexes with a salan or cyclopentadienyl ligand. Chem. Commun., 2013, 49(42), 4785-4787.
[http://dx.doi.org/10.1039/c3cc38604j] [PMID: 23598498]
[62]
Glasner, H.; Tshuva, E.Y. Cytotoxic O-bridged inert titanium (IV) complexes of phenylenediamine-bis(phenolato) ligands. Inorg. Chem. Commun., 2015, 53, 31-33.
[http://dx.doi.org/10.1016/j.inoche.2015.01.019]
[63]
Immel, T.A.; Grützke, M.; Batroff, E.; Groth, U.; Huhn, T. Cytotoxic dinuclear titanium-salan complexes: Structural and biological characterization. J. Inorg. Biochem., 2012, 106(1), 68-75.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.08.029] [PMID: 22112842]
[64]
Meker, S.; Margulis-Goshen, K.; Weiss, E.; Braitbard, O.; Hochman, J.; Magdassi, S.; Tshuva, E.Y. Anti-proliferative activity of nano-formulated phenolato titanium(IV) complexes against cancer cells. ChemMedChem, 2014, 9(6), 1294-1298.
[http://dx.doi.org/10.1002/cmdc.201400038] [PMID: 24677761]
[65]
Peri, D.; Meker, S.; Shavit, M.; Tshuva, E.Y. Synthesis, characterization, cytotoxicity, and hydrolytic behavior of C2- and C1-symmetrical Ti (IV) complexes of tetradentate diamine bis (phenolato) ligands: A new class of antitumor agents. Chemistry, 2009, 15(10), 2403-2415.
[http://dx.doi.org/10.1002/chem.200801310] [PMID: 19156656]
[66]
Peri, D.; Meker, S.; Manna, C.M.; Tshuva, E.Y. Different ortho and para electronic effects on hydrolysis and cytotoxicity of diamino bis(phenolato) “salan” Ti(IV) complexes. Inorg. Chem., 2011, 50(3), 1030-1038.
[http://dx.doi.org/10.1021/ic101693v] [PMID: 21214265]
[67]
Meker, S.; Manna, C.M.; Peri, D.; Tshuva, E.Y. Major impact of N-methylation on cytotoxicity and hydrolysis of salan Ti (IV) complexes: Sterics and electronics are intertwined. Dalton Trans., 2011, 40(38), 9802-9809.
[http://dx.doi.org/10.1039/c1dt11108f] [PMID: 21874187]
[68]
Meker, S.; Margulis-Goshen, K.; Weiss, E.; Magdassi, S.; Tshuva, E.Y. High antitumor activity of highly resistant salan-titanium (IV) complexes in nanoparticles: An identified active species. Angew. Chem. Int. Ed., 2012, 51(42), 10515-10517.
[http://dx.doi.org/10.1002/anie.201205973] [PMID: 22961758]
[69]
Manna, C.M.; Armony, G.; Tshuva, E.Y. Unexpected influence of stereochemistry on the cytotoxicity of highly efficient Ti (IV) salan complexes: New mechanistic insights. Chemistry, 2011, 17(50), 14094-14103.
[http://dx.doi.org/10.1002/chem.201102017] [PMID: 22076809]
[70]
Miller, M.; Tshuva, E.Y. Cytotoxic titanium (IV) complexes of chiral diaminobis(phenolato) ligands: Better combination of activity and stability by the bipyrrolidine moiety. Eur. J. Inorg. Chem., 2014, 2014(9), 1485-1491.
[http://dx.doi.org/10.1002/ejic.201301463]
[71]
Manna, C.M.; Armony, G.; Tshuva, E.Y. New insights on the active species and mechanism of cytotoxicity of salan-Ti (IV) complexes: A stereochemical study. Inorg. Chem., 2011, 50(20), 10284-10291.
[http://dx.doi.org/10.1021/ic201340m] [PMID: 21923127]
[72]
Sergeeva, E.; Kopilov, J.; Goldberg, I.; Kol, M. Salan ligands assembled around chiral bipyrrolidine: Predetermination of chirality around octahedral Ti and Zr centres. Chem. Commun., 2009, 7(21), 3053-3055.
[http://dx.doi.org/10.1039/b823176a] [PMID: 19462084]
[73]
Hancock, S.L.; Gati, R.; Mahon, M.F.; Tshuva, E.Y.; Jones, M.D. Heteroleptic titanium(IV) catecholato/piperazine systems and their anti-cancer properties. Dalton Trans., 2014, 43(3), 1380-1385.
[http://dx.doi.org/10.1039/C3DT52583J] [PMID: 24201896]
[74]
Miller, M.; Tshuva, E.Y. Synthesis of pure enantiomers of titanium (IV) complexes with chiral diaminobis(phenolato) ligands and their biological reactivity. Sci. Rep., 2018, 8(1), 9705.
[http://dx.doi.org/10.1038/s41598-018-27735-0] [PMID: 29946136]
[75]
Miller, M.; Tshuva, E.Y. Racemic vs. enantiopure inert Ti(IV) complex of a single diaminotetrakis(phenolato) ligand in anticancer activity toward human drug-sensitive and -resistant cancer cell lines. RSC Advances, 2018, 8(69), 39731-39734.
[http://dx.doi.org/10.1039/C8RA08925F] [PMID: 30713687]
[76]
Manna, C.M.; Tshuva, E.Y. Markedly different cytotoxicity of the two enantiomers of C 2 -symmetrical Ti (iv) phenolato complexes; mechanistic implications. Dalton Trans., 2010, 39(5), 1182-1184.
[http://dx.doi.org/10.1039/B920786B] [PMID: 20104339]
[77]
Glasner, H.; Tshuva, E.Y. A marked synergistic effect in antitumor activity of salan titanium (IV) complexes bearing two differently substituted aromatic rings. J. Am. Chem. Soc., 2011, 133(42), 16812-16814.
[http://dx.doi.org/10.1021/ja208219f] [PMID: 21967133]
[78]
Peri, D.; Manna, C.M.; Shavit, M.; Tshuva, E.Y. TiIV complexes of branched diamine bis(phenolato) ligands: Hydrolysis and cytotoxicity. Eur. J. Inorg. Chem., 2011, 2011(31), 4896-4900.
[http://dx.doi.org/10.1002/ejic.201100725]
[79]
Tshuva, E.Y.; Goldberg, I.; Kol, M.; Goldschmidt, Z. Coordination chemistry of amine bis(phenolate) titanium complexes: Tuning complex type and structure by ligand modification. Inorg. Chem., 2001, 40(17), 4263-4270.
[http://dx.doi.org/10.1021/ic010210s] [PMID: 11487331]
[80]
Tinoco, A.D.; Thomas, H.R.; Incarvito, C.D.; Saghatelian, A.; Valentine, A.M. Cytotoxicity of a Ti(IV) compound is independent of serum proteins. Proc. Natl. Acad. Sci. USA, 2012, 109(13), 5016-5021.
[http://dx.doi.org/10.1073/pnas.1119303109] [PMID: 22411801]
[81]
Glasner, H.; Meker, S.; Tshuva, E.Y. Cationic phenolato titanium (IV) complexes of enhanced solubility as active and biologically accessible anti-tumor compounds. J. Organomet. Chem., 2015, 788, 33-35.
[http://dx.doi.org/10.1016/j.jorganchem.2015.04.023]
[82]
Tzubery, A.; Tshuva, E.Y. Cytotoxic titanium (IV) complexes of Salalen-based ligands. Eur. J. Inorg. Chem., 2017, 2017(12), 1695-1705.
[http://dx.doi.org/10.1002/ejic.201601200]
[83]
Tzubery, A.; Tshuva, E.Y. Cytotoxicity and hydrolysis of trans-Ti (IV) complexes of salen ligands: Structure-activity relationship studies. Inorg. Chem., 2012, 51(3), 1796-1804.
[http://dx.doi.org/10.1021/ic202092u] [PMID: 22220885]
[84]
Tzubery, A.; Tshuva, E.Y. Trans titanium (IV) complexes of salen ligands exhibit high antitumor activity. Inorg. Chem., 2011, 50(17), 7946-7948.
[http://dx.doi.org/10.1021/ic201296h] [PMID: 21797239]
[85]
Tzubery, A.; Melamed-Book, N.; Tshuva, E.Y. Fluorescent antitumor titanium(IV) salen complexes for cell imaging. Dalton Trans., 2018, 47(11), 3669-3673.
[http://dx.doi.org/10.1039/C7DT04828A] [PMID: 29451281]
[86]
Meker, S.; Braitbard, O.; Margulis-Goshen, K.; Magdassi, S.; Hochman, J.; Tshuva, E. Highly stable tetra-phenolato titanium(IV) agent formulated into nanoparticles demonstrates anti-tumoral activity and selectivity. Molecules, 2015, 20(10), 18526-18538.
[http://dx.doi.org/10.3390/molecules201018526] [PMID: 26473816]
[87]
Ganot, N.; Briaitbard, O.; Gammal, A.; Tam, J.; Hochman, J.; Tshuva, E.Y. In vivo anticancer activity of a nontoxic inert phenolato titanium complex: High efficacy on solid tumors alone and combined with platinum drugs. ChemMedChem, 2018, 13(21), 2290-2296.
[http://dx.doi.org/10.1002/cmdc.201800551] [PMID: 30203598]
[88]
Nahari, G.; Hoffman, R.E.; Tshuva, E.Y. From medium to endoplasmic reticulum: Tracing anticancer phenolato titanium (IV) complex by 19F NMR detection. J. Inorg. Biochem., 2021, 221, 111492.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111492] [PMID: 34051630]
[89]
Shpilt, Z.; Tshuva, E.Y. Binding of the anticancer Ti (IV) complex phenolaTi to serum proteins: Thermodynamic and kinetic aspects. J. Inorg. Biochem., 2022, 232, 111817.
[http://dx.doi.org/10.1016/j.jinorgbio.2022.111817] [PMID: 35421765]
[90]
Miller, M.; Mellul, A.; Braun, M.; Sherill-Rofe, D.; Cohen, E.; Shpilt, Z.; Unterman, I.; Braitbard, O.; Hochman, J.; Tshuva, E.Y.; Tabach, Y. Titanium tackles the endoplasmic reticulum: A first genomic study on a titanium anticancer metallodrug. iScience, 2020, 23(7), 101262-101273.
[http://dx.doi.org/10.1016/j.isci.2020.101262] [PMID: 32585595]
[91]
Ganot, N.; Redko, B.; Gellerman, G.; Tshuva, E.Y. Anti-proliferative activity of the combination of salan Ti(IV) complexes with other organic and inorganic anticancer drugs against HT-29 and NCI-H1229 cells: Synergism with cisplatin. RSC Advances, 2015, 5(11), 7874-7879.
[http://dx.doi.org/10.1039/C4RA13484B]
[92]
Grützke, M.; Zhao, T.; Immel, T.A.; Huhn, T. Heptacoordinate heteroleptic Salan (ONNO) and thiosalan (OSSO) titanium (IV) complexes: Investigation of stability and cytotoxicity. Inorg. Chem., 2015, 54(14), 6697-6706.
[http://dx.doi.org/10.1021/acs.inorgchem.5b00690] [PMID: 26151574]
[93]
Zhao, T.; Wang, P.; Ji, M.; Li, S.; Yang, M.; Pu, X. Post-ssynthetic modification research of Salan titanium bis-chelates via Sonogashira reaction. Huaxue Xuebao, 2021, 79(11), 1385-1393.
[http://dx.doi.org/10.6023/A21060282]
[94]
Chaple, I.F.; Lapi, S.E. Production and use of the first-row transition metal PET radionuclides 43,44Sc, 52Mn, and 45Ti. J. Nucl. Med., 2018, 59(11), 1655-1659.
[http://dx.doi.org/10.2967/jnumed.118.213264] [PMID: 30262514]
[95]
Severin, G.W.; Nielsen, C.H.; Jensen, A.I.; Fonslet, J.; Kjær, A.; Zhuravlev, F. Bringing radiotracing to titanium-based antineoplastics: solid phase radiosynthesis, PET and ex-vivo evaluation of antitumor agent [45Ti](salan)Ti(dipic). J. Med. Chem., 2015, 58(18), 7591-7595.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01167] [PMID: 26312993]
[96]
Søborg Pedersen, K.; Baun, C.; Michaelsen Nielsen, K.; Thisgaard, H.; Ingemann Jensen, A.; Zhuravlev, F. Design, synthesis, computational, and preclinical evaluation of natTi/45Ti-Labeled urea-based glutamate PSMA ligand. Molecules, 2020, 25(5), 1104.
[http://dx.doi.org/10.3390/molecules25051104] [PMID: 32131399]
[97]
Zhao, T.; Wang, P.; Liu, N.; Li, S.; Yang, M.; Yang, Z. Facile synthesis of [ONON] type titanium(IV) bis-chelated complexes in alcoholic solvents and evaluation of anti-tumor activity. J. Inorg. Biochem., 2022, 235, 111925.
[http://dx.doi.org/10.1016/j.jinorgbio.2022.111925] [PMID: 35839681]
[98]
Schneider, F.; Zhao, T.; Huhn, T. Cytotoxic heteroleptic heptacoordinate salan zirconium(IV)-bis-chelates - synthesis, aqueous stability and X-ray structure analysis. Chem. Commun., 2016, 52(66), 10151-10154.
[http://dx.doi.org/10.1039/C6CC05359A] [PMID: 27459052]
[99]
Wang, L.Y.; Lee, M.S. A review on the aqueous chemistry of Zr (IV) and Hf (IV) and their separation by solvent extraction. J. Ind. Eng. Chem., 2016, 39, 1-9.
[http://dx.doi.org/10.1016/j.jiec.2016.06.004]
[100]
Lord, R.M.; Mannion, J.J.; Hebden, A.J.; Nako, A.E.; Crossley, B.D.; McMullon, M.W.; Janeway, F.D.; Phillips, R.M.; McGowan, P.C. Mechanistic and cytotoxicity studies of group IV β-diketonate complexes. ChemMedChem, 2014, 9(6), 1136-1139.
[http://dx.doi.org/10.1002/cmdc.201402019] [PMID: 24782045]
[101]
Köpf-Maier, P.; Hesse, B.; Köpf, H. Tumor inhibition by metallocenes: Effect of titanocene, zirconocene, and hafnocene dichlorides on Ehrlich ascites tumor in mice (author’s transl). J. Cancer Res. Clin. Oncol., 1980, 96(1), 43-51.
[http://dx.doi.org/10.1007/BF00412896] [PMID: 7188941]
[102]
Zhao, T.; Wang, P.; Liu, N.; Zhao, W.; Yang, M.; Li, S.; Yang, Z.; Sun, B.; Huhn, T. Synthesis and X-ray structure analysis of cytotoxic heptacoordinated Salan hafnium(IV) complexes stabilized with 2,6-dipicolinic acid. J. Inorg. Biochem., 2023, 240, 112094.
[http://dx.doi.org/10.1016/j.jinorgbio.2022.112094] [PMID: 36525714]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy