Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Screening of Selected Cultivars of Sweet Sorghum for Phytochemicals and In vitro Evaluation of Their Antihyperglycemic and Cytotoxic Activity

Author(s): Sirisha Kurella and Uma Addepally*

Volume 19, Issue 10, 2023

Published on: 27 June, 2023

Article ID: e240523217299 Pages: 11

DOI: 10.2174/1573407219666230524162346

Price: $65

Abstract

Background: Sorghum, a wonder millet, is well known for its beneficial phytochemical profiles. In comparative terms, juice from sweet sorghum has better commercial potential as syrup in several food-based applications. Various sweet sorghum varieties differs in their profile of various phytochemicals, which can impact the commercial potential of sweet sorghum juice.

Methods: Our previous works on cultivars developed at ICAR-IIMR were screened for phytochemical, sugar and mineral profile. To give a holistic view of the phytochemical profile of sweet sorghum varieties, the present study is attempted to evaluate the total phenolic and flavonoid content, antihyperglycaemic and cytotoxic profile of the components present in the varieties CSV19SS, SSV84, SSV74. The phytochemical footprint of sweet sorghum juice was studied through HRLCMS.

Results: The results showed ethyl acetate extract of SSV84 having potential antihyperglycemic effects with an IC50 of 22.156 ± 0.9 μg/ml (α-glucosidase) and 0.070 ± 0.02 mg/ml (α-amylase) with a comparatively higher phenolic (232.6 ± 1 mg GAE/g) and flavonoid (138.18 ± 0.9 mg QE/g) content. The chloroform extract of SSV 84 showed a higher cytotoxic effect at an IC50 of 165.502 ± 7 μg/ml (HeLa cells) and 237.895 ± 15 μg/ml (Hep G2 cells). HRLCMS profile of SSV 84 showed the presence of long-chain fatty acids in hexane extract. Anthraquinones, carotenoids, xanthophylls, cinnamic acid and derivatives, and isoflavones were present in chloroform extract, while Ethyl acetate extract was rich in phenolic acids and also consisted of coumarins, quinones, alkaloids, and terpenoids.

Conclusion: The high cytotoxic and antihyperglycemic activities of extracts can be attributed to the presence of these phytochemicals.

Keywords: α-amylase, α-glucosidase, cytotoxicity, HRLCMS, phytochemicals, sweet sorghum juice.

Graphical Abstract
[1]
Sharma, M.; Majumdar, P.K. Occupational lifestyle diseases: An emerging issue. Indian J. Occup. Environ. Med., 2009, 13(3), 109-112.
[http://dx.doi.org/10.4103/0019-5278.58912] [PMID: 20442827]
[2]
Singh, S.K.; Biswas, A.; Puri, P. An epidemiology of self-reported cancer in India: A decomposition analysis based on women in late-reproductive age-group. Clin. Epidemiol. Glob. Health, 2021, 9, 332-337.
[http://dx.doi.org/10.1016/j.cegh.2020.10.006]
[3]
Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of diabetes mellitus and cardiovascular disease. Curr. Cardiol. Rep., 2019, 21(4), 21.
[http://dx.doi.org/10.1007/s11886-019-1107-y] [PMID: 30828746]
[4]
Preventing noncommunicable diseases in the workplace through diet and physical activity: WHO/World Economic Forum report ofa joint event. 2008. Available from: https://apps.who.int/iris/handle/10665/43825
[5]
Mohan, V.; Pradeepa, R. Epidemiology of type 2 diabetes in India. Indian J. Ophthalmol., 2021, 69(11), 2932-2938.
[http://dx.doi.org/10.4103/ijo.IJO_1627_21] [PMID: 34708726]
[6]
Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[7]
Wing, R.R.; Bolin, P.; Brancati, F.L.; Bray, G.A.; Clark, J.M.; Coday, M.; Crow, R.S.; Curtis, J.M.; Egan, C.M.; Espeland, M.A.; Evans, M.; Foreyt, J.P.; Ghazarian, S.; Gregg, E.W.; Harrison, B.; Hazuda, H.P.; Hill, J.O.; Horton, E.S.; Hubbard, V.S.; Jakicic, J.M.; Jeffery, R.W.; Johnson, K.C.; Kahn, S.E.; Kitabchi, A.E.; Knowler, W.C.; Lewis, C.E.; Maschak-Carey, B.J.; Montez, M.G.; Murillo, A.; Nathan, D.M.; Patricio, J.; Peters, A.; Pi-Sunyer, X.; Pownall, H.; Reboussin, D.; Regensteiner, J.G.; Rickman, A.D.; Ryan, D.H.; Safford, M.; Wadden, T.A.; Wagenknecht, L.E.; West, D.S.; Williamson, D.F.; Yanovski, S.Z. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med., 2013, 369(2), 145-154.
[http://dx.doi.org/10.1056/NEJMoa1212914] [PMID: 23796131]
[8]
American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care, 2013, 36(Suppl. 1), S67-S74.
[PMID: 23264425]
[9]
Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; Dhanjal, J.K.; Dewanjee, S.; Vallamkondu, J. Pérez de la Lastra o, J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis., 2022.
[10]
Torino, F.; Barnabei, A.; Paragliola, R.; Baldelli, R.; Appetecchia, M.; Corsello, S.M. Thyroid dysfunction as an unintended side effect of anticancer drugs. Thyroid, 2013, 23(11), 1345-1366.
[http://dx.doi.org/10.1089/thy.2013.0241] [PMID: 23750887]
[11]
Davinelli, S.; Scapagnini, G. The pharma-nutritional role of antioxidant phytochemicals in health and disease. Antioxidants, 2022, 11(6), 1081.
[http://dx.doi.org/10.3390/antiox11061081] [PMID: 35739978]
[12]
Ameh, S.J.; Obodozie, O.O.; Inyang, U.S.; Abubakar, M.S.; Garba, M. Current phytotherapy-a perspective on the science and regulation of herbal medicine. J. Med. Plants Res., 2010, 4(2), 72-081.
[13]
Adams, L.S.; Phung, S.; Yee, N.; Seeram, N.P.; Li, L.; Chen, S. Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res., 2010, 70(9), 3594-3605.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3565] [PMID: 20388778]
[14]
Yagasaki, K.; Muller, C.J.F. The effect of phytochemicals and food bioactive compounds on diabetes. Int. J. Mol. Sci., 2022, 23(14), 7765.
[http://dx.doi.org/10.3390/ijms23147765] [PMID: 35887112]
[15]
Kocyigit, A.; Guler, E.M.; Dikilitas, M. Role of antioxidant phytochemicals in prevention, formation and treatment of cancer. In: Reactive Oxygen Species (ROS) in Living Cells; Filip, C.; Albu, E., Eds.; IntechOpen, 2017.
[16]
Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 10, 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[17]
Bayet-Robert, M.; Kwiatowski, F.; Leheurteur, M.; Gachon, F.; Planchat, E.; Abrial, C.; Mouret-Reynier, M.A.; Durando, X.; Barthomeuf, C.; Chollet, P. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol. Ther., 2010, 9(1), 8-14.
[http://dx.doi.org/10.4161/cbt.9.1.10392] [PMID: 19901561]
[18]
Vanamala, J.K.P.; Massey, A.R.; Pinnamaneni, S.R.; Reddivari, L.; Reardon, K.F. Grain and sweet sorghum (Sorghum bicolor L. Moench) serves as a novel source of bioactive compounds for human health. Crit. Rev. Food Sci. Nutr., 2018, 58(17), 2867-2881.
[http://dx.doi.org/10.1080/10408398.2017.1344186] [PMID: 28662339]
[19]
Awika, J.M.; Rooney, L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 2004, 65(9), 1199-1221.
[http://dx.doi.org/10.1016/j.phytochem.2004.04.001] [PMID: 15184005]
[20]
Kumari, P.K.; Umakanth, A.V.; Narsaiah, T.B.; Uma, A. Exploring anthocyanins, antioxidant capacity and α-glucosidase inhibition in bran and flour extracts of selected sorghum genotypes. Food Biosci., 2021, 41, 100979.
[http://dx.doi.org/10.1016/j.fbio.2021.100979]
[21]
Eggleston, G.; Boue, S.; Bett-Garber, K.; Verret, C.; Triplett, A.; Bechtel, P. Phenolic contents, antioxidant potential and associated colour in sweet sorghum syrups compared to other commercial syrup sweeteners. J. Sci. Food Agric., 2021, 101(2), 613-623.
[http://dx.doi.org/10.1002/jsfa.10673] [PMID: 32683700]
[22]
Sirisha, K.; Uma, A.; Umakanth, A.V. Bioactive components and beneficial nutritive properties of sweet sorghum juice from Indian cultivars. Ann. Phytomed., 2022, 11(1), 606-612.
[23]
Kupchan, S.M.; Tsou, G.; Sigel, C.W. Datiscacin, a novel cytotoxic cucurbitacin 20-acetate from Datisca glomerata. J. Org. Chem., 1973, 38(7), 1420-1421.
[http://dx.doi.org/10.1021/jo00947a041] [PMID: 4694234]
[24]
Emran, T.B.; Rahman, M.A.; Uddin, M.M.N.; Rahman, M.M.; Uddin, M.Z.; Dash, R.; Layzu, C. Effects of organic extracts and their different fractions of five Bangladeshi plants on in vitro thrombolysis. BMC Complement. Altern. Med., 2015, 15(1), 128.
[http://dx.doi.org/10.1186/s12906-015-0643-2] [PMID: 25902818]
[25]
Evans, W.C.; Trease, E.C.; Evans, D. Trease and Evans’ Pharmacognosy, 15th ed; WB Saunders: Philadelphia, Pa, USA, 2002.
[26]
Sofowora, A. Medical Plants and Traditional Medicine in Africa, 5th ed; Spectrum Books: Ibadan, Nigeria, 2006.
[27]
Xiong, Y.; Zhang, P.; Luo, J.; Johnson, S.; Fang, Z. Effect of processing on the phenolic contents, antioxidant activity and volatile compounds of sorghum grain tea. J. Cereal Sci., 2019, 85, 6-14.
[http://dx.doi.org/10.1016/j.jcs.2018.10.012]
[28]
Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64(4), 555-559.
[http://dx.doi.org/10.1016/S0308-8146(98)00102-2]
[29]
McCue, P.P.; Shetty, K. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac. J. Clin. Nutr., 2004, 13(1), 101-106.
[PMID: 15003922]
[30]
Kazeem, M.I.; Adamson, J.O.; Ogunwande, I.A. Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed Res. Int., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/527570] [PMID: 24455701]
[31]
Valter, R.M.; Lombardi, I.; Carrera, R. In vitro screening for cytotoxic activity of herbal extracts. Evid. Based Complement. Alternat. Med., 2017, 2017, 2675631.
[32]
Pranita, V.; Sandeep, T.; Giribala, M.; Bondle, R. High resolution liquid chromatography mass spectrometry-a tool for structural elucidation of seed metabolites of Abrus precatorius (L.). Carib. J. Sci. Tech., 2019, 7(1), 8-014.
[33]
Kim, J.S.; Hyun, T.K.; Kim, M.J. The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on α-glucosidase and α-amylase activities. Food Chem., 2011, 124(4), 1647-1651.
[http://dx.doi.org/10.1016/j.foodchem.2010.08.020]
[34]
Feng, Y; Fan, X; Zhang, S; Wu, T; Bai, L; Wang, H Effects of variety and origin on the metabolic and texture characteristics of quinoa seeds based on ultrahigh-performance liquid chromatography coupled with high-field quadrupole-orbitrap high-resolution mass spectrometry., Food Res. Int., 2022, 162((Pt A),), 11693.
[http://dx.doi.org/10.1016/j.foodres.2022.111693]
[35]
Daou, M.; Elnaker, N.A.; Ochsenkühn, M.A.; Amin, S.A.; Yousef, A.F.; Yousef, L.F. In vitro α-glucosidase inhibitory activity of Tamarix nilotica shoot extracts and fractions. PLoS One, 2022, 17(3), e0264969.
[http://dx.doi.org/10.1371/journal.pone.0264969] [PMID: 35286313]
[36]
Keeratichamroen, S.; Lirdprapamongkol, K.; Thongnest, S.; Boonsombat, J.; Chawengrum, P.; Sornprachum, T.; Sirirak, J.; Verathamjamras, C.; Ornnork, N.; Ruchirawat, S.; Svasti, J. JAK2/STAT3 mediated dose dependent cytostatic and cytotoxic effects of sesquiterpene lactones from Gymnanthemum extensum on A549 human lung carcinoma cells. Oncol. Rep., 2021, 47(1), 6.
[http://dx.doi.org/10.3892/or.2021.8217] [PMID: 34738622]
[37]
Gorina, S.S.; Mukhtarova, L.S.; Iljina, T.M.; Toporkova, Y.Y.; Grechkin, A.N. Detection of divinyl ether synthase CYP74H2 biosynthesizing (11Z)-etheroleic and (1ʹZ)-colnelenic acids in asparagus (Asparagus officinalis L.). Phytochemistry, 2022, 200, 113212.
[http://dx.doi.org/10.1016/j.phytochem.2022.113212] [PMID: 35460712]
[38]
Back, T.G.; Pharis, R.P. Structure-activity studies of brassinosteroids and the search for novel analogues and mimetics with improved bioactivity. J. Plant Growth Regul., 2003, 22(4), 350-361.
[http://dx.doi.org/10.1007/s00344-003-0057-0] [PMID: 14676967]
[39]
Chen, Q.; Wang, X.; Yuan, X.; Shi, J.; Zhang, C.; Yan, N.; Jing, C. Comparison of phenolic and flavonoid compound profiles and antioxidant and α-glucosidase inhibition properties of cultivated soybean (Glycine max) and wild soybean (Glycine soja). Plants, 2021, 10(4), 813.
[http://dx.doi.org/10.3390/plants10040813] [PMID: 33924154]
[40]
Rampogu, S.; Gajula, R.G.; Lee, K.W. A comprehensive review on chemotherapeutic potential of galangin. Biomed. Pharmacother., 2021, 141.
[41]
Asgharzade, S.; Khorrami, M.B.; Forouzanfar, F. Neuroprotective effect of herniarin following transient focal cerebral ischemia in rats. Metab. Brain Dis., 2021, 36(8), 2505-2510.
[http://dx.doi.org/10.1007/s11011-021-00841-1] [PMID: 34519909]
[42]
Yang, S.; Ma, C.; Wu, H. zhang, H.; Yuan, F.; Yang, G.; Yang, Q.; Jia, L.; Liang, Z.; Kang, L. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacol. Res., 2020, 153(104678), 104678.
[http://dx.doi.org/10.1016/j.phrs.2020.104678] [PMID: 32014572]
[43]
Küpeli Akkol, E.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers., 2020, 12(7), 1959.
[http://dx.doi.org/10.3390/cancers12071959] [PMID: 32707666]
[44]
Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep., 2019, 24(e00370), e00370.
[http://dx.doi.org/10.1016/j.btre.2019.e00370] [PMID: 31516850]
[45]
Mustafa, A.M.; Eldahmy, S.I.; Caprioli, G.; Bramucci, M.; Quassinti, L.; Lupidi, G.; Beghelli, D.; Vittori, S.; Maggi, F. Chemical composition and biological activities of the essential oil from Pulicaria undulata (L.) C. A. Mey. growing wild in Egypt. Nat. Prod. Res., 2020, 34(16), 2358-2362.
[http://dx.doi.org/10.1080/14786419.2018.1534107] [PMID: 30394109]
[46]
Sidhu, A.; Singla, N.; Lonare, M.; Mahal, A.K. Effect of quinestrol on body weight, vital organs, biochemicals and genotoxicity in adult male lesser bandicoot rat, Bandicota bengalensis. Pestic. Biochem. Physiol., 2020, 165, 104544.
[http://dx.doi.org/10.1016/j.pestbp.2020.02.010] [PMID: 32359538]
[47]
Nezi, P.; Cicaloni, V.; Tinti, L.; Salvini, L.; Iannone, M.; Vitalini, S.; Garzoli, S. Metabolomic and proteomic profile of dried hop inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS. Separations, 2022, 9(8), 204.
[http://dx.doi.org/10.3390/separations9080204]
[48]
Naidoo, D.; Roy, A.; Slavětínská, L.P.; Chukwujekwu, J.C.; Gupta, S.; Van Staden, J. New role for crinamine as a potent, safe and selective inhibitor of human monoamine oxidase B: In vitro and in silico pharmacology and modeling. J. Ethnopharmacol., 2020, 248, 112305.
[http://dx.doi.org/10.1016/j.jep.2019.112305] [PMID: 31639490]
[49]
Kciuk, M.; Marciniak, B.; Kontek, R. Irinotecan-still an important player in cancer chemotherapy: A comprehensive overview. Int. J. Mol. Sci., 2020, 21(14), 4919.
[http://dx.doi.org/10.3390/ijms21144919] [PMID: 32664667]
[50]
Frattaruolo, L.; Carullo, G.; Brindisi, M.; Mazzotta, S.; Bellissimo, L.; Rago, V.; Curcio, R.; Dolce, V.; Aiello, F.; Cappello, A.R. Antioxidant and anti-inflammatory activities of flavanones from Glycyrrhiza glabra L. (licorice) leaf phytocomplexes: Identification of licoflavanone as a modulator of NF-kB/MAPK pathway. Antioxidants, 2019, 8(6), 186.
[http://dx.doi.org/10.3390/antiox8060186] [PMID: 31226797]
[51]
Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 2019, 24(13), 2471.
[http://dx.doi.org/10.3390/molecules24132471] [PMID: 31284397]
[52]
Dhawan, M.; Parmar, M.; Sharun, K.; Tiwari, R.; Bilal, M.; Dhama, K. Medicinal and therapeutic potential of with anolides from With aniasomnifera against COVID-19. J. Appl. Pharm. Sci., 2021, 11(04), 6-013.
[53]
Shen, Y.; Zhang, X.; Prinyawiwatkul, W.; Xu, Z. Phytochemicals in sweet sorghum (Dura) and their antioxidant capabilities against lipid oxidation. J. Agric. Food Chem., 2013, 61(51), 12620-12624.
[http://dx.doi.org/10.1021/jf4040157] [PMID: 24295015]
[54]
Devi, P.S.; Kumar, M.S.; Das, S.M. Evaluation of antiproliferative activity of red sorghum bran anthocyanin on a human breast cancer cell line (mcf-7). Int. J. Breast Cancer, 2011, 2011, 1-6.
[http://dx.doi.org/10.4061/2011/891481] [PMID: 22312562]
[55]
Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Compr. Rev. Food Sci. Food Saf., 2019, 18(6), 2025-2046.
[http://dx.doi.org/10.1111/1541-4337.12506] [PMID: 33336966]
[56]
Sharma, M.; Sangwan, R.S.; Khatkar, B.S.; Singh, S.P. Development of a prebiotic oligosaccharide rich functional beverage from sweet sorghum stalk biomass. Waste Biomass Valoriz., 2021, 12(4), 2001-2012.
[http://dx.doi.org/10.1007/s12649-020-01156-5]
[57]
Asikin, Y.; Wada, K.; Imai, Y.; Kawamoto, Y.; Mizu, M.; Mutsuura, M.; Takahashi, M. Compositions, taste characteristics, volatile profiles, and antioxidant activities of sweet sorghum (Sorghum bicolor L.) and sugarcane (Saccharum officinarum L.) syrups. J. Food Meas. Charact., 2018, 12(2), 884-891.
[http://dx.doi.org/10.1007/s11694-017-9703-2]
[58]
Kulkarni, D.B.; Deshpande, H.W.; Sakhale, B.K.; Pawar, V.S. Sweet sorghum syrup as natural sweetener for glazed tamarind candy. Int. J. Nurs. Sci., 2018, 3(2), 10-23.
[59]
Kulkarni, D.B.; Deshpande, H.W. Sakhale, BK Sweet Sorghum Syrup-an alternative sweetener for preparation of sesame chikki. Nutrition and Packaging, 2018, 5, 7-13.
[60]
Laaraj, N.; Bouhrim, M.; Kharchoufa, L.; Tiji, S.; Bendaha, H.; Addi, M.; Drouet, S.; Hano, C.; Lorenzo, J.M.; Bnouham, M.; Mimouni, M. Phytochemical analysis, α-glucosidase and α-amylase inhibitory activities and acute toxicity studies of extracts from pomegranate (Punica granatum) bark, a valuable agro-industrial by-product. Foods, 2022, 11(9), 1353.
[61]
Chelladurai, G.R.M.; Chinnachamy, C. Alpha amylase and Alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis. Braz. J. Pharm. Sci., 2018, 54(1)
[http://dx.doi.org/10.1590/s2175-97902018000117151]
[62]
Devi, A.; Mallikarjuna, V. In vitro antimicrobial and antidiabetic activity of leaf extracts of Schreberaswietenioides and Homalium zeylanicum. Int. J. Life Sci. Pharma Res., 2016, 6(3), 1-7.
[63]
Šola, I.; Poljuha, D.; Mikulic-Petkovsek, M.; Davosir, D.; Pinterić, M.; Bilić, J.; Veberic, R.; Hudina, M.; Rusak, G. Biopotential of underutilized Rosaceae inflorescences: LC-DAD-MS phytochemical profiles associated with antioxidant, antidiabetic, anti-inflammatory and antiproliferative activity in vitro. Plants, 2022, 11(3), 271.
[http://dx.doi.org/10.3390/plants11030271] [PMID: 35161257]
[64]
Vignesh, A; Selvakumar, S; Vasanth, K. Comparative LC-MS analysis of bioactive compounds, antioxidants and antibacterial activity from leaf and callus extracts of Saraca asoca., Phyto medicine Plus, 2022, 2(1)
[http://dx.doi.org/10.1016/j.phyplu.2021.100167]
[65]
Punit, R.; Bhatt, B.; Pandya, U.D.; Patel, C.M.; Harshad, B.; Patel, B.B. Antidiabetic, antioxidant and anti-inflammatory activity of medicinal plants collected from nearby area of Junagadh. Gujarat Ann Phytomed., 2019, 8(2), 75-84.
[66]
Vana Rynjah, C.; Devi, N.; Nashemankhongthaw, D.; Syiem, S. Evaluation of the antidiabetic property of aqueous leaves extract of Zanthoxylum armatum DC using in vivo and in vitro approaches. J. Tradit. Complement. Med., 2018, 8(1), 1.
[PMID: 29321982]
[67]
Kim, J.; Park, Y. Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutr. Metab., 2012, 9(1), 106.
[http://dx.doi.org/10.1186/1743-7075-9-106] [PMID: 23186010]
[68]
Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of ALPHA-Glucosidase and ALPHA-Amylase by flavonoids. J. Nutr. Sci. Vitaminol., 2006, 52(2), 149-153.
[http://dx.doi.org/10.3177/jnsv.52.149] [PMID: 16802696]
[69]
Dykes, L.; Rooney, L.W.; Waniska, R.D.; Rooney, W.L. Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J. Agric. Food Chem., 2005, 53(17), 6813-6818.
[http://dx.doi.org/10.1021/jf050419e] [PMID: 16104804]
[70]
Awika, J.M.; McDonough, C.M.; Rooney, L.W. Decorticating sorghum to concentrate healthy phytochemicals. J. Agric. Food Chem., 2005, 53(16), 6230-6234.
[http://dx.doi.org/10.1021/jf0510384] [PMID: 16076098]
[71]
Karle, P.P.; Dhawale, S.C.; Mandade, R.J.; Navghare, V.V. Screening of Manilkara zapota (L) P. Royen stem bark ethanolic extract for in vitro α-glucosidase inhibition, preliminary antidiabetic effects, and improvement of diabetes and its complications in alloxan-induced diabetes in Wistar rats. Bull. Natl. Res. Cent., 2022, 46(1), 110.
[http://dx.doi.org/10.1186/s42269-022-00783-3]
[72]
Klaunig, J.E.; Kamendulis, L.M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol., 2004, 44(1), 239-267.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121851] [PMID: 14744246]
[73]
Mahfuz, A; Salam, FBA; Deepa, KN Hasan, AHMN Characterization of in-vitro antioxidant, cytotoxic, thrombolytic and membrane stabilizing potential of different extracts of Cheilanthes tenuifoliaand stigmasterol isolation from n-hexane extract. Clin Phytosci., 2019, 5(1)
[74]
Sagbo, IJ; van de Venter, M; Koekemoer, T; Bradley, G In vitro antidiabetic activity and mechanism of action of Brachylaena elliptica (Thunb.) DC. Evid. Based Complement and Alternat. Med. eCAM, 2018, 4170372.
[75]
Setyorini, D.; Antarlina, S.S. Secondary metabolites in sorghum and its characteristics. Food Sci. Technol., 2022, 42, e49822.
[http://dx.doi.org/10.1590/fst.49822]
[76]
Nnamani, D.O.; Aleke, P.C.; Onyekere, P.F. Sorghum by-products as sources of nutraceuticals. In: Food and agricultural byproducts as important source of valuable nutraceuticals; Egbuna, C.; Sawicka, B.; Khan, J., Eds.; Springer: Cham, 2022.
[http://dx.doi.org/10.1007/978-3-030-98760-2_14]
[77]
Velu, G.; Palanichamy, V.; Rajan, A.P. Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. In: Bioorganic phase in natural food: an overview; Roopan, S.; Madhumitha, G., Eds.; Springer: Cham, 2018.
[http://dx.doi.org/10.1007/978-3-319-74210-6_8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy