Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Biginelli Reaction: A Multi-Component Type of Reaction and Synthetic Advancement in the Synthesis of Bioactive Dihydropyrimidinone Derivatives

Author(s): Ramesh Ambatwar, Vaibhav Gupta, Sumit Kumar and Gopal L. Khatik*

Volume 21, Issue 8, 2024

Published on: 07 July, 2023

Page: [811 - 832] Pages: 22

DOI: 10.2174/1570193X20666230601093704

Price: $65

Abstract

Background: In synthetic and medicinal chemistry, multi-component reactions (MCRs) are considered an essential tool in synthesizing bioactive heterocyclic scaffolds. These reactions have been strategically used in drug discovery and development because of ease and economy.

Objective: The current manuscript aims to highlight the importance of the Biginelli reaction in the synthesis of diverse dihydropyrimidinones with medicinal applications.

Methods: We searched various keywords, including “multicomponent reaction”, “Biginelli reaction” and “dihydropyrimidinone” on “PubMed, PubChem, and google scholar” and collected the relevant articles for including the current work.

Results: Biginelli reaction involving ketoester, aldehyde, and urea is a high-yielding, atomeconomical, environmentally benign reaction for developing a library of new dihydropyrimidinones to drive the process of drug discovery. Several developments were achieved with modifications of synthetic techniques, including C-H activation, coupling, cycloaddition, etc. Inclusively, these modifications give access to a wide range of dihydropyrimidinones.

Conclusion: The current review provides an overview of recent developments in the Biginelli reaction and insights into synthesizing bioactive dihydropyrimidinones.

Keywords: Multi-component reaction, Biginelli reaction, dihydropyrimidinones, synthetic methodology, bioactive, heterocyclic scaffolds.

Graphical Abstract
[1]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[2]
Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J.N. Biginelli reaction: An overview. Tetrahedron Lett., 2016, 57(47), 5135-5149.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.047]
[3]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[4]
Freitas, E.F.; Souza, R.Y.; Passos, S.T.A.; Dias, J.A.; Dias, S.C.L.; Neto, B.A.D. Tuning the Biginelli reaction mechanism by the ionic liquid effect: The combined role of supported heteropolyacid derivatives and acidic strength. RSC Advances, 2019, 9(46), 27125-27135.
[http://dx.doi.org/10.1039/C9RA03336J] [PMID: 35528552]
[5]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[6]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[7]
Slobbe, P.; Ruijter, E.; Orru, R.V.A. Recent applications of multicomponent reactions in medicinal chemistry. Med. Chem. Comm., 2012, 3(10), 1189-1218.
[http://dx.doi.org/10.1039/c2md20089a]
[8]
Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol., 2010, 14(3), 371-382.
[http://dx.doi.org/10.1016/j.cbpa.2010.03.003] [PMID: 20392661]
[9]
Kazemizadeh, A.R.; Ramazani, A. Passerini multicomponent reaction of indane-1,2,3-trione: an efficient route for the one-pot synthesis of sterically congested 2,2-disubstituted indane-1,3-dione derivatives. J. Braz. Chem. Soc., 2009, 20(2), 309-312.
[http://dx.doi.org/10.1590/S0103-50532009000200016]
[10]
Ugi, I.; Fetzer, U.; Eholzer, U.; Knupfer, H.; Offermann, K. Isonitrile syntheses. Angew. Chem. Int. Ed. Engl., 1965, 4(6), 472-484.
[http://dx.doi.org/10.1002/anie.196504721]
[11]
Tron, G.C.; Minassi, A.; Appendino, G. Pietro biginelli: The man behind the reaction. Eur. J. Org. Chem., 2011, 2011(28), 5541-5550.
[http://dx.doi.org/10.1002/ejoc.201100661]
[12]
Suresh; Saini, A.; Kumar, D.; Sandhu, J.S. Multicomponent eco-friendly synthesis of 3,4-dihydropyrimidine-2-(1 H)-ones using an organocatalyst Lactic acid. Green Chem. Lett. Rev., 2009, 2(1), 29-33.
[http://dx.doi.org/10.1080/17518250902973833]
[13]
Lima, C.G.S.; Silva, S.; Gonçalves, R.H.; Leite, E.R.; Schwab, R.S.; Corrêa, A.G.; Paixão, M.W. Highly efficient and magnetically recoverable niobium nanocatalyst for the multicomponent biginelli reaction. Chem. Cat. Chem., 2014, 6(12), 3455-3463.
[http://dx.doi.org/10.1002/cctc.201402689]
[14]
Panda, S.; Khanna, P.; Khanna, L. Biginelli reaction: A green perspective. Curr. Org. Chem., 2012, 16, 507-520.
[http://dx.doi.org/10.2174/138527212799499859]
[15]
Atwal, K.S.; Rovnyak, G.C.; Kimball, S.D.; Floyd, D.M.; Moreland, S.; Swanson, B.N.; Gougoutas, J.Z.; Schwartz, J.; Smillie, K.M.; Malley, M.F. Dihydropyrimidine calcium channel blockers. II. 3-Substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines. J. Med. Chem., 1990, 33(9), 2629-2635.
[http://dx.doi.org/10.1021/jm00171a044] [PMID: 2391701]
[16]
Ding, D.; Zhao, C.G. Primary amine catalyzed biginelli reaction for the enantioselective synthesis of 3,4-Dihydropyrimidin-2(1H)-ones. Eur. J. Org. Chem., 2010, 2010(20), 3802-3005.
[http://dx.doi.org/10.1002/ejoc.201000448] [PMID: 21188287]
[17]
Cox, C.D.; Coleman, P.J.; Breslin, M.J.; Whitman, D.B.; Garbaccio, R.M.; Fraley, M.E.; Buser, C.A.; Walsh, E.S.; Hamilton, K.; Schaber, M.D.; Lobell, R.B.; Tao, W.; Davide, J.P.; Diehl, R.E.; Abrams, M.T.; South, V.J.; Huber, H.E.; Torrent, M.; Prueksaritanont, T.; Li, C.; Slaughter, D.E.; Mahan, E.; Fernandez-Metzler, C.; Yan, Y.; Kuo, L.C.; Kohl, N.E.; Hartman, G.D. Kinesin spindle protein (KSP) Inhibitors. 9. Discovery of (2 S)-4-(2,5-Difluorophenyl)- N -[(3 R, 4 S)-3-fluoro-1-methylpiperidin-4-yl]-2-(hydroxymethyl)- N -methyl-2-phenyl-2,5-dihydro-1 H -pyrrole-1-carboxamide (MK-0731) for the treatment of taxane-refractory cancer. J. Med. Chem., 2008, 51(14), 4239-4252.
[http://dx.doi.org/10.1021/jm800386y] [PMID: 18578472]
[18]
Hang, Z.; Zhu, J.; Lian, X.; Xu, P.; Yu, H.; Han, S. A highly enantioselective Biginelli reaction using self-assembled methanoproline-thiourea organocatalysts: Asymmetric synthesis of 6-isopropyl-3,4-dihydropyrimidines. Chem. Commun., 2016, 52(1), 80-83.
[http://dx.doi.org/10.1039/C5CC07880F] [PMID: 26498376]
[19]
China, R.B.; Nageswara, R.R.; Suman, P.; Yogeeswari, P.; Sriram, D.; Shaik, T.B.; Kalivendi, S.V. Synthesis, structure-activity relationship of novel substituted 4H-chromen-1,2,3,4-tetrahydro-pyrimidine-5-carboxylates as potential anti-mycobacterial and anticancer agents. Bioorg. Med. Chem. Lett., 2011, 21(10), 2855-2859.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.079] [PMID: 21507635]
[20]
Yousif, M.N.M.; Abdelhameed, R.M.; Abu-Hashem, A.A.; Yousif, N.M. Synthesis and biological activity of chromene derivatives, Chromeno[2,3-d][1,3]oxazine derivatives, and chromeno[2,3-d]pyrimidine derivatives. Egypt. J. Chem., 2023, 66, 113-120.
[21]
Abu-Hashem, A.A.; Al-Hussain, S.A. Design, synthesis of new 1,2,4-Triazole/1,3,4-Thiadiazole with Spiroindoline, Imidazo[4,5-b]quinoxaline and Thieno[2,3-d]pyrimidine from isatin derivatives as anticancer agents. Molecules, 2022, 27(3), 835.
[http://dx.doi.org/10.3390/molecules27030835] [PMID: 35164098]
[22]
Abu-Hashem, A.A.; El-Shazly, M. Synthesis of new quinoxaline, pyrimidine, and pyrazole furochromone derivatives as cytotoxic agents. Monatsh. Chem., 2017, 148(10), 1853-1863.
[http://dx.doi.org/10.1007/s00706-017-1960-6]
[23]
Abu-Hashem, A.A.; Badria, F.A. Design, synthesis of novel thiourea and pyrimidine derivatives as potential antitumor agents. J. Chin. Chem. Soc., 2015, 62(6), 506-512.
[http://dx.doi.org/10.1002/jccs.201400351]
[24]
Chiang, A.N.; Valderramos, J.C.; Balachandran, R.; Chovatiya, R.J.; Mead, B.P.; Schneider, C.; Bell, S.L.; Klein, M.G.; Huryn, D.M.; Chen, X.S.; Day, B.W.; Fidock, D.A.; Wipf, P.; Brodsky, J.L. Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum. Bioorg. Med. Chem., 2009, 17(4), 1527-1533.
[http://dx.doi.org/10.1016/j.bmc.2009.01.024] [PMID: 19195901]
[25]
Abu-Hashem, A.A.; Al-Hussain, S.A. The synthesis, antimicrobial activity, and molecular docking of new 1, 2, 4-Triazole, 1, 2, 4-Triazepine, quinoline, and pyrimidine scaffolds condensed to naturally occurring furochromones. Pharmaceuticals, 2022, 15(10), 1232.
[http://dx.doi.org/10.3390/ph15101232] [PMID: 36297343]
[26]
Abu-Hashem, A.A.; El-Shazly, M. Synthesis and antimicrobial evaluation of novel triazole, tetrazole, and spiropyrimidine-thiadiazole derivatives. Polycycl. Aromat. Compd., 2021, 41(3), 478-497.
[http://dx.doi.org/10.1080/10406638.2019.1598448]
[27]
Abu-Hashem, A.A.; Hussein, H.A.R.; Abu-zied, K.M. Synthesis of novel 1, 2, 4-triazolopyrimidines and their evaluation as antimicrobial agents. Med. Chem. Res., 2017, 26(1), 120-130.
[http://dx.doi.org/10.1007/s00044-016-1733-5]
[28]
Ameen Ali Abu-Hashem, S.A.A.-H. Molecules, 2020, 25, 220.
[http://dx.doi.org/10.3390/molecules25010220] [PMID: 31948127]
[29]
Abu-Hashem, A.A.; El-Shazly, M. Synthesis of new isoxazole-, Pyridazine-, pyrimidopyrazines and their anti-inflammatory and analgesic activity. Med. Chem., 2018, 14(4), 356-371.
[http://dx.doi.org/10.2174/1573406414666180112110947] [PMID: 29332598]
[30]
Patil, A.D.; Kumar, N.V.; Kokke, W.C.; Bean, M.F.; Freyer, A.J.; Brosse, C.D.; Mai, S.; Truneh, A.; Carte, B.; Carte, B.; Breen, A.L.; Hertzberg, R.P.; Johnson, R.K.; Westley, J.W.; Pottstj, B.C.M. Novel alkaloids from the sponge batzella sp.: Inhibitors of HIV gp120-Human CD4 Binding. J. Org. Chem., 1995, 60(5), 1182-1188.
[http://dx.doi.org/10.1021/jo00110a021]
[31]
Kaan, H.Y.K.; Ulaganathan, V.; Rath, O.; Prokopcová, H.; Dallinger, D.; Kappe, C.O.; Kozielski, F. Structural basis for inhibition of Eg5 by dihydropyrimidines: Stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol. J. Med. Chem., 2010, 53(15), 5676-5683.
[http://dx.doi.org/10.1021/jm100421n] [PMID: 20597485]
[32]
Gartner, M.; Sunder-Plassmann, N.; Seiler, J.; Utz, M.; Vernos, I.; Surrey, T.; Giannis, A. Development and biological evaluation of potent and specific inhibitors of mitotic Kinesin Eg5. ChemBioChem, 2005, 6(7), 1173-1177.
[http://dx.doi.org/10.1002/cbic.200500005] [PMID: 15912555]
[33]
Sarli, V.; Huemmer, S.; Sunder-Plassmann, N.; Mayer, T.U.; Giannis, A. Synthesis and biological evaluation of novel EG5 inhibitors. ChemBioChem, 2005, 6(11), 2005-2013.
[http://dx.doi.org/10.1002/cbic.200500168] [PMID: 16216042]
[34]
Prokopcová, H.; Dallinger, D.; Uray, G.; Kaan, H.Y.K.; Ulaganathan, V.; Kozielski, F.; Laggner, C.; Kappe, C.O. Structure-activity relationships and molecular docking of novel dihydropyrimidine-based mitotic Eg5 inhibitors. ChemMedChem, 2010, 5(10), 1760-1769.
[http://dx.doi.org/10.1002/cmdc.201000252] [PMID: 20737530]
[35]
Wan, J.P.; Pan, Y.J. Chemo-/regioselective synthesis of 6-unsubstituted dihydropyrimidinones, 1,3-thiazines and chromones via novel variants of Biginelli reaction. Chem. Commun., 2009, (19), 2768-2770.
[http://dx.doi.org/10.1039/b901112a] [PMID: 19532949]
[36]
De Souza, R.O.M.A.; da Penha, E.T.; Milagre, H.M.S.; Garden, S.J.; Esteves, P.M.; Eberlin, M.N.; Antunes, O.A.C. The three-component biginelli reaction: a combined experimental and theoretical mechanistic investigation. Chemistry, 2009, 15(38), 9799-9804.
[http://dx.doi.org/10.1002/chem.200900470] [PMID: 19670193]
[37]
Oliver Kappe, C. 100 years of the biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 49(32), 6937-6963.
[http://dx.doi.org/10.1016/S0040-4020(01)87971-0]
[38]
Alvim, H.G.O.; de Lima, T.B.; de Oliveira, H.C.B.; Gozzo, F.C.; de Macedo, J.L.; Abdelnur, P.V.; Silva, W.A.; Neto, B.A.D. Ionic liquid effect over the biginelli reaction under homogeneous and heterogeneous catalysis. ACS Catal., 2013, 3(7), 1420-1430.
[http://dx.doi.org/10.1021/cs400291t]
[39]
Ali, G.; Dangroo, N.A.; Raheem, S.; Naqvi, T.; Ara, T.; Rizvi, M.A. Photo-oxidation coupled kabachnik-fields and bigenelli reactions for direct conversion of benzyl alcohols to α-aminophosphonates and dihydropyrimidones. Acta Chim. Slov., 2020, 67(1), 195-202.
[http://dx.doi.org/10.17344/acsi.2019.5348] [PMID: 33558909]
[40]
Alvim, H.G.O.; Lima, T.B.; de Oliveira, A.L.; de Oliveira, H.C.B.; Silva, F.M.; Gozzo, F.C.; Souza, R.Y.; da Silva, W.A.; Neto, B.A.D. Facts, presumptions, and myths on the solvent-free and catalyst-free Biginelli reaction. What is catalysis for? J. Org. Chem., 2014, 79(8), 3383-3397.
[http://dx.doi.org/10.1021/jo5001498] [PMID: 24665975]
[41]
Shen, Z.L.; Xu, X.P.; Ji, S.J. Brønsted base-catalyzed one-pot three-component Biginelli-type reaction: an efficient synthesis of 4,5,6-triaryl-3,4-dihydropyrimidin-2(1H)-one and mechanistic study. J. Org. Chem., 2010, 75(4), 1162-1167.
[http://dx.doi.org/10.1021/jo902394y] [PMID: 20085235]
[42]
Litvić, M.; Večenaj, I.; Ladišić, Z.M.; Lovrić, M.; Vinković, V.; Filipan-Litvić, M. First application of hexaaquaaluminium(III) tetrafluoroborate as a mild, recyclable, non-hygroscopic acid catalyst in organic synthesis: A simple and efficient protocol for the multigram scale synthesis of 3,4-dihydropyrimidinones by Biginelli reaction. Tetrahedron, 2010, 66(19), 3463-3471.
[http://dx.doi.org/10.1016/j.tet.2010.03.024]
[43]
Kamal Raj, M.; Rao, H.S.P.; Manjunatha, S.G.; Sridharan, R.; Nambiar, S.; Keshwan, J.; Rappai, J.; Bhagat, S.; Shwetha, B.S.; Hegde, D.; Santhosh, U. A mechanistic investigation of Biginelli reaction under base catalysis. Tetrahedron Lett., 2011, 52(28), 3605-3609.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.011]
[44]
Raj, M.K.; Rao, H.S.P.; Manjunatha, S.G.; Sridharan, R.; Nambiar, S.; Keshwan, J.; Rappai, J.; Bhagat, S.; Shwetha, B.S.; Hegde, D.; Santhosh, U. Erratum: A mechanistic investigation of biginelli reaction under base catalysis (Tetrahedron Letters (2011) 52 (3605-3609)). Tetrahedron Lett., 2011, 52, 4806.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.062]
[45]
Godoi, M.N.; Costenaro, H.S.; Kramer, E.; Machado, P.S.; D’Oca, M.G.M.; Russowsky, D. Síntese do monastrol e novos compostos de Biginelli promovida por In(OTf)3. Quim. Nova, 2005, 28(6), 1010-1013.
[http://dx.doi.org/10.1590/S0100-40422005000600015]
[46]
Cepanec, I.; Litvić, M.; Filipan-Litvić, M.; Grüngold, I. Antimony(III) chloride-catalysed Biginelli reaction: A versatile method for the synthesis of dihydropyrimidinones through a different reaction mechanism. Tetrahedron, 2007, 63(48), 11822-11827.
[http://dx.doi.org/10.1016/j.tet.2007.09.045]
[47]
Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res., 2000, 33(12), 879-888.
[http://dx.doi.org/10.1021/ar000048h] [PMID: 11123887]
[48]
Alvim, H.G.O.; Pinheiro, D.L.J.; Carvalho-Silva, V.H.; Fioramonte, M.; Gozzo, F.C.; da Silva, W.A.; Amarante, G.W.; Neto, B.A.D. Combined role of the asymmetric counteranion-directed catalysis (ACDC) and ionic liquid effect for the enantioselective biginelli multicomponent reaction. J. Org. Chem., 2018, 83(19), 12143-12153.
[http://dx.doi.org/10.1021/acs.joc.8b02101] [PMID: 30160956]
[49]
Gong, L.Z.; Chen, X.H.; Xu, X.Y. Asymmetric organocatalytic Biginelli reactions: A new approach to quickly access optically active 3,4-dihydropyrimidin-2-(1H)-ones. Chemistry, 2007, 13(32), 8920-8926.
[http://dx.doi.org/10.1002/chem.200700840] [PMID: 17828720]
[50]
Krishna, B.; Payra, S.; Roy, S. Synthesis of dihydropyrimidinones via multicomponent reaction route over acid functionalized Metal-Organic framework catalysts. J. Colloid Interface Sci., 2022, 607(Pt 1), 729-741.
[http://dx.doi.org/10.1016/j.jcis.2021.09.031] [PMID: 34536933]
[51]
Bhattacharya, R.N.; Kundu, P.; Maiti, G. Antimony trichloride catalyzed three-component reaction of urea, aldehydes and cyclic enol ethers: A novel route to 4-arylhexahydrofuro[2,3-d]pyrimidin-2(3H)-ones. Tetrahedron Lett., 2011, 52(1), 26-28.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.064]
[52]
Paraskar, A.S.; Dewkar, G.K.; Sudalai, A. Cu(OTf)2: A reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2003, 44(16), 3305-3308.
[http://dx.doi.org/10.1016/S0040-4039(03)00619-1]
[53]
Girija, D.; Bhojya Naik, H.S.; Vinay Kumar, B.; Sudhamani, C.N.; Harish, K.N. Fe3O4 nanoparticle supported Ni(II) complexes: A magnetically recoverable catalyst for Biginelli reaction. Arab. J. Chem., 2019, 12(3), 420-428.
[http://dx.doi.org/10.1016/j.arabjc.2014.08.008]
[54]
Kuraitheerthakumaran, A.; Pazhamalai, S.; Gopalakrishnan, M. Microwave-assisted multicomponent reaction for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and their corresponding 2(1H)-thiones using lanthanum oxide as a catalyst under solvent-free conditions. Arab. J. Chem., 2016, 9, S461-S465.
[http://dx.doi.org/10.1016/j.arabjc.2011.06.005]
[55]
Ma, Y.; Qian, C.; Wang, L.; Yang, M. Lanthanide triflate catalyzed Biginelli reaction. one-pot synthesis of dihydropyrimidinones under solvent-free conditions. J. Org. Chem., 2000, 65(12), 3864-3868.
[http://dx.doi.org/10.1021/jo9919052] [PMID: 10864778]
[56]
Patel, A.; Patel, J. Nickel salt of phosphomolybdic acid as a bi-functional homogeneous recyclable catalyst for base free transformation of aldehyde into ester. RSC Advances, 2020, 10(37), 22146-22155.
[http://dx.doi.org/10.1039/D0RA04119J] [PMID: 35516618]
[57]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type — a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[58]
de Fátima, Â.; Braga, T.C.; Neto, L.S.; Terra, B.S.; Oliveira, B.G.F.; da Silva, D.L.; Modolo, L.V. A mini-review on Biginelli adducts with notable pharmacological properties. J. Adv. Res., 2015, 6(3), 363-373.
[http://dx.doi.org/10.1016/j.jare.2014.10.006] [PMID: 26257934]
[59]
Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem., 2017, 132, 108-134.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.025] [PMID: 28342939]
[60]
Heravi, M.M.; Moradi, R.; Mohammadkhani, L.; Moradi, B. Current progress in asymmetric Biginelli reaction: An update. Mol. Divers., 2018, 22(3), 751-767.
[http://dx.doi.org/10.1007/s11030-018-9841-4] [PMID: 29936682]
[61]
George, N.; Manakkadan, A.A.; Ariyath, A.; Maniyamma, S.; Vijayakumar, V.; Pai, R.G.; Zachariah, S.M. Chemistry and pharmacological activities of biginelli product- a brief overview. Curr. Drug Discov. Technol., 2019, 16(2), 127-134.
[http://dx.doi.org/10.2174/1570163815666180807141922] [PMID: 30091415]
[62]
Novikov, M.S.; Rostovskii, N.V.; Koronatov, A.N.; Zavyalov, K.V.; Zubakin, G.V.; Khlebnikov, A.F.; Starova, G.L. Synthesis of 1,2-Dihydropyrimidine-2-carboxylates via Regioselective Addition of Rhodium(II) Carbenoids to 2 H -Azirine-2-carbaldimines. J. Org. Chem., 2017, 82(24), 13396-13404.
[http://dx.doi.org/10.1021/acs.joc.7b02484] [PMID: 29131619]
[63]
Tawfik, H.A.; Bassyouni, F.; Gamal-Eldeen, A.M.; Abo-Zeid, M.A.; El-Hamouly, W.S. Tumor anti-initiating activity of some novel 3, 4-dihydropyrimidinones. Pharmacol. Rep., 2009, 61(6), 1153-1162.
[http://dx.doi.org/10.1016/S1734-1140(09)70178-1] [PMID: 20081251]
[64]
Csámpai, A.; Györfi, A.Z.; Túrós, G.I.; Sohár, P. Application of Biginelli reaction to the synthesis of ferrocenylpyrimidones and [3]-ferrocenophane-containing pyrimido[4,5-d]pyrimidinediones. J. Organomet. Chem., 2009, 694(22), 3667-3673.
[http://dx.doi.org/10.1016/j.jorganchem.2009.06.017]
[65]
Ramos, L.M.; Ponce de Leon y Tobio, A.Y.; dos Santos, M.R.; de Oliveira, H.C.B.; Gomes, A.F.; Gozzo, F.C.; de Oliveira, A.L.; Neto, B.A.D.; Neto, B.A.D. Mechanistic studies on Lewis acid catalyzed Biginelli reactions in ionic liquids: evidence for the reactive intermediates and the role of the reagents. J. Org. Chem., 2012, 77(22), 10184-10193.
[http://dx.doi.org/10.1021/jo301806n] [PMID: 23101501]
[66]
Ramos, L.M.; Guido, B.C.; Nobrega, C.C.; Corrêa, J.R.; Silva, R.G.; de Oliveira, H.C.B.; Gomes, A.F.; Gozzo, F.C.; Neto, B.A.D. The Biginelli reaction with an imidazolium-tagged recyclable iron catalyst: Kinetics, mechanism, and antitumoral activity. Chemistry, 2013, 19(13), 4156-4168.
[http://dx.doi.org/10.1002/chem.201204314] [PMID: 23460474]
[67]
Stucchi, M.; Lesma, G.; Meneghetti, F.; Rainoldi, G.; Sacchetti, A.; Silvani, A. Organocatalytic asymmetric biginelli-like reaction involving isatin. J. Org. Chem., 2016, 81(5), 1877-1884.
[http://dx.doi.org/10.1021/acs.joc.5b02680] [PMID: 26836474]
[68]
Xue, H.; Zhao, Y.; Wu, H.; Wang, Z.; Yang, B.; Wei, Y.; Wang, Z.; Tao, L. Multicomponent combinatorial polymerization via the biginelli reaction. J. Am. Chem. Soc., 2016, 138(28), 8690-8693.
[http://dx.doi.org/10.1021/jacs.6b04425] [PMID: 27381276]
[69]
Barbosa, F.A.R.; Canto, R.F.S.; Saba, S.; Rafique, J.; Braga, A.L. Synthesis and evaluation of dihydropyrimidinone-derived selenoesters as multi-targeted directed compounds against Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(22), 5762-5770.
[http://dx.doi.org/10.1016/j.bmc.2016.09.031] [PMID: 27681239]
[70]
Prakash, S.; Elavarasan, N.; Venkatesan, A.; Subashini, K.; Sowndharya, M.; Sujatha, V. Green synthesis of copper oxide nanoparticles and its effective applications in Biginelli reaction, BTB photodegradation and antibacterial activity. Adv. Powder Technol., 2018, 29(12), 3315-3326.
[http://dx.doi.org/10.1016/j.apt.2018.09.009]
[71]
Mostafa, A.S.; Selim, K.B. Synthesis and anticancer activity of new dihydropyrimidinone derivatives. Eur. J. Med. Chem., 2018, 156, 304-315.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.004] [PMID: 30015070]
[72]
Joshi, S.B.; Jadeja, K.A. A one-pot multicomponent biginelli reaction for the preparation of novel pyrimidinthione derivatives as antimicrobial agents. J. Heterocycl. Chem., 2019, 52, 791-795.
[73]
Mao, T.; Yang, L.; Liu, G.; Wei, Y.; Gou, Y.; Wang, J.; Tao, L. Ferrocene-containing polymer via the biginelli reaction for in vivo treatment of oxidative stress damage. ACS Macro Lett., 2019, 8(6), 639-645.
[http://dx.doi.org/10.1021/acsmacrolett.9b00210] [PMID: 35619538]
[74]
Li, Y.; Tan, T.; Zhao, Y.; Wei, Y.; Wang, D.; Chen, R.; Tao, L. Anticancer polymers via the biginelli reaction. ACS Macro Lett., 2020, 9(9), 1249-1254.
[http://dx.doi.org/10.1021/acsmacrolett.0c00496] [PMID: 35638617]
[75]
Surendra, B.S.; Prasad, K.S.; Shekhar, T.R.S.; Jahagirdar, A.A.; Prashantha, S.C.; Raghavendra, N.; Gurushantha, K.; Basavaraju, N.; Rudresha, K. Microwave assisted Biginelli cyclocon densation for the synthesis of dihydropyrimidinones catalysed by H2SO4Clay NPs and their applications. J. Photochem. Photobiol., 2021, 8, 100063.
[http://dx.doi.org/10.1016/j.jpap.2021.100063]
[76]
Javed, M.A.; Ashraf, N.; Saeed Jan, M.; Mahnashi, M.H.; Alqahtani, Y.S.; Alyami, B.A.; Alqarni, A.O.; Asiri, Y.I.; Ikram, M.; Sadiq, A.; Rashid, U. Structural modification, In Vitro, In Vivo, Ex Vivo, and in silico exploration of pyrimidine and pyrrolidine cores for targeting enzymes associated with neuroinflammation and cholinergic deficit in Alzheimer’s Disease. ACS Chem. Neurosci., 2021, 12(21), 4123-4143.
[http://dx.doi.org/10.1021/acschemneuro.1c00507] [PMID: 34643082]
[77]
Yao, B.J.; Wu, W.X.; Ding, L.G.; Dong, Y.B. Sulfonic acid and ionic liquid functionalized covalent organic framework for efficient catalysis of the biginelli reaction. J. Org. Chem., 2021, 86(3), 3024-3032.
[http://dx.doi.org/10.1021/acs.joc.0c02423] [PMID: 33416316]
[78]
Dowarah, J.; Patel, D.; Marak, B.N. RSC advances. RSC Advances, 2021, 11, 35737-35753.
[http://dx.doi.org/10.1039/D1RA03969E] [PMID: 35492774]
[79]
Krauskopf, F.; Truong, K.N.; Rissanen, K.; Bolm, C. 2,3-Dihydro-1,2,6-thiadiazine 1-oxides by biginelli-type reactions with sulfonimidamides under mechanochemical conditions. Org. Lett., 2021, 23(7), 2699-2703.
[http://dx.doi.org/10.1021/acs.orglett.1c00596] [PMID: 33739844]
[80]
Ma, Z.; Wang, B.; Tao, L. Stepping further from coupling tools: Development of functional polymers via the biginelli reaction. Molecules, 2022, 27(22), 7886.
[http://dx.doi.org/10.3390/molecules27227886] [PMID: 36431987]
[81]
Ghosh, S.; Nagarjun, N.; Nandi, S.; Dhakshinamoorthy, A.; Biswas, S. Two birds with one arrow: A functionalized Al(III) MOF acts as a fluorometric sensor of dopamine in bio-fluids and a recyclable catalyst for the Biginelli reaction. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2022, 10(17), 6717-6727.
[http://dx.doi.org/10.1039/D2TC00022A]
[82]
Boyer, Z.W.; Kessler, H.; Brosman, H.; Ruud, K.J.; Falkowski, A.F.; Viollet, C.; Bourne, C.R.; O’Reilly, M.C. Synthesis and characterization of functionalized amino dihydropyrimidines toward the analysis of their antibacterial structure-activity relationships and mechanism of action. ACS Omega, 2022, 7(42), 37907-37916.
[http://dx.doi.org/10.1021/acsomega.2c05071] [PMID: 36312355]
[83]
Rana, P.; Dixit, R.; Sharma, S.; Dutta, S.; Yadav, S.; Arora, B.; Kaushik, B.; Rana, P.; Sharma, R.K. Magnetic boron nitride nanosheets decorated with cobalt nanoparticles as catalyst for the synthesis of 3,4-Dihydropyrimidin-2(1 H)-ones/thiones. ACS Appl. Nano Mater., 2022, 5(4), 4875-4886.
[http://dx.doi.org/10.1021/acsanm.1c04438]
[84]
Rezayati, S.; Kalantari, F.; Ramazani, A.; Sajjadifar, S.; Aghahosseini, H.; Rezaei, A. Magnetic silica-coated picolylamine copper complex [Fe3O4@SiO2@GP/Picolylamine-Cu(II)]-Catalyzed Biginelli Annulation Reaction. Inorg. Chem., 2022, 61(2), 992-1010.
[http://dx.doi.org/10.1021/acs.inorgchem.1c03042] [PMID: 34962386]
[85]
do Nascimento, L.G.; Dias, I.M.; de Souza, G.B.M.; Mourão, L.C.; Pereira, M.B.; Viana, J.C.V.; Lião, L.M.; de Oliveira, G.R.; Alonso, C.G. Sulfonated carbons from agro-industrial residues: Simple and efficient catalysts for the Biginelli reaction. New J. Chem., 2022, 46(13), 6091-6102.
[http://dx.doi.org/10.1039/D1NJ04686A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy