Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

An Insight into the Potential of Flavonoids and Furanocoumarins in the Treatment of Psoriasis

Author(s): Aanchal Singh and Nimisha Srivastava*

Volume 19, Issue 10, 2023

Published on: 20 July, 2023

Article ID: e020623217629 Pages: 23

DOI: 10.2174/1573407219666230602152010

Price: $65

Abstract

Psoriasis is a hereditary, immune-mediated illness that can affect the skin, joints, or both. The condition frequently requires the treatment of a wide group of specialists with a variety of specialties. Numerous difficulties are presented by psoriasis, such as its high prevalence, chronicity, disfigurement, disability, and related comorbidities. Natural treatment of psoriasis can be provided by flavonoids and furanocoumarins. Flavonoids, a group of chemical compounds with various phenolic structures, are found in a wide variety of foods, including fruits, vegetables, cereals, bark, roots, stems, flowers, tea, and wine. The health benefits of these natural compounds are well known, and efforts are being made to extract the components known as flavonoids. Furanocoumarin is a subgroup of coumarins with phenolic compounds. It can be divided into two groups: linear generic name psoralens, which include psoralen, xanthotoxin, and bergapten, and angular generic name angelicins, which include sphondin and pimpinellin. The most important plant source is psoralen, which has been used for generations in traditional medicine to treat psoriasis and vitiligo. The creation of alternative psoralen molecules that do not generate the bifunctional adducts that serve as the foundation for DNA crosslinking is one of the future directions for further improving psoriasis treatment. This article focuses on flavonoid and furanocoumarin research and development trends, modes of action, functions, and applications.

Keywords: Psoriasis, flavonoids, furanocoumarins, skin, psoralen, DNA crosslinking.

Graphical Abstract
[1]
Boehncke, W.H.; Schon, M.P. Disease burden and epidemiology. Lancet, 2015, 386, 983-994.
[http://dx.doi.org/10.1016/S0140-6736(14)61909-7] [PMID: 26025581]
[2]
Rapp, S.R.; Feldman, S.R.; Exum, M.L.; Fleischer, A.B., Jr; Reboussin, D.M. Psoriasis causes as much disability as other major medical diseases. J. Am. Acad. Dermatol., 1999, 41(3), 401-407.
[http://dx.doi.org/10.1016/S0190-9622(99)70112-X] [PMID: 10459113]
[3]
Dubertret, L.; Mrowietz, U.; Ranki, A.; Van De Kerkhof, P.C.M.; Chimenti, S.; Lotti, T.; Schäfer, G. European patient perspectives on the impact of psoriasis: The EUROPSO patient membership survey. Br. J. Dermatol., 2006, 155(4), 729-736.
[http://dx.doi.org/10.1111/j.1365-2133.2006.07405.x] [PMID: 16965422]
[4]
Paroutoglou, K.; Papadavid, E.; Christodoulatos, G.S.; Dalamaga, M. Deciphering the association between psoriasis and obesity: Current evidence and treatment considerations. Curr. Obes. Rep., 2020, 9(3), 165-178.
[http://dx.doi.org/10.1007/s13679-020-00380-3] [PMID: 32418186]
[5]
Christophers, E. Psoriasis-epidemiology and clinical spectrum. Clin. Exp. Dermatol., 2001, 26(4), 314-320.
[http://dx.doi.org/10.1046/j.1365-2230.2001.00832.x] [PMID: 11422182]
[6]
Sondhi, S.; Singh, N.; Jindal, S. Natural remedies used in the treatment of psoriasis: A short review. Asian J. Pharm. Res, 2021, 11(1), 43-45.
[http://dx.doi.org/10.5958/2231-5691.2021.00009.5]
[7]
Singh, K.K.; Tripathy, S. Natural treatment alternative for psoriasis: A review on herbal resources. J. Appl. Pharm. Sci., 2014, 4(11), 114-121.
[8]
Traub, M.; Marshall, K. Psoriasis-pathophysiology, conventional, and alternative approaches to treatment. Altern. Med. Rev., 2007, 12(4), 319-330.
[PMID: 18069901]
[9]
Vijayalakshmi, A.; Ravichandiran, V.; Velraj, M.; Nirmala, S.; Jayakumari, S. Screening of flavonoid “quercetin” from the rhizome of Smilax china Linn. for anti–psoriatic activity. Asian Pac. J. Trop. Biomed., 2012, 2(4), 269-275.
[http://dx.doi.org/10.1016/S2221-1691(12)60021-5] [PMID: 23569912]
[10]
Voorhees, J.J.; Marcelo, C.L.; Duell, E.A. Cyclic AMP, cyclic GMP, and glucocorticoids as potential metabolic regulators of epidermal proliferation and differentiation. J. Invest. Dermatol., 1975, 65(1), 179-190.
[http://dx.doi.org/10.1111/1523-1747.ep12598125] [PMID: 168273]
[11]
Wang, A.; Liu, Z.; Liu, S. Treatment of psoriasis vulgaris with lacquer made of Camptotheca acuminata nuts. J Clin Dermatol., 1998, 27, 243-244.
[12]
Wright, A.L.; Colver, G.B. Tetracyclines-how safe are they? Clin. Exp. Dermatol., 1988, 13(2), 57-61.
[http://dx.doi.org/10.1111/j.1365-2230.1988.tb00657.x] [PMID: 3063416]
[13]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[14]
Burak, M.; Imen, Y. Flavonoids and their antioxidant properties. Turk. Klin. Tip Bilim. Derg., 1999, 19, 296-304.
[15]
Castañeda-Ovando, A.; Pacheco-Hernández, M.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem., 2009, 113(4), 859-871.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.001]
[16]
Lee, Y.K.; Yuk, D.Y.; Lee, J.W.; Lee, S.Y.; Ha, T.Y.; Oh, K.W.; Yun, Y.P.; Hong, J.T. (−)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res., 2009, 1250, 164-174.
[http://dx.doi.org/10.1016/j.brainres.2008.10.012] [PMID: 18992719]
[17]
Justesen, U.; Knuthsen, P. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem., 2001, 73(2), 245-250.
[http://dx.doi.org/10.1016/S0308-8146(01)00114-5]
[18]
Magnani, L.; Gaydou, E.M.; Hubaud, J.C. Spectrophotometric measurement of antioxidant properties of flavones and flavonols against superoxide anion. Anal. Chim. Acta, 2000, 411(1-2), 209-216.
[http://dx.doi.org/10.1016/S0003-2670(00)00717-0]
[19]
Chirumbolo, S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm. Allergy Drug Targets, 2010, 9(4), 263-285.
[http://dx.doi.org/10.2174/187152810793358741]
[20]
Stewart, A.J.; Bozonnet, S.; Mullen, W.; Jenkins, G.I.; Lean, M.E.J.; Crozier, A. Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem., 2000, 48(7), 2663-2669.
[http://dx.doi.org/10.1021/jf000070p] [PMID: 10898604]
[21]
Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem., 2001, 49(11), 5165-5170.
[http://dx.doi.org/10.1021/jf010697n] [PMID: 11714298]
[22]
Umphress, S.T.; Murphy, S.P.; Franke, A.A.; Custer, L.J.; Blitz, C.L. Isoflavone content of foods with soy additives. J. Food Compos. Anal., 2005, 18(6), 533-550.
[http://dx.doi.org/10.1016/j.jfca.2004.04.008]
[23]
Coward, L.; Barnes, N.C.; Setchell, K.D.; Barnes, S. The antitumor isoflavones, genistein and daidzein, in soybean foods of American and Asian diets. J. Agric. Food Chem., 1993, 41(11), 6.
[http://dx.doi.org/10.1021/jf00035a027]
[24]
Bell, D.R.; Gochenaur, K. Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J. Appl. Physiol., 2006, 100(4), 1164-1170.
[http://dx.doi.org/10.1152/japplphysiol.00626.2005] [PMID: 16339348]
[25]
Özgen, M.; Serçe, S.; Kaya, C. Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Sci. Hortic., 2009, 119(3), 275-279.
[http://dx.doi.org/10.1016/j.scienta.2008.08.007]
[26]
Aulia, RN; Sriwidodo, S Herbal extract drug delivery systems in biomedical formulations and applications. Pharmaceutical Magazine, 2022, 7(5)
[27]
Sim, G.S.; Lee, B.C.; Cho, H.S.; Lee, J.W.; Kim, J.H.; Lee, D.H.; Kim, J.H.; Pyo, H.B.; Moon, D.C.; Oh, K.W.; Yun, Y.P.; Hong, J.T. Structure activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast. Arch. Pharm. Res., 2007, 30(3), 290-298.
[http://dx.doi.org/10.1007/BF02977608] [PMID: 17424933]
[28]
Iwashina, T. Flavonoid properties of five families newly incorporated into the order Caryophyllales. Bull Natl Mus Nat Sci., 2013, 39, 25-51.
[29]
Pandey, K. Nimisha, An overview on promising nanotechnological approaches for the treatment of psoriasis. Recent Pat. Nanotechnol., 2020, 14(2), 102-118.
[http://dx.doi.org/10.2174/1872210514666200204124130] [PMID: 32013854]
[30]
Matthies, A.; Clavel, T.; Gütschow, M.; Engst, W.; Haller, D.; Blaut, M.; Braune, A. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl. Environ. Microbiol., 2008, 74(15), 4847-4852.
[http://dx.doi.org/10.1128/AEM.00555-08] [PMID: 18539813]
[31]
Akashi, T.; Aoki, T.; Ayabe, S. Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol., 2005, 137(3), 882-891.
[http://dx.doi.org/10.1104/pp.104.056747] [PMID: 15734910]
[32]
Dixon, R.; Ferreira, D. Genistein. Phytochemistry, 2002, 60(3), 205-211.
[http://dx.doi.org/10.1016/S0031-9422(02)00116-4] [PMID: 12031439]
[33]
Giusti, M.M.; Wrolstad, R.E. Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J., 2003, 14(3), 217-225.
[http://dx.doi.org/10.1016/S1369-703X(02)00221-8]
[34]
Bonesi, M.; Loizzo, M.R.; Menichini, F.; Tundis, R. Flavonoids in treating psoriasis.Immunity and Inflammation in Health and Disease; Academic Press, 2018, pp. 281-294.
[http://dx.doi.org/10.1016/B978-0-12-805417-8.00023-8]
[35]
Río, J.A.D.; Díaz, L.; García-Bernal, D.; Blanquer, M.; Ortuño, A.; Correal, E.; Moraleda, J.M. Furanocoumarins. Stud. Nat. Prod. Chem., 2014, 43, 145-195.
[http://dx.doi.org/10.1016/B978-0-444-63430-6.00005-9]
[36]
Wink, M. Plant breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet., 1988, 75(2), 225-233.
[http://dx.doi.org/10.1007/BF00303957]
[37]
Rai, M; Acharya, D; Wadegaonkar, P. Plant derived-antimycotics:Potential of Asteraceous plants. Plant-derived antimycotics: Curr. Trends and Future perspect, 2003, 165-185.
[38]
Maron, JL; Vilà, M Exotic plants and enemy resistance, 2008.
[39]
Heitz, J.R. Pesticidal applications of photoactivated molecules. ACS Symposium Series, 1995, p. 616.
[http://dx.doi.org/10.1021/bk-1995-0616.ch001]
[40]
Perez, M.I.; Edelson, R.L.; John, L.; Laroche, L.; Berger, C.L. Inhibition of antiskin allograft immunity induced by infusions with photoinactivated effector T lymphocytes (PET cells). Yale J. Biol. Med., 1989, 62(6), 595-609.
[PMID: 2636801]
[41]
Ahmed, S.; Khan, H.; Aschner, M.; Mirzae, H.; Küpeli Akkol, E.; Capasso, R. Anticancer potential of furanocoumarins: Mechanistic and therapeutic aspects. Int. J. Mol. Sci., 2020, 21(16), 5622.
[http://dx.doi.org/10.3390/ijms21165622] [PMID: 32781533]
[42]
Fujioka, T.; Furumi, K.; Fujii, H.; Okabe, H.; Mihashi, K.; Nakano, Y.; Matsunaga, H.; Katano, M.; Mori, M. Antiproliferative constituents from umbelliferae plants. V. A new furanocoumarin and falcarindiol furanocoumarin ethers from the root of Angelica japonica. Chem. Pharm. Bull., 1999, 47(1), 96-100.
[http://dx.doi.org/10.1248/cpb.47.96] [PMID: 9987830]
[43]
Gawron, A.; Głowniak, K. Cytostatic activity of coumarins in vitro. Planta Med., 1987, 53(6), 526-529.
[http://dx.doi.org/10.1055/s-2006-962801] [PMID: 3444861]
[44]
Widelski, J.; Kukula-Koch, W.; Baj, T.; Kedzierski, B.; Fokialakis, N.; Magiatis, P.; Pozarowski, P.; Rolinski, J.; Graikou, K.; Chinou, I.; Skalicka-Wozniak, K. Rare coumarins induce apoptosis, G1 cell block and reduce RNA content in HL60 cells. Open Chem., 2017, 15(1), 1-6.
[http://dx.doi.org/10.1515/chem-2017-0001]
[45]
Mahendra, C.K.; Tan, L.T.H.; Lee, W.L.; Yap, W.H.; Pusparajah, P.; Low, L.E.; Tang, S.Y.; Chan, K.G.; Lee, L.H.; Goh, B.H. Angelicin-A furocoumarin compound with vast biological potential. Front. Pharmacol., 2020, 11, 366.
[http://dx.doi.org/10.3389/fphar.2020.00366] [PMID: 32372949]
[46]
Kavli, G.; Raa, J.; Johnson, B.E.; Volden, G.; Haugsbø, S. Furocoumarins of Heracleum Laciniatum: isolation, phototoxicity, absorption and action spectra studies. Contact Dermat., 1983, 9(4), 257-262.
[http://dx.doi.org/10.1111/j.1600-0536.1983.tb04386.x] [PMID: 6617185]
[47]
Wulff, W.D.; McCallum, J.S.; Kunng, F.A. Two regiocomplementary approaches to angular furanocoumarins with chromium carbene complexes: Synthesis of sphondin, thiosphondin, heratomin, and angelicin. J. Am. Chem. Soc., 1988, 110(22), 7419-7434.
[http://dx.doi.org/10.1021/ja00230a023]
[48]
Cervi, A.; Aillard, P.; Hazeri, N.; Petit, L.; Chai, C.L.L.; Willis, A.C.; Banwell, M.G. Total syntheses of the coumarin-containing natural products pimpinellin and fraxetin using Au(I)-catalyzed intramolecular hydroarylation (IMHA) chemistry. J. Org. Chem., 2013, 78(19), 9876-9882.
[http://dx.doi.org/10.1021/jo401583q] [PMID: 23977955]
[49]
Steck, W.; Bailey, B.K. Leaf coumarins of Angelica archangelica. Can. J. Chem., 1969, 47(13), 2425-2430.
[http://dx.doi.org/10.1139/v69-396]
[50]
Jamalis, J.; Yusof, F.S.; Chander, S. Wahab, RA Psoralen derivatives: Recent advances of synthetic strategy and pharmacological properties. Antiinflamm. Antiallergy Agents Med. Chem., 2020, 19(3), 222-239.
[51]
Quetglas-Llabrés, M.M.; Quispe, C.; Herrera-Bravo, J.; Catarino, M.D.; Pereira, O.R.; Cardoso, S.M.; Dua, K.; Chellappan, D.K.; Pabreja, K.; Satija, S.; Mehta, M.; Sureda, A.; Martorell, M.; Satmbekova, D.; Yeskaliyeva, B.; Sharifi-Rad, J.; Rasool, N.; Butnariu, M.; Bagiu, I.C.; Bagiu, R.V.; Calina, D.; Cho, W.C. Pharmacological properties of bergapten: mechanistic and therapeutic aspects. Oxid. Med. Cell. Longev., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/8615242] [PMID: 35509838]
[52]
Purohit, M.; Pande, D.; Datta, A.; Srivastava, P. Enhanced xanthotoxin content in regenerating cultures of Ammi majus and micropropagation. Planta Med., 1995, 61(5), 481-482.
[http://dx.doi.org/10.1055/s-2006-958144] [PMID: 17238101]
[53]
Kleiner, H.E.; Vulimiri, S.V.; Starost, M.F.; Reed, M.J.; DiGiovanni, J. Oral administration of the citrus coumarin, isopimpinellin, blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene in SENCAR mice. Carcinogenesis, 2002, 23(10), 1667-1675.
[http://dx.doi.org/10.1093/carcin/23.10.1667] [PMID: 12376476]
[54]
He, W.; Zhang, B.L.; Zhou, S.Y.; Sun, X.L.; Zhang, S.Y. Facile total synthesis of xanthotoxol. Synth. Commun., 2007, 37(3), 361-367.
[http://dx.doi.org/10.1080/00397910601038616]
[55]
Floss, H.G.; Mothes, U. Notes: On the biosynthesis of furocoumarins in Pimpinella magna. Z. Naturforsch. B. J. Chem. Sci., 1964, 19(8), 770-771.
[http://dx.doi.org/10.1515/znb-1964-0819] [PMID: 14309414]
[56]
Hamerski, D.; Matern, U. Biosynthesis of psoralens Psoralen 5-monooxygenase activity from elicitor-treated Ammi majus cells. FEBS Lett., 1988, 239(2), 263-265.
[http://dx.doi.org/10.1016/0014-5793(88)80930-X] [PMID: 3181429]
[57]
Murray, R.H.; Erler, D.V.; Eyre, B.D. Nitrous oxide fluxes in estuarine environments: Response to global change. Glob. Change Biol., 2015, 21(9), 3219-3245.
[http://dx.doi.org/10.1111/gcb.12923] [PMID: 25752934]
[58]
Hauffe, K.D.; Hahlbrock, K.; Scheel, D. Elicitorstimulated furanocoumarin biosynthesis in cultured parsley cells: SAM: Bergaptol and SAM: Xanthotoxol O-methyltransferases. Z. Naturforsch., 1986, 41c, 228-239.
[http://dx.doi.org/10.1515/znc-1986-1-234]
[59]
Milesi, S.; Massot, B.; Gontier, E.; Bourgaud, F.; Guckert, A. Ruta graveolens L.: A promising species for the production of furanocoumarins. Plant Sci., 2001, 161(1), 189-199.
[http://dx.doi.org/10.1016/S0168-9452(01)00413-7]
[60]
Hoult, J.R.S.; Payá, M. Pharmacological and biochemical actions of simple coumarins: Natural products with therapeutic potential. Gen. Pharmacol., 1996, 27(4), 713-722.
[http://dx.doi.org/10.1016/0306-3623(95)02112-4] [PMID: 8853310]
[61]
Zgorka, G. Investigation and isolation of coumarin compounds and phenolic acids in the species Libanotis dolichostyla Schischk; Medical Academy: Lublin, 1996.
[62]
Jerzmanowska, Z. Plant substances. Methods of Isolation; PWN: Warszawa, 1967.
[63]
Härmälä, P.; Vuorela, H.; Hiltunen, R.; Nyiredy, S.; Sticher, O.; Törnquist, K.; Kaltia, S. Strategy for the isolation and identification of coumarins with calcium antagonistic properties from the roots ofAngelica archangelica. Phytochem. Anal., 1992, 3(1), 42-48.
[http://dx.doi.org/10.1002/pca.2800030108]
[64]
Conforti, F.; Marrelli, M.; Menichini, F.; Bonesi, M.; Statti, G.; Provenzano, E.; Menichini, F. Natural and synthetic furanocoumarins as treatment for vitiligo and psoriasis. Curr. Drug Ther., 2009, 4(1), 38-58.
[http://dx.doi.org/10.2174/157488509787081886]
[65]
Stedman, T.L.; Dirckx, J.H. Stedman’s concise medical dictionary for the health professions: Illustrated; Lippincott Williams & Wilkins, 2001.
[66]
Ashcroft, D.M.; Li, Wan Po, A. Griffiths, C.E.M. Therapeutic strategies for psoriasis. J. Clin. Pharm. Ther., 2000, 25(1), 1-10.
[http://dx.doi.org/10.1046/j.1365-2710.2000.00254.x] [PMID: 10771459]
[67]
Gottlieb, A.B. Psoriasis. Immunopathology and immunomodulation. Dermatol. Clin., 2001, 19(4), 649-657. viii.
[http://dx.doi.org/10.1016/S0733-8635(05)70306-5] [PMID: 11705352]
[68]
Krueger, J.G. The immunologic basis for the treatment of psoriasis with new biologic agents. J. Am. Acad. Dermatol., 2002, 46(1), 1-26.
[http://dx.doi.org/10.1067/mjd.2002.120568] [PMID: 11756941]
[69]
Ettehadi, P.; Greaves, M.W.; Wallach, D.; Aderka, D.; Camp, R.D.R. Elevated tumour necrosis factor-alpha (TNF-α) biological activity in psoriatic skin lesions. Clin. Exp. Immunol., 2008, 96(1), 146-151.
[http://dx.doi.org/10.1111/j.1365-2249.1994.tb06244.x] [PMID: 8149659]
[70]
Nickoloff, B.J.; Karabin, G.D.; Barker, J.N.; Griffiths, C.E.; Sarma, V.; Mitra, R.S.; Elder, J.T.; Kunkel, S.L.; Dixit, V.M. Cellular localization of interleukin-8 and its inducer, tumor necrosis factor-alpha in psoriasis. Am. J. Pathol., 1991, 138(1), 129-140.
[PMID: 1702929]
[71]
Mease, P.J. Cytokine blockers in psoriatic arthritis. Ann. Rheum.Dis., 2001, 60((Suppl 3)), iii37-iii40..
[PMID: 11890650]
[72]
Nowak-Perlak, M.; Szpadel, K.; Jabłońska, I.; Pizon, M.; Woźniak, M. Promising strategies in plant-derived treatments of psoriasis-update of in vitro, in vivo, and clinical trials studies. Molecules, 2022, 27(3), 591.
[http://dx.doi.org/10.3390/molecules27030591] [PMID: 35163855]
[73]
Fatima, Z.; Kaur, C.D. A review on potential of novel vesicular carriers for carrying herbal drugs in the treatment of dermatological disorders. J. Atom. Mol., 2016, 6(3), 987.
[74]
Svendsen, M.T.; Jeyabalan, J.; Andersen, K.E.; Andersen, F.; Johannessen, H. Worldwide utilization of topical remedies in treatment of psoriasis: A systematic review. J. Dermatolog. Treat., 2017, 28(5), 374-383.
[http://dx.doi.org/10.1080/09546634.2016.1254331] [PMID: 27786594]
[75]
Farahnik, B.; Sharma, D.; Alban, J.; Sivamani, R.K. Topical botanical agents for the treatment of psoriasis: A systematic review. Am. J. Clin. Dermatol., 2017, 18(4), 451-468.
[http://dx.doi.org/10.1007/s40257-017-0266-0] [PMID: 28289986]
[76]
May, B.H.; Deng, S.; Zhang, A.L.; Lu, C.; Xue, C.C.L. In silico database screening of potential targets and pathways of compounds contained in plants used for psoriasis vulgaris. Arch. Dermatol. Res., 2015, 307(7), 645-657.
[http://dx.doi.org/10.1007/s00403-015-1577-8] [PMID: 26142738]
[77]
Ma, Y.C.; Mani, A.; Cai, Y.; Thomson, J.; Ma, J.; Peudru, F.; Chen, S.; Luo, M.; Zhang, J.; Chapman, R.G.; Shi, Z.T. An effective identification and quantification method for Ginkgo biloba flavonol glycosides with targeted evaluation of adulterated products. Phytomedicine, 2016, 23(4), 377-387.
[http://dx.doi.org/10.1016/j.phymed.2016.02.003] [PMID: 27002408]
[78]
Koyu, H.; Haznedaroglu, M.Z. Investigation of impact of storage conditions on Hypericum perforatum L. dried total extract. J Food. Drug Anal., 2015, 23(3), 545-551.
[79]
Xiong, H.; Xu, Y.; Tan, G.; Han, Y.; Tang, Z.; Xu, W.; Zeng, F.; Guo, Q. Glycyrrhizin ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice and inhibits TNF-α-induced ICAM-1 expression via NF-κB/MAPK in HaCaT cells. Cell. Physiol. Biochem., 2015, 35(4), 1335-1346.
[http://dx.doi.org/10.1159/000373955] [PMID: 25720416]
[80]
Kiekow, C.J.; Figueiró, F.; Dietrich, F.; Vechia, L.D.; Pires, E.N.S.; Jandrey, E.H.F.; Gnoatto, S.C.B.; Salbego, C.G.; Battastini, A.M.O.; Gosmann, G. Quercetin derivative induces cell death in glioma cells by modulating NF-κB nuclear translocation and caspase-3 activation. Eur. J. Pharm. Sci., 2016, 84, 116-122.
[http://dx.doi.org/10.1016/j.ejps.2016.01.019] [PMID: 26802551]
[81]
Nirmal, G.R.; Lin, Z.C.; Lin, C.H.; Sung, C.T.; Liao, C.C.; Fang, J.Y. Polydopamine/IR820 nanoparticles as topical phototheranostics for inhibiting psoriasiform lesions through dual photothermal and photodynamic treatments. Biomater. Sci., 2022, 10(21), 6172-6189.
[http://dx.doi.org/10.1039/D2BM00835A] [PMID: 36073349]
[82]
Austin, D.J.; Brown, S.A. Furanocoumarin biosynthesis in Ruta graveolens cell cultures. Phytochemistry, 1973, 12(7), 1657-1667.
[http://dx.doi.org/10.1016/0031-9422(73)80384-X]
[83]
Vijayalakshmi, A.; Madhira, G. Anti-psoriatic activity of flavonoids from Cassia tora leaves using the rat ultraviolet B ray photodermatitis model. Rev. Bras. Farmacogn., 2014, 24(3), 322-329.
[http://dx.doi.org/10.1016/j.bjp.2014.07.010]
[84]
Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem., 2013, 138(4), 2099-2107.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.139] [PMID: 23497863]
[85]
Liu, C.; Liu, H.; Lu, C.; Deng, J.; Yan, Y.; Chen, H.; Wang, Y.; Liang, C-L.; Wei, J.; Han, L.; Dai, Z. Kaempferol attenuates imiquimod-induced psoriatic skin inflammation in a mouse model. Clin. Exp. Immunol., 2019, 198(3), 403-415.
[http://dx.doi.org/10.1111/cei.13363] [PMID: 31407330]
[86]
Matsuda, S.; Minami, A.; Ono, Y.; Kitagishi, Y. Neuroprotection of genistein in Alzheimer’s disease. In: Diet and nutrition in dementia and cognitive decline; Academic Press, 2015; pp. 1003-1010.
[http://dx.doi.org/10.1016/B978-0-12-407824-6.00093-8]
[87]
Polkowski, K.; Mazurek, A.P. Biological properties of genistein. A review of in vitro and in vivo data. Acta Pol. Pharm., 2000, 57(2), 135-155.
[PMID: 10934794]
[88]
Wang, A.; Wei, J.; Lu, C.; Chen, H.; Zhong, X.; Lu, Y.; Li, L.; Huang, H.; Dai, Z.; Han, L. Genistein suppresses psoriasis-related inflammation through a STAT3–NF-κB-dependent mechanism in keratinocytes. Int. Immunopharmacol., 2019, 69, 270-278.
[http://dx.doi.org/10.1016/j.intimp.2019.01.054] [PMID: 30743203]
[89]
Hosseinzadeh, H.; Nassiri-Asl, M. Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J. Endocrinol. Invest., 2014, 37(9), 783-788.
[http://dx.doi.org/10.1007/s40618-014-0096-3] [PMID: 24879037]
[90]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[91]
Nadeem, A.; Al-Harbi, N.O.; Al-Harbi, M.M.; El-Sherbeeny, A.M.; Ahmad, S.F.; Siddiqui, N.; Ansari, M.A.; Zoheir, K.M.A.; Attia, S.M.; Al-Hosaini, K.A.; Al-Sharary, S.D. Imiquimod-induced psoriasis-like skin inflammation is suppressed by BET bromodomain inhibitor in mice through RORC/IL-17A pathway modulation. Pharmacol. Res., 2015, 99, 248-257.
[http://dx.doi.org/10.1016/j.phrs.2015.06.001] [PMID: 26149470]
[92]
Kang, O.H.; Lee, J.H.; Kwon, D.Y. Apigenin inhibits release of inflammatory mediators by blocking the NF-κB activation pathways in the HMC-1 cells. Immunopharmacol. Immunotoxicol., 2011, 33(3), 473-479.
[http://dx.doi.org/10.3109/08923973.2010.538851] [PMID: 21142820]
[93]
Di, T.T.; Ruan, Z.T.; Zhao, J.X.; Wang, Y.; Liu, X.; Wang, Y.; Li, P. Astilbin inhibits Th17 cell differentiation and ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice via Jak3/Stat3 signaling pathway. Int. Immunopharmacol., 2016, 32, 32-38.
[http://dx.doi.org/10.1016/j.intimp.2015.12.035] [PMID: 26784569]
[94]
Wu, J.; Li, H.; Li, M. Effects of baicalin cream in two mouse models: 2,4-dinitrofluorobenzene-induced contact hypersensitivity and mouse tail test for psoriasis. Int. J. Clin. Exp. Med., 2015, 8(2), 2128-2137.
[PMID: 25932143]
[95]
Terra, V.A.; Souza-Neto, F.P.; Frade, M.A.C.; Ramalho, L.N.Z.; Andrade, T.A.M.; Pasta, A.A.C.; Conchon, A.C.; Guedes, F.A.; Luiz, R.C.; Cecchini, R.; Cecchini, A.L. Genistein prevents ultraviolet B radiation-induced nitrosative skin injury and promotes cell proliferation. J. Photochem. Photobiol. B, 2015, 144, 20-27.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.01.013] [PMID: 25668145]
[96]
Kimball, A.B.; Gladman, D.; Gelfand, J.M.; Gordon, K.; Horn, E.J.; Korman, N.J.; Korver, G.; Krueger, G.G.; Strober, B.E.; Lebwohl, M.G.; Foundation, N.P. National Psoriasis Foundation. National Psoriasis Foundation clinical consensus on psoriasis comorbidities and recommendations for screening. J. Am. Acad. Dermatol., 2008, 58(6), 1031-1042.
[http://dx.doi.org/10.1016/j.jaad.2008.01.006] [PMID: 18313171]
[97]
Lang, K.S.; Recher, M.; Junt, T.; Navarini, A.A.; Harris, N.L.; Freigang, S.; Odermatt, B.; Conrad, C.; Ittner, L.M.; Bauer, S.; Luther, S.A.; Uematsu, S.; Akira, S.; Hengartner, H.; Zinkernagel, R.M. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat. Med., 2005, 11(2), 138-145.
[http://dx.doi.org/10.1038/nm1176] [PMID: 15654326]
[98]
Mansouri, B.; Patel, M.; Menter, A. Biological therapies for psoriasis. Expert Opin. Biol. Ther., 2013, 13(12), 1715-1730.
[http://dx.doi.org/10.1517/14712598.2013.853739] [PMID: 24160990]
[99]
Hosseinzadeh, Z.; Ramazani, A.; Razzaghi-Asl, N. Plants of the Genus Heracleum as a source of coumarin and furanocoumarin. J. Chem. Rev., 2019, 1(2), 78-98.
[http://dx.doi.org/10.33945/SAMI/JCR.2019.1.7898]
[100]
Yu, Y.; Downie, S.R.; He, X.; Deng, X.; Yan, L. Phylogeny and biogeography of Chinese Heracleum (Apiaceae tribe Tordylieae) with comments on their fruit morphology. Plant Syst. Evol., 2011, 296(3-4), 179-203.
[http://dx.doi.org/10.1007/s00606-011-0486-3]
[101]
Pimenov, M.G.; Leonov, M.V. The genera of the Umbelliferae: a nomenclator; Royal Botanic Gardens: Kew, 1993.
[102]
Downie, S.R.; Plunkett, G.M.; Watson, M.F.; Spalik, K.; Katz-Downie, D.S.; Valiejo-Roman, C.M.; Terentieva, E.I.; Troitsky, A.V.; Lee, B.Y.; Lahham, J.; El-Oqlah, A. Tribes and clades within Apiaceae subfamily Apioideae: the contribution of molecular data. Edinb. J. Bot., 2001, 58(2), 301-330.
[http://dx.doi.org/10.1017/S0960428601000658]
[103]
Ajani, Y.; Ajani, A.; Cordes, J.M.; Watson, M.F.; Downie, S.R. Phylogenetic analysis of nrDNA ITS sequences reveals relationships within five groups of Iranian Apiaceae subfamily Apioideae. Taxon, 2008, 57(2), 383-401.
[104]
Rechinger, K.H. 1974.
[105]
Nielsen, C.; Ravn, H.P.; Nentwig, W.; Wade, M. The giant hogweed best practice manual. Guidelines for the management and control of an invasive weed in Europe. Forest & Landscape Denmark., 2005, 44, 44.
[106]
Moravcova, L; Pyšek, P; Krinke, L; Pergl, J; Perglova, I; Thompson, K Seed germination, dispersal and seed bank in Heracleum mantegazzianum; Ecology and management of giant hogweed, 2007, 74-91.
[http://dx.doi.org/10.1079/9781845932060.0074]
[107]
Fan, L.; Zhang, Y.; Huang, R.; Qin, S.; Yi, T.; Xu, F.; Tang, Y.; Qu, X.; Chen, H.; Miao, J. Determination of five flavonoids in different parts of Fordia cauliflora by ultra performance liquid chromatography/triple-quadrupole mass spectrometry and chemical comparison with the root of Millettia pulchra var. laxior. Chem. Cent. J., 2013, 7(1), 126.
[http://dx.doi.org/10.1186/1752-153X-7-126] [PMID: 23870070]
[108]
Pu, F.D.; Watson, M.F. Flora of China Editorial Committee Heracleum L. Flora of China., 2005, 14, 195-202.
[109]
Bentley, K.W. β-Phenylethylamines and the isoquinoline alkaloids. Nat. Prod. Rep., 1993, 10(5), 449-470.
[http://dx.doi.org/10.1039/NP9931000449]
[110]
Nath, Y. Bergapten from the fruits of Heracleum candicans. Indian J. Pharm., 1961, 23, 303-304.
[111]
Sun, H.T.; Lin, C.W.; Niu, F.T. study of the Chinese drugs of Umbelliferae. I. The chemical constituents of the roots of Angelica apaensis Shan et Yuan., Heracleum rapula Fr., and Heracleum scabridum Fr. Chih wu Hsueh pao. Acta Bot. Sin., 1978.
[112]
Al-Snafi, A.E. Chemical constituents and pharmacological activities of Ammi majus and Ammi visnaga. A review. International Journal of Pharmacy and Industrial Research., 2013, 3(3), 257-265.
[113]
Królicka, A.; Staniszewska, I.; Bielawski, K.; Maliński, E.; Szafranek, J.; Łojkowska, E. Establishment of hairy root cultures of Ammi majus. Plant Sci., 2001, 160(2), 259-264.
[http://dx.doi.org/10.1016/S0168-9452(00)00381-2] [PMID: 11164597]
[114]
Tzanck, A; Sidi, E; Bourgeois-Gavardin, J. Treatment of Vitiligo with Ammi majus (Linn.). Bull. it me. Soc. with oops Paris., 1951, 67(12), 1400.
[115]
Joy, P.P.; Thomas, J.; Mathew, S.; Skaria, P.B. Medicinal plants, kerala agricultural university; Aromatic and Medicinal Plants Research Station, 1998, pp. 4-6.
[116]
Selim, Y.; Ouf, N. Anti-inflammatory new coumarin from the Ammi majus L. Org. Med. Chem. Lett., 2012, 2(1), 1-4.
[http://dx.doi.org/10.1186/2191-2858-2-1] [PMID: 22373472]
[117]
Mustafa, M.A.; Al Khazaraji, A. Effect of some plant extracts on the Culex pipiens molestus Forskal larvae. Iraqi J. Vet. Sci., 2008, 22, 9-12.
[http://dx.doi.org/10.33899/ijvs.2008.5663]
[118]
Sidi, E.; Bourgeois-Gavardin, J. Results of the treatment of vitiligo with Ammi majus Linn. Bull. Soc. Fr. Dermatol. Syphiligr., 1951, 58(5), 490-492.
[PMID: 14925718]
[119]
Hakim, R.E. Rediscovery of a treatment for vitiligo. Clio Med., 1969, 4, 277-289.
[120]
Ossenkoppele, P.M.; van der Sluis, W.G.; van Vloten, W.A. Phototoxic dermatitis following the use of Ammi majus fruit for vitiligo Ned. Tijdschr. Geneeskd., 1991, 135(11), 478-480.
[PMID: 2023655]
[121]
El-Domiaty, M.M. Improved high-performance liquid chromatographic determination of khellin and visnagin in Ammi visnaga fruits and pharmaceutical formulations. J. Pharm. Sci., 1992, 81(5), 475-478.
[http://dx.doi.org/10.1002/jps.2600810518] [PMID: 1403684]
[122]
Gupta, A.K.; Anderson, T.F. Psoralen photochemotherapy. J. Am. Acad. Dermatol., 1987, 17(5), 703-734.
[http://dx.doi.org/10.1016/S0190-9622(87)70255-2] [PMID: 3316316]
[123]
Gupta, D.; Guliani, E. Flavonoids: Molecular mechanism behind natural chemoprotective behavior-a mini review. Biointerface Res. Appl. Chem., 2022, 12(5), 5983-5995.
[124]
Sak, K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn. Rev., 2014, 8(16), 122-146.
[http://dx.doi.org/10.4103/0973-7847.134247] [PMID: 25125885]
[125]
Sharma, N.; Dobhal, M.P.; Joshi, Y.C.; Chahar, M.K. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev., 2011, 5(9), 1-12.
[http://dx.doi.org/10.4103/0973-7847.79093] [PMID: 22096313]
[126]
Adlercreutz, H. Phyto-oestrogens and cancer. Lancet Oncol., 2002, 3(6), 364-373.
[http://dx.doi.org/10.1016/S1470-2045(02)00777-5] [PMID: 12107024]
[127]
Xiao, Z.P.; Peng, Z.Y.; Peng, M.J.; Yan, W.B.; Ouyang, Y.Z.; Zhu, H.L. Flavonoids health benefits and their molecular mechanism. Mini Rev. Med. Chem., 2011, 11(2), 169-177.
[http://dx.doi.org/10.2174/138955711794519546] [PMID: 21222576]
[128]
Herencia, F.; Ferrándiz, M.L.; Ubeda, A.; Guillén, I.; Dominguez, J.N.; Charris, J.E.; Lobo, G.M.; Alcaraz, M.J. 4-dimethylamino-3′,4′-dimethoxychalcone downregulates iNOS expression and exerts anti-inflammatory effects. Free Radic. Biol. Med., 2001, 30(1), 43-50.
[http://dx.doi.org/10.1016/S0891-5849(00)00443-3] [PMID: 11134894]
[129]
Foresti, R.; Hoque, M.; Monti, D.; Green, C.J.; Motterlini, R. Differential activation of heme oxygenase-1 by chalcones and rosolic acid in endothelial cells. J. Pharmacol. Exp. Ther., 2005, 312(2), 686-693.
[http://dx.doi.org/10.1124/jpet.104.074153] [PMID: 15537827]
[130]
Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation, 2002, 105(9), 1135-1143.
[http://dx.doi.org/10.1161/hc0902.104353] [PMID: 11877368]
[131]
Chen, M.; Lam, B.K.; Kanaoka, Y.; Nigrovic, P.A.; Audoly, L.P.; Austen, K.F.; Lee, D.M. Neutrophil-derived leukotriene B4 is required for inflammatory arthritis. J. Exp. Med., 2006, 203(4), 837-842.
[http://dx.doi.org/10.1084/jem.20052371] [PMID: 16567388]
[132]
Ford-Hutchinson, A.W. FLAP: A novel drug target for inhibiting the synthesis of leukotrienes. Trends Pharmacol. Sci., 1991, 12(2), 68-70.
[http://dx.doi.org/10.1016/0165-6147(91)90500-R] [PMID: 2024291]
[133]
Klotz, L.O.; Sies, H. Defenses against peroxynitrite: Selenocompounds and flavonoids. Toxicol. Lett., 2003, 140-141, 125-132.
[http://dx.doi.org/10.1016/S0378-4274(02)00511-8] [PMID: 12676458]
[134]
Cai, H.; Griendling, K.K.; Harrison, D.G. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol. Sci., 2003, 24(9), 471-478.
[http://dx.doi.org/10.1016/S0165-6147(03)00233-5] [PMID: 12967772]
[135]
Steffen, Y.; Gruber, C.; Schewe, T.; Sies, H. Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch. Biochem. Biophys., 2008, 469(2), 209-219.
[http://dx.doi.org/10.1016/j.abb.2007.10.012] [PMID: 17996190]
[136]
Lee-Hilz, Y.Y.; ter Borg, S.; van Berkel, W.J.H.; Rietjens, I.M.C.M.; Aarts, J.M.M.J.G. Shifted concentration dependency of EpRE- and XRE-mediated gene expression points at monofunctional EpRE-mediated induction by flavonoids at physiologically relevant concentrations. Toxicol. In Vitro, 2008, 22(4), 921-926.
[http://dx.doi.org/10.1016/j.tiv.2008.01.008] [PMID: 18314304]
[137]
Godwin, P.; Baird, A.M.; Heavey, S.; Barr, M.P.; O’Byrne, K.J.; Gately, K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front. Oncol., 2013, 3, 120.
[http://dx.doi.org/10.3389/fonc.2013.00120] [PMID: 23720710]
[138]
Augustin, S.; Berard, M.; Kellaf, S.; Peyri, N.; Fauvel-Lafève, F.; Legrand, C.; He, L.; Crépin, M. Matrix metalloproteinases are involved in both type I (apoptosis) and type II (autophagy) cell death induced by sodium phenylacetate in MDA-MB-231 breast tumour cells. Anticancer Res., 2009, 29(4), 1335-1343.
[PMID: 19414384]
[139]
Karimian, A.; Ahmadi, Y.; Yousefi, B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair., 2016, 42, 63-71.
[http://dx.doi.org/10.1016/j.dnarep.2016.04.008] [PMID: 27156098]
[140]
Li, G.; He, Y.; Yao, J.; Huang, C.; Song, X.; Deng, Y.; Xie, S.; Ren, J.; Jin, M.; Liu, H. Angelicin inhibits human lung carcinoma A549 cell growth and migration through regulating JNK and ERK pathways. Oncol. Rep., 2016, 36(6), 3504-3512.
[http://dx.doi.org/10.3892/or.2016.5166] [PMID: 27748898]
[141]
Kaewpiboon, C.; Surapinit, S.; Malilas, W.; Moon, J.; Phuwapraisirisan, P.; Tip-Pyang, S.; Johnston, R.N.; Koh, S.S.; Assavalapsakul, W.; Chung, Y.H. Feroniellin A-induced autophagy causes apoptosis in multidrug-resistant human A549 lung cancer cells. Int. J. Oncol., 2014, 44(4), 1233-1242.
[http://dx.doi.org/10.3892/ijo.2014.2297] [PMID: 24535083]
[142]
Upadhyay, J.; Kesharwani, R.K.; Misra, K. Comparative study of antioxidants as cancer preventives through inhibition of HIF-1 alpha activity. Bioinformation, 2009, 4(6), 233-236.
[http://dx.doi.org/10.6026/97320630004233] [PMID: 20975915]
[143]
Barros, N.M.; Sbroglio, L.L.; Buffara, M.O.; Baka, J.L.C.S.; Pessoa, A.S.; Azulay-Abulafia, L. Phototherapy. An. Bras. Dermatol., 2021, 96(4), 397-407.
[http://dx.doi.org/10.1016/j.abd.2021.03.001] [PMID: 33849754]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy