Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

A Review of In Vitro Antimicrobial Activities of Carbazole and its Derivative From 2014 to 2022

Author(s): Nitin Kumar*, Shalini Sharma and Puneet Nirmal

Volume 21, Issue 4, 2023

Published on: 16 August, 2023

Article ID: e070623217768 Pages: 17

DOI: 10.2174/2211352521666230607154145

Price: $65

Abstract

A large number of antibiotics are easily accessible for the treatment of various microbial infections. However, antibiotic resistance has become a major concern to public health across the globe. Carbazole derivatives are present in carbazomycins, an unprecedented class of antibiotics showing potential antibacterial activities. As reported in the literature, carbazole derivatives also possess significant antimicrobial activities against bacterial resistance, such as Methicillin Resistant Staphylococcus aureus (MRSA). The antimicrobial profile of carbazole derivatives has been achieved through various bacterial pathways. Carbazole hybrids based on the multi-target direct ligand (MTDL) approach were also extensively studied as they exhibited significant antibacterial activities. This article reviews antimicrobial potential, docking analysis, and structure-activity relationship (SAR) studies of carbazole and its derivatives against tested bacterial strains from 2014 to 2022. This review can also be helpful for investigators in the design and development of new molecules based on carbazole structure against various resistant bacterial infections.

Keywords: Carbazole, carbazole derivatives, antimicrobial activities, MTDL (Multi-target Direct Ligand) approach, molecules, SAR.

Graphical Abstract
[1]
Addla, D.; Wen, S.Q.; Gao, W.W.; Maddili, S.K.; Zhang, L.; Zhou, C.H. Design, synthesis, and biological evaluation of novel carbazole aminothiazoles as potential DNA-targeting antimicrobial agents. MedChemComm, 2016, 7(10), 1988-1994.
[http://dx.doi.org/10.1039/C6MD00357E]
[2]
Zawadzka, K.; Felczak, A.; Głowacka, I.E.; Piotrowska, D.G.; Lisowska, K. Evaluation of the Antimicrobial Potential and Toxicity of a Newly Synthesised 4-(4-(Benzylamino)butoxy)-9H-carbazole. Int. J. Mol. Sci., 2021, 22(23), 12796.
[http://dx.doi.org/10.3390/ijms222312796] [PMID: 34884610]
[3]
Fernández, L.; Cima-Cabal, M.D.; Duarte, A.C.; Rodriguez, A.; García, P.; García-Suárez, M.M. Developing diagnostic and therapeutic approaches to bacterial infections for a new era: Implications of globalization. Antibiotics, 2020, 9(12), 916.
[http://dx.doi.org/10.3390/antibiotics9120916] [PMID: 33339391]
[4]
Butler, M.S.; Gigante, V.; Sati, H.; Paulin, S.; Al-Sulaiman, L.; Rex, J.H.; Fernandes, P.; Arias, C.A.; Paul, M.; Thwaites, G.E.; Czaplewski, L.; Alm, R.A.; Lienhardt, C.; Spigelman, M.; Silver, L.L.; Ohmagari, N.; Kozlov, R.; Harbarth, S.; Beyer, P. Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: Despite progress, more action is needed. Antimicrob. Agents Chemother., 2022, 66(3), e01991-e21.
[http://dx.doi.org/10.1128/aac.01991-21] [PMID: 35007139]
[5]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B.H.; Kumaran, E.A.P.; McManigal, B.; Achalapong, S.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Babin, F-X.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Berkley, J.A.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Clotaire Donatien, R.; Cook, A.J.; Cooper, B.; Cressey, T.R. Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Duong Bich, T.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garcia, C.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Hsia, Y.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Jenney, A.W.J.; Khorana, M.; Khusuwan, S.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Lim, K.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Manoharan, A.; Marks, F.; May, J.; Mayxay, M.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Musila, L.A.; Mussi-Pinhata, M.M.; Naidu, R.N.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Ochoa, T.J.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Ounchanum, P.; Pak, G.D.; Paredes, J.L.; Peleg, A.Y.; Perrone, C.; Phe, T.; Phommasone, K.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Rattanavong, S.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rosenthal, V.D.; Rudd, K.E.; Russell, N.; Sader, H.S.; Saengchan, W.; Schnall, J.; Scott, J.A.G.; Seekaew, S.; Sharland, M.; Shivamallappa, M.; Sifuentes-Osornio, J.; Simpson, A.J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Tigoi, C.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vongsouvath, M.; Vu, H.; Walsh, T.; Walson, J.L.; Waner, S.; Wangrangsimakul, T.; Wannapinij, P.; Wozniak, T.; Young Sharma, T.E.M.W.; Yu, K.C.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[6]
Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health, 2015, 109(7), 309-318.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[7]
Global antimicrobial resistance and use surveillance system (GLASS) report: 2021 2021. Available From: Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2021
[8]
Wang, X.; Fu, H.Y.; He, W.; Xiang, Y.T.; Yang, Z.C.; Kuang, Y.; Yang, S.X. Synthesis and antibacterial activity evaluation of biphenyl and dibenzofuran derivatives as potential antimicrobial agents against antibiotic-resistant bacteria. Curr. Issues Mol. Biol., 2022, 44(9), 4087-4099.
[http://dx.doi.org/10.3390/cimb44090280] [PMID: 36135192]
[9]
Coates, A.; Hu, Y.; Bax, R.; Page, C. The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov., 2002, 1(11), 895-910.
[http://dx.doi.org/10.1038/nrd940] [PMID: 12415249]
[10]
WHO strategic priorities on antimicrobial resistance: Preserving antimicrobials for today and tomorrow. 2022. Available From: https://www.who.int/publications/i/item/9789240041387
[11]
Indian priority pathogen list. To guide research, discovery and development of new antibiotics in India., 2021. Available From: https://cdn.who.int/media/docs/default-source/searo/india/antimicrobial-resistance/ippl_final_web.pdf?sfvrsn=9105c3d1_6
[12]
2020 antibacterial agents in clinical and preclinical development: An overview and analysis. 2020. Available From: https://www.who.int/publications/i/item/9789240021303
[13]
Kumar, N.; Kumar Singh, K.; Mehta Luthra, P. A review on anticancer potential of some pyranocarbazole alkaloids and its derivatives. Int. J. Adv. Res., 2021, 9(6)874-883.www.journalijar.com
[http://dx.doi.org/10.21474/IJAR01/13091]
[14]
Luthra, P.M.; Kumar, N. Progress and development of C-3, C-6, and N-9 positions substituted carbazole integrated molecular hybrid molecules as potential anticancer agents. Mini Rev. Med. Chem., 2021, 21(19), 2929-2956.
[http://dx.doi.org/10.2174/1389557521666210521221808] [PMID: 34036916]
[15]
Graebe, C.; Glaser, C. Ueber Carbazol. Justus Liebigs Ann. Chem., 1872, 163(3), 343-360.
[http://dx.doi.org/10.1002/jlac.18721630305]
[16]
Kadnor, V.A. Antimicrobial potential of carbazole derivatives. Croat. Chem. Acta, 2022, 95(2)
[http://dx.doi.org/10.5562/cca3899]
[17]
Salih, N.; Salimon, J.; Yousif, E. Synthesis and antimicrobial activities of 9H-carbazole derivatives. Arab. J. Chem., 2016, 9, S781-S786.
[http://dx.doi.org/10.1016/j.arabjc.2011.08.013]
[18]
Kumar, N.; Gupta, P.; Bansal, S. Progress and development of Carbazole Scaffold based as potential anti- alzheimer agents using MTDL approach. Lett. Drug Des. Discov., 2022, 19(12), 1049-1067.
[http://dx.doi.org/10.2174/1570180819666220314144219]
[19]
Kumar, N.; Kumar, R.; Nemaysh, V.; Lal, N.; Luthra, P.M. Bis((1,4-dimethyl-9H-carbazol-3-yl)methyl)amine-mediated anticancer effect triggered by sequence-specific cleavage of DNA leading to programmed cell death in the human U87 cell line. RSC Advances, 2016, 6(72), 67925-67940.
[http://dx.doi.org/10.1039/C6RA12999D]
[20]
Issa, S.; Prandina, A.; Bedel, N.; Rongved, P.; Yous, S.; Le Borgne, M.; Bouaziz, Z. Carbazole scaffolds in cancer therapy: A review from 2012 to 2018. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1321-1346.
[http://dx.doi.org/10.1080/14756366.2019.1640692] [PMID: 31328585]
[21]
Kasim, S.; Al‐Dabbagh, B.; Mustafa, Y. A review on the biological potentials of carbazole and its derived products. Eurasian Chemical Communications., 2022, 4, 495-512.
[22]
Bashir, M.; Bano, A.; Ijaz, A.; Chaudhary, B. Recent developments and biological activities of N-substituted carbazole derivatives: A review. Molecules, 2015, 20(8), 13496-13517.
[http://dx.doi.org/10.3390/molecules200813496] [PMID: 26213906]
[23]
Caruso, A.; Ceramella, J.; Iacopetta, D.; Saturnino, C.; Mauro, M.V.; Bruno, R.; Aquaro, S.; Sinicropi, M.S. Carbazole derivatives as antiviral agents: An overview. Molecules, 2019, 24(10), 1912.
[http://dx.doi.org/10.3390/molecules24101912] [PMID: 31109016]
[24]
Dabrovolskas, K.; Jonuškienė, I.; Sutkuvienė, S.; Gudeika, D. Synthesis and evaluation of antibacterial and antioxidative activities of carba-zole derivatives. Chemija, 2020, 31(1)
[http://dx.doi.org/10.6001/chemija.v31i1.4170]
[25]
Yaqub, G.; Hannan, A.; Akbar, E.; Usman, M.; Hamid, A.; Sadiq, Z.; Iqbal, M. Synthesis, antibacterial, and antifungal activities of novel pyridazino carbazoles. J. Chem., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/818739]
[26]
Chakraborty, D.P.; Barman, B.K.; Bose, P.K. On the constitution of murrayanine, a carbazole derivative isolated from Murraya koenigii Spreng. Tetrahedron, 1965, 21(2), 681-685.
[http://dx.doi.org/10.1016/S0040-4020(01)82240-7]
[27]
Tian-Shung Wu. Shiow-Chyn Huang; Pei-Lin Wu; Che-Ming Teng, Carbazole alkaloids from Clausena excavata and their biological activity. Phytochemistry, 1996, 43(1), 133-140.
[http://dx.doi.org/10.1016/0031-9422(96)00212-9] [PMID: 8987508]
[28]
Ito, C.; Itoigawa, M.; Sato, A.; Hasan, C.M.; Rashid, M.A.; Tokuda, H.; Mukainaka, T.; Nishino, H.; Furukawa, H. Chemical constituents of Glycosmis arborea: Three new carbazole alkaloids and their biological activity. J. Nat. Prod., 2004, 67(9), 1488-1491.
[http://dx.doi.org/10.1021/np0400611] [PMID: 15387647]
[29]
Rainsford, K.D. Anti-Inflammatory drugs in the 21st century.Inflammation in the pathogenesis of chronic diseases; Springer: Switzerland, 2023, 42, p. 3-27.
[30]
Knölker, H.J.; Reddy, K.R. Isolation and synthesis of biologically active carbazole alkaloids. Chem. Rev., 2002, 102(11), 4303-4428.
[http://dx.doi.org/10.1021/cr020059j] [PMID: 12428991]
[31]
Chakraborty, A.; Saha, C.; Podder, G.; Chowdhury, B.K.; Bhattacharyya, P. Carbazole alkaloid with antimicrobial activity from clausena heptaphylla. Phytochemistry, 1995, 38(3), 787-789.
[http://dx.doi.org/10.1016/0031-9422(94)00666-H] [PMID: 7766168]
[32]
Bhattacharyya, P.; Chakrabartty, P.K.; Chowdhury, B.K. Glycozolidol, an antibacterial carbazole alkaloid from Glycosmis pentaphylla. Phytochemistry, 1985, 24(4), 882-883.
[http://dx.doi.org/10.1016/S0031-9422(00)84922-5]
[33]
Roy, S.; Bhattacharyya, L.; Chakraborty, D.P. Structure and synthesis of mukoline and mukolidine, two new carbazole alkaloids from Murraya koenigii spreng. J. Indian Chem. Soc., 1982.
[34]
Sakano, K.I.; Ishimaru, K.; Nakamura, S. New antibiotics, carbazomycins A and B. I. Fermentation, extraction, purification and physico-chemical and biological properties. J. Antibiot., 1980, 33(7), 683-689.
[http://dx.doi.org/10.7164/antibiotics.33.683] [PMID: 7410212]
[35]
Eswaramoorthy, R.; Hailekiros, H.; Kedir, F.; Endale, M. In silico molecular docking, DFT analysis and ADMET studies of Carbazole Alkaloid and Coumarins from Roots of Clausena anisata: A potent inhibitor for quorum sensing. Adv. Appl. Bioinform. Chem., 2021, 14, 13-24.
[http://dx.doi.org/10.2147/AABC.S290912] [PMID: 33584098]
[36]
Altieri, A.S.; Kelman, Z. DNA sliding clamps as therapeutic targets. Front. Mol. Biosci., 2018, 5, 87.
[http://dx.doi.org/10.3389/fmolb.2018.00087] [PMID: 30406112]
[37]
Yin, Z.; Wang, Y.; Whittell, L.R.; Jergic, S.; Liu, M.; Harry, E.; Dixon, N.E.; Kelso, M.J.; Beck, J.L.; Oakley, A.J. DNA replication is the target for the antibacterial effects of nonsteroidal anti-inflammatory drugs. Chem. Biol., 2014, 21(4), 481-487.
[http://dx.doi.org/10.1016/j.chembiol.2014.02.009] [PMID: 24631121]
[38]
Jasass, R.S.; Alshehrei, F.; Farghaly, T.A. Microwave‐Assisted synthesis of antimicrobial agents containing carbazole and thiazole moieties. J. Heterocycl. Chem., 2018, 55(9), 2099-2106.
[http://dx.doi.org/10.1002/jhet.3253]
[39]
Chakraborty, S.; Chakraborty, B.; Saha, A.; Saha, C.; Ghosh, T.K.; Bhattacharyya, I. Evaluation of antimicrobial activity of synthesized fluoro-carbazole derivatives based on SAR; Simantic Scholar, 2017.
[40]
Kumar, N.; Bansal, S.; Kashyap, S. Kunal. Noncovalent DNA binding interaction of small molecules by various biophysical techniques and computational approach. World J. Pharm. Res., 2020, 9(12), 736-747.
[41]
Saravanabhavan, M.; Sathya, K.; Puranik, V.G.; Sekar, M. Synthesis, spectroscopic characterization and structural investigations of new adduct compound of carbazole with picric acid: DNA binding and antimicrobial studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 118, 399-406.
[http://dx.doi.org/10.1016/j.saa.2013.08.115] [PMID: 24076456]
[42]
Xie, Y.P.; Sangaraiah, N.; Meng, J.P.; Zhou, C.H. Unique carbazole-oxadiazole derivatives as new potential antibiotics for combating Gram-positive and-negative bacteria. J. Med. Chem., 2022, 65(8), 6171-6190.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00001] [PMID: 35389643]
[43]
Gehrmann, R.; Hertlein, T.; Hopke, E.; Ohlsen, K.; Lalk, M.; Hilgeroth, A. Novel Small-Molecule Hybrid-Antibacterial Agents against S. aureus and MRSA Strains. Molecules, 2021, 27(1), 61.
[http://dx.doi.org/10.3390/molecules27010061] [PMID: 35011293]
[44]
Shaikh, M.S.; Chandrasekaran, B.; Palkar, M.B.; Kanhed, A.M.; Kajee, A.; Mlisana, K.P.; Singh, P.; Ghai, M.; Cleopus Mahlalela, M.; Kar-poormath, R. Synthesis and biological evaluation of novel carbazole hybrids as promising antimicrobial agents. Chem. Biodivers., 2020, 17(5), e1900550.
[http://dx.doi.org/10.1002/cbdv.201900550] [PMID: 32149467]
[45]
Shalini, K.V.; Kumar, V. Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on? Expert Opin. Drug Discov., 2021, 16(4), 335-363.
[http://dx.doi.org/10.1080/17460441.2021.1850686] [PMID: 33305635]
[46]
Rago, A.J.; Dong, G. Synthesis of indoles, indolines, and carbazoles via palladium-catalyzed C–H activation. Green Synthesis and Catalysis, 2021, 2(2), 216-227.
[http://dx.doi.org/10.1016/j.gresc.2021.02.001] [PMID: 36267892]
[47]
Aggarwal, T.; Sushmita, S.; Verma, A.K. Recent advances in the synthesis of carbazoles from indoles. Org. Biomol. Chem., 2019, 17(36), 8330-8342.
[http://dx.doi.org/10.1039/C9OB01381D] [PMID: 31497833]
[48]
Roy, J.; Jana, A.K.; Mal, D. Recent trends in the synthesis of carbazoles: An update. Tetrahedron, 2012, 68(31), 6099-6121.
[http://dx.doi.org/10.1016/j.tet.2012.05.007]
[49]
Georgiades, S.N.; Nicolaou, P.G. Recent advances in carbazole syntheses. Adv. Heterocycl. Chem., 2019, 129, 1-88.
[http://dx.doi.org/10.1016/bs.aihch.2018.10.001]
[50]
Patil, S.A.; Patil, S.A.; Ble-González, E.A.; Isbel, S.R.; Hampton, S.M.; Bugarin, A. Carbazole derivatives as potential antimicrobial agents. Molecules, 2022, 27(19), 6575.
[http://dx.doi.org/10.3390/molecules27196575] [PMID: 36235110]
[51]
Gu, W.; Hao, Y.; Zhang, G.; Wang, S.F.; Miao, T.T.; Zhang, K.P. Synthesis, in vitro antimicrobial and cytotoxic activities of new carbazole derivatives of ursolic acid. Bioorg. Med. Chem. Lett., 2015, 25(3), 554-557.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.021] [PMID: 25537271]
[52]
Saraswat, B.; Visen, P.K.S.; Agarwal, D.P. Ursolic acid isolated from Eucalyptus tereticornis protects against ethanol toxicity in isolated rat hepatocytes. Phytother. Res., 2000, 14(3), 163-166.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200005)14:3<163:AID-PTR588>3.0.CO;2-D] [PMID: 10815008]
[53]
Abdullah, A.H.; Zahra, J.A.; El-Abadelah, M.M.; Sabri, S.S.; Khanfar, M.A.; Matar, S.A.; Voelter, W. Synthesis and antibacterial activity of N 1-(carbazol-3-yl)amidrazones incorporating piperazines and related congeners. Z. Naturforsch. B. J. Chem. Sci., 2016, 71(8), 857-867.
[http://dx.doi.org/10.1515/znb-2016-0043]
[54]
Reddy, P.O.V.; Tantak, M.P.; Valdez, R.; Singh, R.P.; Singh, O.M.; Sadana, R.; Kumar, D. Synthesis and biological evaluation of novel car-bazolyl glyoxamides as anticancer and antibacterial agents. RSC Advances, 2016, 6(12), 9379-9386.
[http://dx.doi.org/10.1039/C5RA27175D]
[55]
Clausen, J.D.; Kjellerup, L.; Cohrt, K.O.H.; Hansen, J.B.; Dalby-Brown, W.; Winther, A.M.L. Elucidation of antimicrobial activity and mechanism of action by N-substituted carbazole derivatives. Bioorg. Med. Chem. Lett., 2017, 27(19), 4564-4570.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.067] [PMID: 28893470]
[56]
Kadnor, V.A.; Mhaske, G.R.; Shelke, S.N. Synthesis and antimicrobial evaluation of novel carbazole based β-diketones and its Pyrazole derivatives. Croat. Chem. Acta, 2018, 91(3), 367-376.
[http://dx.doi.org/10.5562/cca3353]
[57]
Zawadzka, K.; Bernat, P.; Felczak, A.; Różalska, S.; Lisowska, K. Antibacterial activity of high concentrations of carvedilol against Gram-positive and Gram-negative bacteria. Int. J. Antimicrob. Agents, 2018, 51(3), 458-467.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.12.014] [PMID: 29277530]
[58]
Zhang, Y.; Tangadanchu, V.K.R.; Cheng, Y.; Yang, R.G.; Lin, J.M.; Zhou, C.H. Potential antimicrobial isopropanol-conjugated carbazole azoles as dual targeting inhibitors of Enterococcus faecalis. ACS Med. Chem. Lett., 2018, 9(3), 244-249.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00514] [PMID: 29541368]
[59]
Zhang, Y.; Damu, G.L.V.; Cui, S.F.; Mi, J.L.; Tangadanchu, V.K.R.; Zhou, C.H. Discovery of potential antifungal triazoles: Design, synthesis, biological evaluation, and preliminary antifungal mechanism exploration. MedChemComm, 2017, 8(8), 1631-1639.
[http://dx.doi.org/10.1039/C7MD00112F] [PMID: 30108874]
[60]
Kumar, N.; Pathak, D. Synthesis and antibacterial activity of Carbazole and Fluorobenzylidene Substituted Thiazolidine-2,5-diones. Indian J. Heterocycl. Chem., 2019, 29(3), 275-281.
[61]
Kadnor, V.A.; Shelke, S.N. Synthesis, antimicrobial and antimalarial activityof1, 4-benzothiazepine and pyrazolinederivatives incorporating carbazolemoiety. Izv. Him., 2019, 51(2), 234-241.
[http://dx.doi.org/10.34049/bcc.51.2.4921]
[62]
Bordei Telehoiu, A.T.; Nuță, D.C.; Căproiu, M.T.; Dumitrascu, F.; Zarafu, I.; Ioniță, P.; Bădiceanu, C.D.; Avram, S.; Chifiriuc, M.C.; Bleotu, C.; Limban, C. Design, Synthesis and in vitro characterization of novel antimicrobial agents based on 6-Chloro-9H-carbazol derivatives and 1,3,4-Oxadiazole Scaffolds. Molecules, 2020, 25(2), 266.
[http://dx.doi.org/10.3390/molecules25020266] [PMID: 31936505]
[63]
Desai, N.C.; Dodiya, A.M.; Rajpara, K.M.; Rupala, Y.M. Synthesis and antimicrobial screening of 1,3,4-oxadiazole and clubbed thiophene derivatives. J. Saudi Chem. Soc., 2014, 18(3), 255-261.
[http://dx.doi.org/10.1016/j.jscs.2011.06.020]
[64]
Musmade, D.; Pattan, S.; Yalgatti, M. Oxadiazole a nucleus with versatile biological behavior. Int. J. Pharm. Chem., 2015, 5, 11-20.
[65]
Xie, Y.P.; Ansari, M.F.; Zhang, S.L.; Zhou, C.H. Novel carbazole-oxadiazoles as potential Staphylococcus aureus germicides. Pestic. Biochem. Physiol., 2021, 175, 104849.
[http://dx.doi.org/10.1016/j.pestbp.2021.104849] [PMID: 33993967]
[66]
Xue, Y.J.; Li, M.Y.; Jin, X.J.; Zheng, C.J.; Piao, H.R. Design, synthesis and evaluation of carbazole derivatives as potential antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 296-307.
[http://dx.doi.org/10.1080/14756366.2020.1850713] [PMID: 33404277]
[67]
Liu, J.; Li, H.; Li, H.; Fang, S.; Shi, J.; Chen, Y.; Zhong, R.; Liu, S.; Lin, S. Rational design of dipicolylamine-containing carbazole amphiphiles combined with Zn2+ as potent broad-spectrum antibacterial agents with a membrane-disruptive mechanism. J. Med. Chem., 2021, 64(14), 10429-10444.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00858] [PMID: 34235929]
[68]
Kamala, L.; Kumar, B.S.; Lakshmi, P.V.A. Synthesis and docking studies of novel carbazole-thiazolidinedione hybrid derivatives as antibacterial agents. Russ. J. Bioorganic Chem., 2021, 47(1), 166-173.
[http://dx.doi.org/10.1134/S106816202101009X]
[69]
Pershadsingh, H.A.; Szollosi, J.; Benson, S.; Hyun, W.C.; Feuerstein, B.G.; Kurtz, T.W. Effects of ciglitazone on blood pressure and intracellular calcium metabolism. Hypertension, 1993, 21(6_pt_2), 1020-1023.
[http://dx.doi.org/10.1161/01.HYP.21.6.1020] [PMID: 8505086]
[70]
Hulin, B.; McCarthy, P.A.; Gibbs, E.M. The glitazone family of antidiabetic agents. Curr. Pharm. Des., 1996, 2(1), 85-102.
[http://dx.doi.org/10.2174/1381612802666220920215821]
[71]
Yan, X.; Tang, Y.D.; He, F.; Yu, S.J.; Liu, X.; Bao, J.; Zhang, H. Synthesis and assessment of bisindoles as a new class of antibacterial agents. Monatsh. Chem., 2020, 151(6), 971-979.
[http://dx.doi.org/10.1007/s00706-020-02629-y]
[72]
Tamene, D.; Endale, M. Antibacterial activity of coumarins and carbazole alkaloid from roots of clausena anisata. Adv. Pharmacol. Sci., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/5419854] [PMID: 30863444]
[73]
Burmaoglu, S.; Kazancioglu, E.A.; Kazancioglu, M.Z.; Sağlamtaş, R.; Yalcin, G.; Gulcin, I.; Algul, O. Synthesis, molecular docking and some metabolic enzyme inhibition properties of biphenyl-substituted chalcone derivatives. J. Mol. Struct., 2022, 1254, 132358.
[http://dx.doi.org/10.1016/j.molstruc.2022.132358]
[74]
Jain, Z.J.; Gide, P.S.; Kankate, R.S. Biphenyls and their derivatives as synthetically and pharmacologically important aromatic structural moieties. Arab. J. Chem., 2017, 10, S2051-S2066.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.035]
[75]
Gao, Y.; Yang, J.; Yang, X.; Zhang, L.; Wang, J.; Li, Q.; Lin, D.M.; Zhang, M.; Xia, S.N.; Xu, L.L.; Zhang, Q.; Hai, P.; Liu, Y.H.; Wang, S.; Guo, L.P. Novel dibenzofuran and biphenyl phytoalexins from Sorbus pohuashanensis suspension cell and their antimicrobial activities. Fitoterapia, 2021, 152, 104914.
[http://dx.doi.org/10.1016/j.fitote.2021.104914] [PMID: 33940066]
[76]
Merzouki, O.; Arrousse, N.; El Barnossi, A.; Ech-chihbi, E.; Fernine, Y. Iraqi Housseini, A.; Rais, Z.; Taleb, M. Eco-friendly synthesis, characterization, in silico ADMET and molecular docking analysis of novel carbazole derivatives as antibacterial and antifungal agents. J. Mol. Struct., 2023, 1271, 133966.
[http://dx.doi.org/10.1016/j.molstruc.2022.133966]
[77]
Dumitrascu, F.; Udrea, A.M.; Caira, M.R.; Nuta, D.C.; Limban, C.; Chifiriuc, M.C.; Popa, M.; Bleotu, C.; Hanganu, A.; Dumitrescu, D.; Av-ram, S. In Silico and experimental investigation of the biological potential of some recently developed carprofen derivatives. Molecules, 2022, 27(9), 2722.
[http://dx.doi.org/10.3390/molecules27092722] [PMID: 35566083]
[78]
Papich, M.G. An update on nonsteroidal anti-inflammatory drugs (NSAIDs) in small animals. Vet. Clin. North Am. Small Anim. Pract., 2008, 38(6), 1243-1266. vi.
[http://dx.doi.org/10.1016/j.cvsm.2008.09.002] [PMID: 18954683]
[79]
Pattanashetty, S.H.; Hosamani, K.M.; Shettar, A.K.; Mohammed Shafeeulla, R. Design, synthesis and computational studies of Novel Carbazole N-phenylacetamide hybrids as potent antibacterial, anti-inflammatory, and antioxidant agents. J. Heterocycl. Chem., 2018, 55(7), 1765-1774.
[http://dx.doi.org/10.1002/jhet.3214]
[80]
Zhou, S.; Tang, H.; Yao, M.; Cao, S.; Zhuang, L.; Cao, C.; Shi, Y. Synthesis and antibacterial activity of fluorinated carbazoles. Chem. Pap., 2019, 73(10), 2477-2484.
[http://dx.doi.org/10.1007/s11696-019-00798-7]
[81]
Mishra, C.B.; Sharma, D.; Prakash, A.; Kumari, N.; Kumar, N.; Luthra, P.M. Design and synthesis of (4E)-4-(4-substitutedbenzylideneamino)-3-substituted-2,3-dihydro-2-thioxothiazole-5-carbonitrile as novel A2A receptor antagonists. Bioorg. Med. Chem., 2013, 21(19), 6077-6083.
[http://dx.doi.org/10.1016/j.bmc.2013.07.005] [PMID: 23953686]
[82]
Sharma, D.; Kumar, N.; Pathak, D. Synthesis, characterization and biological evaluation of some newer carbazole derivatives. J. Serb. Chem. Soc., 2014, 79(2), 125-132.
[http://dx.doi.org/10.2298/JSC130123069S]
[83]
Tan, Y.M.; Wang, Y.; Li, S.; Zhang, S.L.; Zhou, C.H. Azolylpyrimidinediols as novel structural Scaffolds of DNA-Groove Binders against Intractable Acinetobacter baumannii. J. Med. Chem., 2023, 66(7), 4910-4931.
[http://dx.doi.org/10.1021/acs.jmedchem.2c02042] [PMID: 36951717]
[84]
Xu, P.; Yuan, L.; Wang, K.; Pan, B.; Ye, Y.; Lu, K. Interaction of bifunctional peptide-carbazole complexes with DNA and antimicrobial activity. Int. J. Biol. Macromol., 2023, 237, 124070.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124070] [PMID: 36940762]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy