Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Review Article

Contemporary Trends in Active and Intelligent Polymer Nanocomposite based Food Packaging Systems for Food Safety and Sustainability in the Modern Aeon

Author(s): Jayant Rajaram Pawar, Rohan Sharadanand Phatak, Nilam Mehmood. Qureshi, Athoiba Elangbam Singh, Manish Dipakrao Shinde, Dinesh Pundalik Amalnerkar* and Jaehyeok Doh

Volume 17, Issue 4, 2024

Published on: 01 August, 2023

Page: [358 - 385] Pages: 28

DOI: 10.2174/2666145417666230712122748

Price: $65

Abstract

The demand for innovative solutions has arisen from the inevitability of improved packaging systems to protect processed food from various factors that cause spoilage. Traditional food packaging materials have limitations in fulfilling all the requirements of consumers, such as being inert, cheap, lightweight, easily degradable, reusable, and resistant to physical abuse. Nanofillers incorporated in the polymer matrix can provide potential solutions to these challenges. This review paper deliberates the use of nanofillers in a polymer matrix to develop an active and intelligent polymer nanocomposites-based processed food packaging system. The present review article focuses on the properties of nanofillers and their potential benefits when incorporated into the polymer matrix. It also examines the challenges associated with developing such packaging systems and explores the ways to address them. It highlights the potential of nanofiller-based polymer nanocomposites in developing a novel food packaging system that can improve the shelf-life and quality of processed food. Such systems can protect food from dirt or dust, oxygen, light, moisture, and food-spoiling microorganisms. Incorporating nanofillers can provide a viable solution to these problems. Most importantly, this paper provides research insights into the potential benefits of nanofillers-based polymer nanocomposites and their applications in the food packaging industry. The verdicts of this review will be of interest to the food packaging industry, entrepreneurs and researchers interested in developing sustainable and innovative packaging systems.

Keywords: Active polymer nanocomposite, antimicrobial packaging, nanocomposite, food safety, food spoilage, intelligent polymer, nanosensors.

Graphical Abstract
[1]
Declaration of the world summit on food security. 2009. Available from: https://www.fao.org/fileadmin/templates/wsfs/Summit/Docs/Final_Declaration/WSFS09_Declaration.pdf
[2]
[3]
Duncan TV. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci 2011; 363(1): 1-24.
[http://dx.doi.org/10.1016/j.jcis.2011.07.017] [PMID: 21824625]
[4]
Marsh K, Bugusu B. Food packaging--roles, materials, and environmental issues. J Food Sci 2007; 72(3): R39-55.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00301.x] [PMID: 17995809]
[5]
Azeredo HMC. Nanocomposites for food packaging applications. Food Res Int 2009; 42(9): 1240-53.
[http://dx.doi.org/10.1016/j.foodres.2009.03.019]
[6]
Vaidya UR, Bhattacharya M. Properties of blends of starch and synthetic polymers containing anhydride groups. J Appl Polym Sci 1994; 52(5): 617-28.
[http://dx.doi.org/10.1002/app.1994.070520505]
[7]
Dufresne A, Vignon MR. Improvement of starch film performances using cellulose microfibrils. Macromolecules 1998; 31(8): 2693-6.
[http://dx.doi.org/10.1021/ma971532b]
[8]
Tharanathan RN. Biodegradable films and composite coatings: Past, present and future. Trends Food Sci Technol 2003; 14(3): 71-8.
[http://dx.doi.org/10.1016/S0924-2244(02)00280-7]
[9]
Qureshi N, Shinde M, Arbuj S, et al. Sol–Gel assisted isotropic morphological progression in nanostructured MoO3 and allied investigations on photocatalytic dye-degradation. J Nanosci Nanotechnol 2019; 19(6): 3479-86.
[http://dx.doi.org/10.1166/jnn.2019.16139] [PMID: 30744775]
[10]
Hussain F, Hojjati M, Okamoto M, Gorga RE. Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J Compos Mater 2006; 40(17): 1511-75.
[http://dx.doi.org/10.1177/0021998306067321]
[11]
Chrissopoulou K, Anastasiadis SH. Polyolefin/layered silicate nanocomposites with functional compatibilizers. Eur Polym J 2011; 47(4): 600-13.
[http://dx.doi.org/10.1016/j.eurpolymj.2010.09.028]
[12]
Azizi Samir MAS, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 2005; 6(2): 612-26.
[http://dx.doi.org/10.1021/bm0493685] [PMID: 15762621]
[13]
Dalmas F, Cavaillé JY, Gauthier C, Chazeau L, Dendievel R. Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 2007; 67(5): 829-39.
[http://dx.doi.org/10.1016/j.compscitech.2006.01.030]
[14]
Kutvonen A, Rossi G, Puisto SR, Rostedt NKJ, Ala-Nissila T. Influence of nanoparticle size, loading, and shape on the mechanical properties of polymer nanocomposites. J Chem Phys 2012; 137(21): 214901.
[http://dx.doi.org/10.1063/1.4767517] [PMID: 23231257]
[15]
Pérez-Esteve E, Bernardos A, Martínez-Máñez R, Barat JM. Nanotechnology in the development of novel functional foods or their package. An overview based in patent analysis. Recent Pat Food Nutr Agric 2013; 5(1): 35-43.
[http://dx.doi.org/10.2174/2212798411305010006] [PMID: 22963076]
[16]
Dilbaghi N, Sharma S. Food spoilage, food infections and intoxications caused by microorganisms and methods for their detection. Food Indust Microbiol. 2007; pp. 2-42.
[17]
Li X, Zhang R, Hassan MM, et al. Active packaging for the extended shelf-life of meat: perspectives from consumption habits, market requirements and packaging practices in China and New Zealand. Foods 2022; 11(18): 2903.
[http://dx.doi.org/10.3390/foods11182903] [PMID: 36141031]
[18]
Aiking H, de Boer J. Food sustainability. Br Food J 2004; 106(5): 359-65.
[http://dx.doi.org/10.1108/00070700410531589]
[19]
Capone R, Bilali HE, Debs P, Cardone G, Driouech N. Food system sustainability and food security: Connecting the dots. J Food Secur 2014; 2(1): 13-22.
[20]
Helms M. Food sustainability, food security and the environment. Br Food J 2004; 106(5): 380-7.
[http://dx.doi.org/10.1108/00070700410531606]
[21]
Martinelli SS, Cavalli SB. Healthy and sustainable diet: A narrative review of the challenges and perspectives. Cien Saude Colet 2019; 24(11): 4251-62.
[http://dx.doi.org/10.1590/1413-812320182411.30572017] [PMID: 31664397]
[22]
Gustavsson J, Cederberg C, Sonesson U. Global food losses and food waste-Extent, causes and prevention. Rome: FAO 2011.
[23]
Rawat MS. Food Spoilage: Microorganisms and their prevention. Asian J Plant Sci Res 2015; (5): 47-56.
[24]
Rahman MS. Handbook of food preservation. (2nd ed.), CRC Press 2007.
[http://dx.doi.org/10.1201/9781420017373]
[25]
Sarkar P, Irshaan S, Sivapratha S, Choudhary R. Nanotechnology in food processing and packaging. In: Ranjan S, Dasgupta N, Lichtfouse E, Eds. Nanoscience in Food and Agriculture. 2016; pp. 185-227.
[http://dx.doi.org/10.1007/978-3-319-39303-2_7]
[26]
Brody AL, Bugusu B, Han JH, Sand CK, McHugh TH. Innovative food packaging solutions. Scientific status summary. J Food Sci 2008; 73(8): R107-16.
[http://dx.doi.org/10.1111/j.1750-3841.2008.00933.x] [PMID: 19019124]
[27]
Vasut RG, Robeci MD. Food contamination with Psychrophilic bacteria. Lucră Ştiinţ Med Vet 2009; XLII(2): 325-30.
[28]
Beauty Dlamini S, Njie Ateba C. Isolation of Corynebacterium species from retail mutton and lamb in the North West Province, South Africa. J Food Nutr Res (Newark) 2014; 2(7): 377-82.
[http://dx.doi.org/10.12691/jfnr-2-7-8]
[29]
Ercolini D, Russo F, Nasi A, Ferranti P, Villani F. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl Environ Microbiol 2009; 75(7): 1990-2001.
[http://dx.doi.org/10.1128/AEM.02762-08] [PMID: 19201980]
[30]
Knowles T. Food Safety in the Hospitality Industry. (1st ed.), 2002.
[31]
Stajich JE, Berbee ML, Blackwell M, et al. The Fungi. Curr Biol 2009; 19(18): R840-5.
[http://dx.doi.org/10.1016/j.cub.2009.07.004] [PMID: 19788875]
[32]
Burdon KL. A Textbook of Microbiology. New York: Macmillan Co 1947.
[http://dx.doi.org/10.5962/bhl.title.154240]
[33]
André S, Zuber F, Remize F. Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey. Int J Food Microbiol 2013; 165(2): 134-43.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.04.019] [PMID: 23728430]
[34]
Liang J, Huang H, Wang S. Distribution, evolution, catalytic mechanism, and physiological functions of the flavinbased electron-bifurcating nadh-dependent reduced ferredoxin: NADP+ oxidoreductase. Front Microbiol 2019; 10: 373.
[http://dx.doi.org/10.3389/fmicb.2019.00373] [PMID: 30881354]
[35]
Coles R, Kirwan M. Food and Beverage Packaging Technology. (2nd ed.), Wiley- Blackwell 2011.
[http://dx.doi.org/10.1002/9781444392180]
[36]
Twede D, Selke SEM, Kamdem DP, David S. Cartons, Crates and Corrugated Board.Handbook of Paper and Wood Packaging Technology. 2nd Ed 2014.
[37]
Robertson GL. Food Packaging: Principles and Practice. Switzerland: Marcel Dekker 1998.
[38]
Finnigan B. Barrier Polymers The Wiley Encyclopedia of Packaging Technology. New York: John Wiley and Sons, Inc. 2009; pp. 103-9.
[39]
Lagaron J, Sanchez-Garcia M, Gimenez E. Thermoplastic nanobiocomposites for rigid and flexible food packaging applications. 2008.
[40]
Kato M, Usuki A, Hasegawa N, Okamoto H, Kawasumi M. Development and applications of polyolefin– and rubber–clay nanocomposites. Polym J 2011; 43(7): 583-93.
[http://dx.doi.org/10.1038/pj.2011.44]
[41]
Lee JW, Son SM, Hong SI. Characterization of proteincoated polypropylene films as a novel composite structure for active food packaging application. J Food Eng 2008; 86(4): 484-93.
[http://dx.doi.org/10.1016/j.jfoodeng.2007.10.025]
[42]
Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR. Polymer/montmorillonite nanocomposites with improved thermal properties. Thermochim Acta 2007; 454(1): 1-22.
[http://dx.doi.org/10.1016/j.tca.2006.11.003]
[43]
Ray SS, Yamada K, Ogami A, Okamoto M, Ueda K. New polylactide/layered silicate nanocomposite: Nanoscale control over multiple properties. Macromol Rapid Commun 2002; 23(16): 943-7.
[http://dx.doi.org/10.1002/1521-3927(200211)23:16<943:AID-MARC943>3.0.CO;2-F]
[44]
Singh A, Sharma PK, Malviya R. Ecofriendly pharmaceutical packaging material. World Appl Sci J 2011; 14(11): 1703-16.
[45]
Janjarasskul T, Tananuwong K, Krochta JM. Whey protein film with oxygen scavenging function by incorporation of ascorbic acid. J Food Sci 2011; 76(9): E561-8.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02409.x] [PMID: 22416701]
[46]
Yoo S, Krochta JM. Starch-methylcellulose-whey protein film properties. Int J Food Sci Technol 2012; 47(2): 255-61.
[http://dx.doi.org/10.1111/j.1365-2621.2011.02833.x]
[47]
Ebnesajjad S. Plastic films in food packaging materials, technology and applications. PDL Handbook Series 2013.
[http://dx.doi.org/10.1016/C2012-0-00246-3]
[48]
Dixon J. Packaging materials: 9 multilayer packaging for food and beverages. ILSI Europe 2011; p. 48.
[49]
Giles HF, Wagner JR, Mount EM. Extrusion: The definitive processing guide and handbook PDL Handbook Series. William Andrew Publishing 2007.
[50]
Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng Rep 2000; 28(1-2): 1-63.
[http://dx.doi.org/10.1016/S0927-796X(00)00012-7]
[51]
Alexandre B, Langevin D, Médéric P, et al. Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: Structure and volume fraction effects. J Membr Sci 2009; 328(1-2): 186-204.
[http://dx.doi.org/10.1016/j.memsci.2008.12.004]
[52]
Sorrentino A, Gorrasi G, Vittoria V. Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 2007; 18(2): 84-95.
[http://dx.doi.org/10.1016/j.tifs.2006.09.004]
[53]
Pandey JK, Takagi H, Nakagaito AN, Kim HJ. Polymer Nanocomposites of Cellulose Nanoparticles.Handbook of Polymer Nanocomposites Processing, Performance and Application. Heidelberg: Springer Berlin 2015; C.
[http://dx.doi.org/10.1007/978-3-642-45232-1]
[54]
Joshi M, Banerjee K, Prasanth R, Thakare V. Polymer/clay nanocomposite based coatings for enhanced gas barrier property. Indian J Fibre Text Res 2006; 31(1): 202-14.
[55]
Shori S, Chen X, Peralta M, Gao H, zur Loye HC, Ploehn HJ. Effect of interfacial pretreatment on the properties of montmorillonite/poly(vinyl alcohol) nanocomposites. J Appl Polym Sci 2015; 132(18) n/a.
[http://dx.doi.org/10.1002/app.41867]
[56]
Qian X, Tai Q, Song L, Hu Y, Yuen RKK. Thermal degradation and flame-retardant properties of epoxy acrylate resins modified with a novel flame retardant containing phosphorous and nitrogen. Fire Safety Science International Association for Fire Safety Science 2014; 883-94.
[57]
Rajini N, Jappes JTW, Jeyaraj P, Rajakarunakaran S, Bennet C. Effect of montmorillonite nanoclay on temperature dependence mechanical properties of naturally woven coconut sheath/polyester composite. J Reinf Plast Compos 2013; 32(11): 811-22.
[http://dx.doi.org/10.1177/0731684413475721]
[58]
Li YC, Schulz J, Grunlan JC. Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability. ACS Appl Mater Interfaces 2009; 1(10): 2338-47.
[http://dx.doi.org/10.1021/am900484q] [PMID: 20355871]
[59]
Gorrasi G, Tortora M, Vittoria V, Pollet E, Alexandre M, Dubois P. Physical properties of poly(ε-caprolactone) layered silicate nanocomposites prepared by controlled grafting polymerization. J Polym Sci, B, Polym Phys 2004; 42(8): 1466-75.
[http://dx.doi.org/10.1002/polb.20042]
[60]
Ray SS, Bousmina M. Poly(butylene sucinate-coadipate)/montmorillonite nanocomposites: effect of organic modifier miscibility on structure, properties, and viscoelasticity. Polymer (Guildf) 2005; 46(26): 12430-9.
[http://dx.doi.org/10.1016/j.polymer.2005.10.102]
[61]
Gu SY, Ren J, Dong B. Melt rheology of polylactide/montmorillonite nanocomposites. J Polym Sci, B, Polym Phys 2007; 45(23): 3189-96.
[http://dx.doi.org/10.1002/polb.21317]
[62]
Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø. Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 2011; 18(1): 127-34.
[http://dx.doi.org/10.1007/s10570-010-9474-y]
[63]
Suyatma NE, Copinet A, Tighzert L, Coma V. Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. J Polym Environ 2004; 12(1): 1-6.
[http://dx.doi.org/10.1023/B:JOOE.0000003121.12800.4e]
[64]
Panayotidou E, Baklavaridis A, Zuburtikudis I, Achilias DS. Nanocomposites of poly(3-hydroxybutyrate)/organomodified montmorillonite: Effect of the nanofiller on the polymer’s biodegradation. J Appl Polym Sci 2015; 132(11): 41656.
[65]
Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 2011; 3(3): 1377-97.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[66]
Li S, McCarthy S. Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s. Macromolecules 1999; 32(13): 4454-6.
[http://dx.doi.org/10.1021/ma990117b]
[67]
Wu CL, Zhang MQ, Rong MZ, Friedrich K. Tensile performance improvement of low nanoparticles filledpolypropylene composites. Compos Sci Technol 2002; 62(10-11): 1327-40.
[http://dx.doi.org/10.1016/S0266-3538(02)00079-9]
[68]
Zhang YQ, Wang X, Yu PL, Sun WF. Water-Tree Resistant Characteristics of Crosslinker-Modified-SiO2/XLPE Nanocomposites. Materials (Basel) 2021; 14(6): 1398.
[http://dx.doi.org/10.3390/ma14061398] [PMID: 33805708]
[69]
Tang S, Zou P, Xiong H, Tang H. Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr Polym 2008; 72(3): 521-6.
[http://dx.doi.org/10.1016/j.carbpol.2007.09.019]
[70]
Jia X, Li Y, Cheng Q, Zhang S, Zhang B. Preparation and properties of poly(vinyl alcohol)/silica nanocomposites derived from copolymerization of vinyl silica nanoparticles and vinyl acetate. Eur Polym J 2007; 43(4): 1123-31.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.01.019]
[71]
Zhou X, Shin E, Wang KW, Bakis CE. Interfacial damping characteristics of carbon nanotube-based composites. Compos Sci Technol 2004; 64(15): 2425-37.
[http://dx.doi.org/10.1016/j.compscitech.2004.06.001]
[72]
Chen W, Tao X, Xue P, Cheng X. Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)–carbon nanotube composite films. Appl Surf Sci 2005; 252(5): 1404-9.
[http://dx.doi.org/10.1016/j.apsusc.2005.02.138]
[73]
Bin Y, Mine M, Koganemaru A, Jiang X, Matsuo M. Morphology and mechanical and electrical properties of oriented PVA–VGCF and PVA–MWNT composites. Polymer (Guildf) 2006; 47(4): 1308-17.
[http://dx.doi.org/10.1016/j.polymer.2005.12.032]
[74]
Zeng H, Gao C, Wang Y, et al. in situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: Mechanical properties and crystallization behavior. Polymer (Guildf) 2006; 47(1): 113-22.
[http://dx.doi.org/10.1016/j.polymer.2005.11.009]
[75]
Morlat-Therias S, Fanton E, Gardette JL, Peeterbroeck S, Alexandre M, Dubois P. Polymer/carbon nanotube nanocomposites: Influence of carbon nanotubes on EVA photodegradation. Polym Degrad Stabil 2007; 92(10): 1873-82.
[http://dx.doi.org/10.1016/j.polymdegradstab.2007.06.021]
[76]
Kim JY, Han SI, Kim SH. Crystallization behaviors and mechanical properties of poly(ethylene 2,6-naphthalate)/multiwall carbon nanotube nanocomposites. Polym Eng Sci 2007; 47(11): 1715-23.
[http://dx.doi.org/10.1002/pen.20789]
[77]
Thiruvengadam M, Rajakumar G, Swetha V, et al. Recent insights and multifactorial applications of carbon nanotubes. Micromachines (Basel) 2021; 12(12): 1502.
[http://dx.doi.org/10.3390/mi12121502] [PMID: 34945354]
[78]
Vashist A, Kaushik A, Vashist A, et al. Advances in carbon nanotubes-hydrogel hybrids in nanomedicine for therapeutics. Adv Healthc Mater 2018; 7(9): 1701213.
[http://dx.doi.org/10.1002/adhm.201701213] [PMID: 29388356]
[79]
Hu M, Zhao Z, Tian F, et al. Compressed carbon nanotubes: A family of new multifunctional carbon allotropes. Sci Rep 2013; 3(1): 1331.
[http://dx.doi.org/10.1038/srep01331] [PMID: 23435585]
[80]
Prashantha K, Soulestin J, Lacrampe MF, et al. Taguchi analysis of shrinkage and warpage of injection-moulded polypropylene/multiwall carbon nanotubes nanocomposites. Express Polym Lett 2009; 3(10): 630-8.
[http://dx.doi.org/10.3144/expresspolymlett.2009.79]
[81]
Wang J, Wang X, Xu C, Zhang M, Shang X. Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 2011; 60(5): 816-22.
[http://dx.doi.org/10.1002/pi.3025]
[82]
Bao C, Guo Y, Song L, Hu Y. Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. J Mater Chem 2011; 21(36): 13942-50.
[http://dx.doi.org/10.1039/c1jm11662b]
[83]
Kwon H, Kim D, Seo J, Han H. Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending. Macromol Res 2013; 21(9): 987-94.
[http://dx.doi.org/10.1007/s13233-013-1124-4]
[84]
Chakraborty S, Sahoo B, Teraoka I, Miller LM, Gross RA. Enzyme-catalyzed regioselective modification of starch nanoparticles. Macromolecules 2005; 38(1): 61-8.
[http://dx.doi.org/10.1021/ma048842w]
[85]
Chen Y, Cao X, Chang PR, Huneault MA. Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym 2008; 73(1): 8-17.
[http://dx.doi.org/10.1016/j.carbpol.2007.10.015]
[86]
Zheng H, Ai F, Chang PR, Huang J, Dufresne A. Structure and properties of starch nanocrystal-reinforced soy protein plastics. Polym Compos 2009; 30(4): 474-80.
[http://dx.doi.org/10.1002/pc.20612]
[87]
García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S. Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym 2011; 84(1): 203-10.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.024]
[88]
García NL, Famá L, D’Accorso NB, Goyanes S. Biodegradable starch nanocomposites. Adv Structur Mater 2015; 75: 17-77.
[http://dx.doi.org/10.1007/978-81-322-2470-9_2]
[89]
Bilbao-Sáinz C, Avena-Bustillos RJ, Wood DF, Williams TG, McHugh TH. Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. J Agric Food Chem 2010; 58(6): 3753-60.
[http://dx.doi.org/10.1021/jf9033128] [PMID: 20187652]
[90]
Kaushik A, Singh M, Verma G. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 2010; 82(2): 337-45.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.063]
[91]
Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W. HPMC reinforced with different cellulose nano-particles. Carbohydr Polym 2011; 86(4): 1549-57.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.060]
[92]
Editors Decher G, Schlenoff JB. Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials. (2nd ed.), Wiley Publisher 2012.
[http://dx.doi.org/10.1002/9783527646746]
[93]
Azeredo HMC, Miranda KWE, Rosa MF, Nascimento DM, de Moura MR. Edible films from alginate-acerola puree reinforced with cellulose whiskers. Lebensm Wiss Technol 2012; 46(1): 294-7.
[http://dx.doi.org/10.1016/j.lwt.2011.09.016]
[94]
Ravi Kumar MNV. A review of chitin and chitosan applications. React Funct Polym 2000; 46(1): 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[95]
de Moura MR, Lorevice MV, Mattoso LHC, Zucolotto V. Highly stable, edible cellulose films incorporating chitosan nanoparticles. J Food Sci 2011; 76(2): N25-9.
[http://dx.doi.org/10.1111/j.1750-3841.2010.02013.x] [PMID: 21535782]
[96]
Lorevice MV, Moura MR, Aouada FA, Mattoso LHC. Development of novel guava puree films containing chitosan nanoparticles. J Nanosci Nanotechnol 2012; 12(3): 2711-7.
[http://dx.doi.org/10.1166/jnn.2012.5716] [PMID: 22755113]
[97]
Huff K. Active and intelligent packaging: Innovations for the future. 2008. Available from: https://www.iopp.org/files/public/virginiatechkarleighhuff.pdf
[98]
Kuswandi B. Nanotechnology in food packagingNanoscience in Food and Agriculture 1 Sustainable Agriculture Reviews. Cham: Springer 2016; Vol. 20.
[http://dx.doi.org/10.1007/978-3-319-39303-2_6]
[99]
Robertson GL. Food Packaging: Principles and Practice. (2nd ed.), CRC Press 2005.
[http://dx.doi.org/10.1201/9781420056150]
[100]
Restuccia D, Spizzirri UG, Parisi OI, et al. New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 2010; 21(11): 1425-35.
[http://dx.doi.org/10.1016/j.foodcont.2010.04.028]
[101]
Restuccia D, Puoci F, Parisi OI, Picci N. Food applications of active and intelligent packaging: legal issues and safety concerns. 2015.
[http://dx.doi.org/10.1002/9781119109785.ch12]
[102]
Meng X, Kim S, Puligundla P, Ko S. Carbon dioxide and oxygen gas sensors-possible application for monitoring quality, freshness, and safety of agricultural and food products with emphasis on importance of analytical signals and their transformation. J Korean Soc Appl Biol Chem 2014; 57(6): 723-33.
[http://dx.doi.org/10.1007/s13765-014-4180-3]
[103]
Kleinfeld ER, Ferguson GS. Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science 1994; 265(5170): 370-3.
[http://dx.doi.org/10.1126/science.265.5170.370] [PMID: 17838039]
[104]
Hammond PT. Form and function in multilayer assembly: New applications at the nanoscale. Adv Mater 2004; 16(15): 1271-93.
[http://dx.doi.org/10.1002/adma.200400760]
[105]
Carosio F, Laufer G, Alongi J, Camino G, Grunlan JC. Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stabil 2011; 96(5): 745-50.
[http://dx.doi.org/10.1016/j.polymdegradstab.2011.02.019]
[106]
Podsiadlo P, Shim BS, Kotov NA. Polymer/clay and polymer/carbon nanotube hybrid organic–inorganic multilayered composites made by sequential layering of nanometer scale films. Coord Chem Rev 2009; 253(23-24): 2835-51.
[http://dx.doi.org/10.1016/j.ccr.2009.09.004]
[107]
Choudalakis G, Gotsis AD. Permeability of polymer/clay nanocomposites: A review. Eur Polym J 2009; 45(4): 967-84.
[http://dx.doi.org/10.1016/j.eurpolymj.2009.01.027]
[108]
Choudalakis G, Gotsis AD. Recent Developments in the Permeability of Polymer Clay NanocompositesHandbook of Polymer nanocomposites Processing, Performance and Application. Berlin, Heidelberg: Springer 2014; pp. 415-51.
[http://dx.doi.org/10.1007/978-3-642-38649-7_11]
[109]
Nielsen LE. Models for the permeability of filled polymer systems. J Macromol Sci Chem 1967; 1(5): 929-42.
[http://dx.doi.org/10.1080/10601326708053745]
[110]
Sun L, Boo WJ, Clearfield A, Sue HJ, Pham HQ. Barrier properties of model epoxy nanocomposites. J Membr Sci 2008; 318(1-2): 129-36.
[http://dx.doi.org/10.1016/j.memsci.2008.02.041]
[111]
Yang C, Smyrl WH, Cussler EL. Flake alignment in composite coatings. J Membr Sci 2004; 231(1-2): 1-12.
[http://dx.doi.org/10.1016/j.memsci.2003.09.022]
[112]
Lape NK, Nuxoll EE, Cussler EL. Polydisperse flakes in barrier films. J Membr Sci 2004; 236(1-2): 29-37.
[http://dx.doi.org/10.1016/j.memsci.2003.12.026]
[113]
Picard E, Vermogen A, Gérard J, Espuche E. Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: Influence of the clay content and dispersion stateConsequences on modelling. J Membr Sci 2007; 292(1-2): 133-44.
[http://dx.doi.org/10.1016/j.memsci.2007.01.030]
[114]
Dunkerley E, Schmidt D. Effects of composition, orientation and temperature on the O2 permeability of model polymer/clay nanocomposites. Macromolecules 2010; 43(24): 10536-44.
[http://dx.doi.org/10.1021/ma1018846]
[115]
Ten E, Vermerris W. Functionalized polymers from lignocellulosic biomass: State of the art. Polymers (Basel) 2013; 5(2): 600-42.
[http://dx.doi.org/10.3390/polym5020600]
[116]
Helbert W, Cavaillé JY, Dufresne A. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polym Compos 1996; 17(4): 604-11.
[http://dx.doi.org/10.1002/pc.10650]
[117]
Cranston ED, Gray DG. Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field. Sci Technol Adv Mater 2006; 7(4): 319-21.
[http://dx.doi.org/10.1016/j.stam.2006.02.007]
[118]
Jean B, Dubreuil F, Heux L, Cousin F. Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM. Langmuir 2008; 24(7): 3452-8.
[http://dx.doi.org/10.1021/la703045f] [PMID: 18324845]
[119]
Mohanty S, Nayak S, Kaith B, Kalia S. Polymer nanocomposites based on inorganic and organic nanomaterials. Scrivener Publishing LLC 2015.
[http://dx.doi.org/10.1002/9781119179108]
[120]
Chawla PR, Bajaj IB, Survase SA, Singhal RS. Microbial cellulose: Fermentative production and applications. Food Technol Biotechnol 2009; 47(2): 107-24.
[121]
Kim Y, Jung R, Kim HS, Jin HJ. Transparent nanocomposites prepared by incorporating microbial nanofibrils into poly(l-lactic acid). Curr Appl Phys 2009; 9(1): S69-71.
[http://dx.doi.org/10.1016/j.cap.2008.08.010]
[122]
Raghunathan D. Production of microbial cellulose from the new bacterial strain isolated from temple wash waters. Int J Curr Microbiol Appl Sci 2013; 2(12): 275-90.
[123]
Nakagaito AN, Iwamoto S, Yano H. Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys, A Mater Sci Process 2005; 80(1): 93-7.
[http://dx.doi.org/10.1007/s00339-004-2932-3]
[124]
Kvien I, Oksman K. Orientation of cellulose nanowhiskers in polyvinyl alcohol. Appl Phys, A Mater Sci Process 2007; 87(4): 641-3.
[http://dx.doi.org/10.1007/s00339-007-3882-3]
[125]
Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers (Basel) 2010; 2(4): 728-65.
[http://dx.doi.org/10.3390/polym2040728]
[126]
Kalia S, Dufresne A, Cherian BM, et al. Cellulose-based bio- and nanocomposites: A review. Int J Polym Sci 2011; 2011: 1-35.
[http://dx.doi.org/10.1155/2011/837875]
[127]
Oksman K, Mathew AP, Bondeson D, Kvien I. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 2006; 66(15): 2776-84.
[http://dx.doi.org/10.1016/j.compscitech.2006.03.002]
[128]
Petersson L, Kvien I, Oksman K. Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 2006; 66(15): 2535-44.
[129]
Sanchez-Garcia MD, Gimenez E, Lagaron JM. Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 2008; 71(2): 235-44.
[http://dx.doi.org/10.1016/j.carbpol.2007.05.041]
[130]
Sanchez-Garcia MD, Lagaron JM. On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 2010; 17(5): 987-1004.
[http://dx.doi.org/10.1007/s10570-010-9430-x]
[131]
Bondeson D, Oksman K. Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Compos, Part A Appl Sci Manuf 2007; 38(12): 2486-92.
[http://dx.doi.org/10.1016/j.compositesa.2007.08.001]
[132]
Hubbe MA, Rojas OJ, Lucia LA, Sain M. Cellulosic nanocomposites. A review. BioResources 2008; 3(3): 929-80.
[http://dx.doi.org/10.15376/biores.3.3.929-980]
[133]
Winarti C. Widaningrum, Surono IS, Uswah M. Widaningrum, Surono IS, Uswah M. Effect of acid and hydrolysis duration on the characteristics of arrowroot and taro starch nanoparticles. IOP Conf Ser Earth Environ Sci 2019; 309(1): 012039.
[http://dx.doi.org/10.1088/1755-1315/309/1/012039]
[134]
Kristo E, Biliaderis C. Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym 2007; 68(1): 146-58.
[http://dx.doi.org/10.1016/j.carbpol.2006.07.021]
[135]
Jiang T, Duan Q, Zhu J, Liu H, Yu L. Starch-based biodegradable materials: Challenges and opportunities. Adv Industr Eng Polymer Res 2020; 3(1): 8-18.
[http://dx.doi.org/10.1016/j.aiepr.2019.11.003]
[136]
Ni Y, Jing Y, Jiang Q, Gao R. Combination of starch and nano-chitin whiskers for surface treatment of cellulosic paper. Stärke 2021; 73(5-6): 2000219.
[http://dx.doi.org/10.1002/star.202000219]
[137]
Mincea M, Negrulescu A, Ostafe V. Preparation, modification, and applications of chitin nanowhiskers: A review. Rev Adv Mater Sci 2012; 30: 225-42.
[138]
Lu Y, Weng L, Zhang L. Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 2004; 5(3): 1046-51.
[http://dx.doi.org/10.1021/bm034516x] [PMID: 15132699]
[139]
Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R. Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydr Polym 2005; 62(2): 130-6.
[http://dx.doi.org/10.1016/j.carbpol.2005.07.013]
[140]
Koshy RR, Reghunadhan A, Mary SK, Pillai PS, Joseph S, Pothen LA. pH indicator films fabricated from soy protein isolate modified with chitin nanowhisker and Clitoria ternatea flower extract. Curr Res Food Sci 2022; 5: 743-51.
[http://dx.doi.org/10.1016/j.crfs.2022.03.015] [PMID: 35497776]
[141]
Li X, Li G, Zeng Q, et al. The formation of soy protein fibrils-chitin nanowhisker complex coacervates: Relationship to mixed foam stability. Colloids Surf A Physicochem Eng Asp 2022; 652: 129783.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129783]
[142]
López-León T, Carvalho ELS, Seijo B, Ortega-Vinuesa JL, Bastos-González D. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J Colloid Interface Sci 2005; 283(2): 344-51.
[http://dx.doi.org/10.1016/j.jcis.2004.08.186] [PMID: 15721903]
[143]
Mitra A, Dey B. Chitosan microspheres in novel drug delivery systems. Indian J Pharm Sci 2011; 73(4): 355-66.
[PMID: 22707817]
[144]
de Moura MR, Aouada FA, Avena-Bustillos RJ, McHugh TH, Krochta JM, Mattoso LHC. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng 2009; 92(4): 448-53.
[http://dx.doi.org/10.1016/j.jfoodeng.2008.12.015]
[145]
Krishnamoorti R, Vaia R. Polymer nanocomposites: synthesis, characterization, and modeling. ACS Symposium Series.
[http://dx.doi.org/10.1021/bk-2002-0804.fw001]
[146]
Bahramian AR, Kokabi M. Numerical and experimental evaluations of the flammability and pyrolysis of a resolebased nanocomposite by cone calorimeter. Iranian J Polymer 2011; 20(5): 395-411.
[147]
Ray S, Quek SY, Easteal A, Chen XD. The potential use of polymer-clay nanocomposites in food packaging. Int J Food Eng 2006; 2(4)
[http://dx.doi.org/10.2202/1556-3758.1149]
[148]
Bharadwaj RK, Mehrabi AR, Hamilton C, et al. Structure–property relationships in cross-linked polyester–clay nanocomposites. Polymer (Guildf) 2002; 43(13): 3699-705.
[http://dx.doi.org/10.1016/S0032-3861(02)00187-8]
[149]
Kiliaris P, Papaspyrides CD. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog Polym Sci 2010; 35(7): 902-58.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.03.001]
[150]
Weiss J, Takhistov P, McClements DJ. Functional materials in food nanotechnology. J Food Sci 2006; 71(9): R107-16.
[http://dx.doi.org/10.1111/j.1750-3841.2006.00195.x]
[151]
Kellar JJ. Functional Fillers and Nanoscale Minerals: New Markets/New Horizons Society ffor Mining. USA: Metallurgy, and Exploration, Inc 2006; p. 273.
[152]
Ludueña LN, Kenny JM, Vázquez A, Alvarez VA. Effect of clay organic modifier on the final performance of PCL/clay nanocomposites. Mater Sci Eng A 2011; 529: 215-23.
[http://dx.doi.org/10.1016/j.msea.2011.09.020]
[153]
Mittal V. Polymer nanocomposite foams. (1st ed.), CRC Press 2014.
[154]
Soni S, Salhotra A, Suar M. Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering. IGI Global Publisher of Timely Knowledge 2014.
[http://dx.doi.org/10.4018/978-1-4666-6363-3]
[155]
de Paiva LB, Morales AR, Valenzuela Díaz FR. Organoclays: Properties, preparation and applications. Appl Clay Sci 2008; 42(1-2): 8-24.
[http://dx.doi.org/10.1016/j.clay.2008.02.006]
[156]
Yu Y-H, Lin CY, Yeh JM, Lin WH. Preparation and properties of poly(vinyl alcohol)–clay nanocomposite materials. Polymer (Guildf) 2003; 44(12): 3553-60.
[http://dx.doi.org/10.1016/S0032-3861(03)00062-4]
[157]
Qureshi N, Lee S, Chaudhari R, et al. Hydrothermal generation of 3-dimensional WO3 nanocubes, nanobars and nanobricks, their antimicrobial and anticancer properties. J Nanosci Nanotechnol 2021; 21(10): 5337-43.
[http://dx.doi.org/10.1166/jnn.2021.19450] [PMID: 33875127]
[158]
Bal S, Samal SS. Carbon nanotube reinforced polymer composites—A state of the art. Bull Mater Sci 2007; 30(4): 379-86.
[http://dx.doi.org/10.1007/s12034-007-0061-2]
[159]
Ziaei-Rad S, Nouri N. Mechanical property evaluation of carbon nanotube sheets. Sci Iran 2010; 17(2): 90-101.
[160]
Lau AKT, Hui D. The revolutionary creation of new advanced materials—carbon nanotube composites. Compos, Part B Eng 2002; 33(4): 263-77.
[http://dx.doi.org/10.1016/S1359-8368(02)00012-4]
[161]
Kim JY, Han SI, Hong S. Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer (Guildf) 2008; 49(15): 3335-45.
[http://dx.doi.org/10.1016/j.polymer.2008.05.024]
[162]
Mi Y, Zhang X, Zhou S, et al. Morphological and mechanical properties of bile salt modified multi-walled carbon nanotube/poly(vinyl alcohol) nanocomposites. Compos, Part A Appl Sci Manuf 2007; 38(9): 2041-6.
[http://dx.doi.org/10.1016/j.compositesa.2007.04.014]
[163]
Nueraji M, Toktarbay Z, Ardakkyzy A, et al. Mechanically-robust electrospun nanocomposite fiber membranes for oil and water separation. Environ Res 2023; 220: 115212.
[http://dx.doi.org/10.1016/j.envres.2023.115212] [PMID: 36623680]
[164]
Lan W, Zhang X, Xu M, et al. Carbon nanotube reinforced polyvinyl alcohol/biphasic calcium phosphate scaffold for bone tissue engineering. RSC Advances 2019; 9(67): 38998-9010.
[http://dx.doi.org/10.1039/C9RA08569F] [PMID: 35540653]
[165]
Alruwail IBM, Saeed U, Ahmad I, Al-Turaif H, Aboalkhair H, Alsaiar IAO. Development of multiwalled carbon nanotube-reinforced biodegradable polylactic acid/polybutylene succinate blend membrane. Membranes (Basel) 2021; 11(10): 760.
[http://dx.doi.org/10.3390/membranes11100760] [PMID: 34677526]
[166]
Chuayjuljit S, Luecha W. XSBR/NR rubber blends filled with polystyrene-encapsulated nanosilica prepared by in situ differential microemulsion polymerization. J Elastomers Plast 2011; 43(5): 407-27.
[http://dx.doi.org/10.1177/0095244311405001]
[167]
Tang H, Xiong H, Tang S, Zou P. A starch-based biodegradable film modified by nano silicon dioxide. J Appl Polym Sci 2009; 113(1): 34-40.
[http://dx.doi.org/10.1002/app.29855]
[168]
Yao K, Cai J, Liu M, et al. Structure and properties of starch/PVA/nano-SiO2 hybrid films. Carbohydr Polym 2011; 86(4): 1784-9.
[http://dx.doi.org/10.1016/j.carbpol.2011.07.008]
[169]
Hajizadeh H, Peighambardoust SJ, Peighambardoust SH, Peressini D. Physical, mechanical, and antibacterial characteristics of bio‐nanocomposite films loaded with Agmodified SiO 2 and TiO 2 nanoparticles. J Food Sci 2020; 85(4): 1193-202.
[http://dx.doi.org/10.1111/1750-3841.15079] [PMID: 32144762]
[170]
Kurbanova A, Myrzakhmetova N, Akimbayeva N, et al. Superhydrophobic SiO2/Trimethylchlorosilane coating for self-cleaning application of construction materials. Coatings 2022; 12(10): 1422.
[http://dx.doi.org/10.3390/coatings12101422]
[171]
Pawar J, Bipinraj NK, Singh EA, Nikam N. Determination and partial characterization of antimicrobial material of Pseudomonas aeruginosa isolated from milk. J Food Sci Technol 2012; 1(2): 16-23.
[172]
Hamouda T, Hayes MM, Cao Z, et al. A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species. J Infect Dis 1999; 180(6): 1939-49.
[http://dx.doi.org/10.1086/315124] [PMID: 10558951]
[173]
Kampmann Y, De Clerck E, Kohn S, Patchala DK, Langerock R, Kreyenschmidt J. Study on the antimicrobial effect of silver-containing inner liners in refrigerators. J Appl Microbiol 2008; 104(6): 1808-14.
[http://dx.doi.org/10.1111/j.1365-2672.2008.03727.x] [PMID: 18341560]
[174]
Berrang ME, Frank JF, Meinersmann RJ. Listeria monocytogenes biofilm formation on silver ion impregnated cutting boards. Food Prot Trends 2010; 30(3): 168-71.
[175]
von Goetz N, Fabricius L, Glaus R, Weitbrecht V, Günther D, Hungerbühler K. Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30(3): 612-20.
[http://dx.doi.org/10.1080/19440049.2012.762693] [PMID: 23406534]
[176]
Mane PC, Sayyed SAR, Kadam DD, et al. Terrestrial snailmucus mediated green synthesis of silver nanoparticles and in vitro investigations on their antimicrobial and anticancer activities. Sci Rep 2021; 11(1): 13068.
[http://dx.doi.org/10.1038/s41598-021-92478-4] [PMID: 34158586]
[177]
Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG. On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 2009; 4(8): 794-801.
[http://dx.doi.org/10.1007/s11671-009-9316-8] [PMID: 20596384]
[178]
Wang X, Liu X, Chen J, Han H, Yuan Z. Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 2014; 68: 798-806.
[http://dx.doi.org/10.1016/j.carbon.2013.11.072]
[179]
Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M. Metal/metal oxide nanocomposites for bactericidal effect: A review. Chemosphere 2021; 272: 128607.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128607] [PMID: 33097236]
[180]
Phatak RS, Hendre A. Green synthesis of silver nanorods using aqueous extract of Kalanchoe pinnata fresh leaves and its synergistic effect with ciprofloxacin and antibiofilm activities. Int J Pharm Pharm Sci 2016; 8(1): 168-74.
[181]
Wang K, Li M, Li H, et al. Synthesis and characterization of CdSe/CdS/N-acetyl-l-cysteine/quercetin nanocomposites and their antibacterial performance. Journal of the Korean Chemical Society 2015; 59(2): 136-41.
[http://dx.doi.org/10.5012/jkcs.2015.59.2.136]
[182]
Xing K, Chen XG, Kong M, Liu CS, Cha DS, Park HJ. Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr Polym 2009; 76(1): 17-22.
[http://dx.doi.org/10.1016/j.carbpol.2008.09.016]
[183]
Maleki Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K. Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 2015; 5(1): 19-23.
[PMID: 25789215]
[184]
Khan A, Shabir D, Ahmad P, Khandaker MU, Faruque MRI, Din IU. Biosynthesis and antibacterial activity of MgO-NPs produced from Camellia-sinensis leaves extract. Mater Res Express 2021; 8(1): 015402.
[http://dx.doi.org/10.1088/2053-1591/abd421]
[185]
Qamar H, Rehman S, Chauhan DK, Tiwari AK, Upmanyu V. Green synthesis, characterization and antimicrobial activity of copper oxide nanomaterial derived from Momordica charantia. Int J Nanomedicine 2020; 15: 2541-53.
[http://dx.doi.org/10.2147/IJN.S240232] [PMID: 32368039]
[186]
Moudgil A, Varma S, Shinde MD, et al. One-pot concurrent biosynthesis of biphasic CuxO (cuprous and cupric oxide) nanoparticles using leaf extract of Eichhornia crassipes and investigation of their potent healthcare applications. Emerg Mater 2022; 5(2): 323-33.
[http://dx.doi.org/10.1007/s42247-022-00347-1]
[187]
Pisal S, Pawar J, Kale SC, et al. Antibacterial effects of ZnO NPs synthesized by solvothermal method against Pseudomonas sp. extracted from saliva ejector tubing. Int J Curr Res Rev 2021; 13(3): 60-3.
[http://dx.doi.org/10.31782/IJCRR.2021.13321]
[188]
Kubacka A, Diez MS, Rojo D, et al. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep 2014; 4(1): 4134.
[http://dx.doi.org/10.1038/srep04134] [PMID: 24549289]
[189]
Galgano F, Condelli N, Favati F, di Bianco V, Perretti G, Caruso MC. Biodegradable packaging and edible coating for fresh-cut fruits and vegetables. Ital J Food Sci 2015; 27(1): 1-20.
[190]
Armentano I, Arciola CR, Fortunati E, et al. The interaction of bacteria with engineered nanostructured polymeric materials: A review. ScientificWorldJ 2014; 2014: 1-18.
[http://dx.doi.org/10.1155/2014/410423] [PMID: 25025086]
[191]
Kumar R, Howdle S, Münstedt H. Polyamide/silver antimicrobials: Effect of filler types on the silver ion release. J Biomed Mater Res B Appl Biomater 2005; 75B(2): 311-9.
[http://dx.doi.org/10.1002/jbm.b.30306] [PMID: 16001422]
[192]
Radheshkumar C, Münstedt H. Antimicrobial polymers from polypropylene/silver composites—Ag+ release measured by anode stripping voltammetry. React Funct Polym 2006; 66(7): 780-8.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2005.11.005]
[193]
Damm C, Münstedt H, Rösch A. The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater Chem Phys 2008; 108(1): 61-6.
[http://dx.doi.org/10.1016/j.matchemphys.2007.09.002]
[194]
He X, Hwang HM. Nanotechnology in food science: Functionality, applicability, and safety assessment. Yao Wu Shi Pin Fen Xi 2016; 24(4): 671-81.
[PMID: 28911604]
[195]
Zandi K, Weisany W, Ahmadi H, Bazargan I, Naseri L. Effect of nanocomposite-based packaging on postharvest quality of strawberry during storage. Bull Environ Pharmacol Life Sci 2013; 2(5): 28-36.
[196]
Pathakoti K, Morrow S, Han C, et al. Photoinactivation of Escherichia coli by sulfur-doped and nitrogen-fluorinecodoped TiO2 nanoparticles under solar simulated light and visible light irradiation. Environ Sci Technol 2013; 47(17): 9988-96.
[http://dx.doi.org/10.1021/es401010g] [PMID: 23906338]
[197]
He X, Aker WG, Hwang HM. An in vivo study on the photo- enhanced toxicities of S-doped TiO 2 nanoparticles to zebrafish embryos ( Danio rerio ) in terms of malformation, mortality, rheotaxis dysfunction, and DNA damage. Nanotoxicology 2014; 8(sup1)(Suppl. 1): 185-95.
[http://dx.doi.org/10.3109/17435390.2013.874050] [PMID: 24766231]
[198]
Mejías Carpio IE, Santos CM, Wei X, Rodrigues DF. Toxicity of a polymer–graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 2012; 4(15): 4746-56.
[http://dx.doi.org/10.1039/c2nr30774j] [PMID: 22751735]
[199]
Zapata PA, Tamayo L, Páez M, Cerda E, Azócar I, Rabagliati FM. Nanocomposites based on polyethylene and nanosilver particles produced by metallocenic “in situ” polymerization: synthesis, characterization, and antimicrobial behavior. Eur Polym J 2011; 47(8): 1541-9.
[http://dx.doi.org/10.1016/j.eurpolymj.2011.05.008]
[200]
Deng J, Ding QM, Li W, et al. Preparation of nano-silvercontaining polyethylene composite film and Ag ion migration into food-simulants. J Nanosci Nanotechnol 2020; 20(3): 1613-21.
[http://dx.doi.org/10.1166/jnn.2020.17346] [PMID: 31492323]
[201]
Yadav SK, Mahapatra SS, Cho JW. Synthesis of mechanically robust antimicrobial nanocomposites by click coupling of hyperbranched polyurethane and carbon nanotubes. Polymer (Guildf) 2012; 53(10): 2023-31.
[http://dx.doi.org/10.1016/j.polymer.2012.03.010]
[202]
Mukherje M. In vitro antimicrobial activity of polyacrylamide doped magnetic iron oxide nanoparticles. Int J Mater Mech Manufactur 2014; 2(1): 64-6.
[http://dx.doi.org/10.7763/IJMMM.2014.V2.101]
[203]
Sambhy V, MacBride MM, Peterson BR, Sen A. Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials. J Am Chem Soc 2006; 128(30): 9798-808.
[http://dx.doi.org/10.1021/ja061442z] [PMID: 16866536]
[204]
Agnihotri S, Mukherji S, Mukherji S. Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2012; 2(3): 179-88.
[http://dx.doi.org/10.1007/s13204-012-0080-1]
[205]
Vimala K, Yallapu MM, Varaprasad K, et al. Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. J Biomater Nanobiotechnol 2011; 2(1): 55-64.
[http://dx.doi.org/10.4236/jbnb.2011.21008]
[206]
Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J Food Sci 2009; 74(1): M46-52.
[http://dx.doi.org/10.1111/j.1750-3841.2008.01013.x] [PMID: 19200107]
[207]
Hebeish AA, Abdelhady MM, Youssef AM. TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile. Carbohydr Polym 2013; 91(2): 549-59.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.068] [PMID: 23121944]
[208]
Sotiriou GA, Pratsinis SE. Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Curr Opin Chem Eng 2011; 1(1): 3-10.
[http://dx.doi.org/10.1016/j.coche.2011.07.001] [PMID: 23730551]
[209]
Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 2010; 12(5): 1531-51.
[http://dx.doi.org/10.1007/s11051-010-9900-y]
[210]
Mane PC, Chaudhari RD, Shinde MD, et al. Designing ecofriendly bionanocomposite assembly with improved antimicrobial and potent on-site Zika virus vector larvicidal activities with its mode of action. Sci Rep 2017; 7(1): 15531.
[http://dx.doi.org/10.1038/s41598-017-15537-9] [PMID: 29138496]
[211]
Cai X, Lin M, Tan S, et al. The use of polyethyleneiminemodified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon 2012; 50(10): 3407-15.
[http://dx.doi.org/10.1016/j.carbon.2012.02.002]
[212]
Mohammed Fayaz A, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 2009; 57(14): 6246-52.
[http://dx.doi.org/10.1021/jf900337h] [PMID: 19552418]
[213]
Akhavan O, Ghaderi E. Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf Coat Tech 2010; 205(1): 219-23.
[http://dx.doi.org/10.1016/j.surfcoat.2010.06.036]
[214]
Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS. The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles. Nanotechnology 2009; 20(8): 085103.
[http://dx.doi.org/10.1088/0957-4484/20/8/085103] [PMID: 19417439]
[215]
Zhang W, Chen Y, Yu S, Chen S, Yin Y. Preparation and antibacterial behavior of Fe3+-doped nanostructured TiO2 thin films. Thin Solid Films 2008; 516(15): 4690-4.
[http://dx.doi.org/10.1016/j.tsf.2007.08.053]
[216]
Sodagar A, Bahador A, Khalil S, Saffar Shahroudi A, Zaman Kassaee M. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. J Prosthodont Res 2013; 57(1): 15-9.
[http://dx.doi.org/10.1016/j.jpor.2012.05.001] [PMID: 23200530]
[217]
Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL. Antimicrobial bacterial cellulosesilver nanoparticles composite membranes. J Nanomater 2011; 2011: 1-8.
[http://dx.doi.org/10.1155/2011/721631]
[218]
Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 2008; 72(1): 43-51.
[http://dx.doi.org/10.1016/j.carbpol.2007.07.025]
[219]
Tripathi S, Mehrotra GK, Dutta PK. Chitosan–silver oxide nanocomposite film: Preparation and antimicrobial activity. Bull Mater Sci 2011; 34(1): 29-35.
[http://dx.doi.org/10.1007/s12034-011-0032-5]
[220]
Byun Y, Darby D, Cooksey K, Dawson P, Whiteside S. Development of oxygen scavenging system containing a natural free radical scavenger and a transition metal. Food Chem 2011; 124(2): 615-9.
[http://dx.doi.org/10.1016/j.foodchem.2010.06.084] [PMID: 23140708]
[221]
Busolo MA, Lagaron JM. Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innov Food Sci Emerg Technol 2012; 16: 211-7.
[http://dx.doi.org/10.1016/j.ifset.2012.06.008]
[222]
Gibis D, Rieblinger K. Oxygen scavenging films for food application. Procedia Food Sci 2011; 1: 229-34.
[http://dx.doi.org/10.1016/j.profoo.2011.09.036]
[223]
Xiao-e L, Green ANM, Haque SA, Mills A, Durrant JR. Light-driven oxygen scavenging by titania/polymer nanocomposite films. J Photochem Photobiol Chem 2004; 162(2-3): 253-9.
[http://dx.doi.org/10.1016/j.nainr.2003.08.010]
[224]
Franssen MCR, Steunenberg P, Scott EL, Zuilhof H, Sanders JPM. Immobilised enzymes in biorenewables production. Chem Soc Rev 2013; 42(15): 6491-533.
[http://dx.doi.org/10.1039/c3cs00004d] [PMID: 23519171]
[225]
Sahin S, Ozmen I, Kir E. Purification, immobilization, and characterization of protease from local Bacillus subtilis M-11. Asia-Pac J Chem Eng 2015; 10(2): 241-7.
[http://dx.doi.org/10.1002/apj.1868]
[226]
Appendini P, Hotchkiss JH. Immobilization of lysozyme on food contact polymers as potential antimicrobial films. Packag Technol Sci 1997; 10(5): 271-9.
[http://dx.doi.org/10.1002/(SICI)1099-1522(199709/10)10:5<271:AID-PTS412>3.0.CO;2-R]
[227]
Fernández A, Cava D, Ocio MJ, Lagarón JM. Perspectives for biocatalysts in food packaging. Trends Food Sci Technol 2008; 19(4): 198-206.
[http://dx.doi.org/10.1016/j.tifs.2007.12.004]
[228]
Brena B, González-Pombo P, Batista-Viera F. Immobilization of enzymes: A literature survey. Methods Mol Biol 2013; 1051: 15-31.
[http://dx.doi.org/10.1007/978-1-62703-550-7_2] [PMID: 23934795]
[229]
Praharaj S, Nath S, Ghosh SK, Kundu S, Pal T. Immobilization and recovery of au nanoparticles from anion exchange resin: resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol. Langmuir 2004; 20(23): 9889-92.
[http://dx.doi.org/10.1021/la0486281] [PMID: 15518467]
[230]
Fang X, Ma H, Xiao S, et al. Facile immobilization of gold nanoparticles into electrospun polyethyleneimine/polyvinyl alcohol nanofibers for catalytic applications. J Mater Chem 2011; 21(12): 4493-501.
[http://dx.doi.org/10.1039/c0jm03987j]
[231]
Hu A, Fu ZH. Nanotechnology and its application in packaging and packaging machinery. Pack Eng 2003; 24: 22-4.
[232]
Baltic M, Boskovic M, Ivanovic J, et al. Nanotechnology and its potential applications in meat industry. Tehnol Mesa 2013; 54(2): 168-75.
[http://dx.doi.org/10.5937/tehmesa1302168B]
[233]
Bouwmeester H, Dekkers S, Noordam MY, et al. Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 2009; 53(1): 52-62.
[http://dx.doi.org/10.1016/j.yrtph.2008.10.008] [PMID: 19027049]
[234]
Inbaraj BS, Chen BH. Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. Yao Wu Shi Pin Fen Xi 2016; 24(1): 15-28.
[PMID: 28911398]
[235]
Bülbül G, Hayat A, Andreescu S. Portable nanoparticlebased sensors for food safety assessment. Sensors (Basel) 2015; 15(12): 30736-58.
[http://dx.doi.org/10.3390/s151229826] [PMID: 26690169]
[236]
Mills A, Hazafy D. Nanocrystalline SnO2-based, UVBactivated, colourimetric oxygen indicator. Sens Actuators B Chem 2009; 136(2): 344-9.
[http://dx.doi.org/10.1016/j.snb.2008.12.048]
[237]
Liao F, Chen C, Subramanian V. Organic TFTs as gas sensors for electronic nose applications. Sens Actuators B Chem 2005; 107(2): 849-55.
[http://dx.doi.org/10.1016/j.snb.2004.12.026]
[238]
Bowles M, Lu J. Removing the blinders: A literature review on the potential of nanoscale technologies for the management of supply chains. Technol Forecast Soc Change 2014; 82: 190-8.
[http://dx.doi.org/10.1016/j.techfore.2013.10.017]
[239]
Šetkus A. Heterogeneous reaction rate based description of the response kinetics in metal oxide gas sensors. Sens Actuators B Chem 2002; 87(2): 346-57.
[http://dx.doi.org/10.1016/S0925-4005(02)00269-1]
[240]
Adhyapak PV, Bharatula LD, Rathi A, Jang S, Kim T, Amalnerkar D. Influence of erbium doping on hydrothermally synthesized ZnO nanostructures and their enhanced gas sensing properties. Curr Smart Mater 2017; 2(2): 146-52.
[http://dx.doi.org/10.2174/2405465802666170517150820]
[241]
de Azeredo HMC, Mattoso LHC, McHugh TH. Nanocomposites in food packaging–a review. 2011.
[http://dx.doi.org/10.5772/14437]
[242]
Sanvicens N, Pastells C, Pascual N, Marco MP. Nanoparticle-based biosensors for detection of pathogenic bacteria. Trends Analyt Chem 2009; 28(11): 1243-52.
[http://dx.doi.org/10.1016/j.trac.2009.08.002]
[243]
Tallury P, Malhotra A, Byrne LM, Santra S. Nanobioimaging and sensing of infectious diseases. Adv Drug Deliv Rev 2010; 62(4-5): 424-37.
[http://dx.doi.org/10.1016/j.addr.2009.11.014] [PMID: 19931579]
[244]
Arshak K, Adley C, Moore E, Cunniffe C, Campion M, Harris J. Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sens Actuators B Chem 2007; 126(1): 226-31.
[http://dx.doi.org/10.1016/j.snb.2006.12.006]
[245]
El-Boubbou K, Gruden C, Huang X. Magnetic glyconanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J Am Chem Soc 2007; 129(44): 13392-3.
[http://dx.doi.org/10.1021/ja076086e] [PMID: 17929928]
[246]
Cho Y, Kang S. Emerging Technologies for Food Quality and Food Safety Evaluation. (1st ed.), CRC Press 2011.
[http://dx.doi.org/10.1201/b10710]
[247]
Xu C, Akakuru OU, Zheng J, Wu A. Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections. Front Bioeng Biotechnol 2019; 7: 141.
[http://dx.doi.org/10.3389/fbioe.2019.00141] [PMID: 31275930]
[248]
Zia R, Iftikhar M, Rafiq A, et al. 16 - Nanosensors for microbial detection in soil. Nanosens Smart Agri 2022; pp. 367-400.
[http://dx.doi.org/10.1016/B978-0-12-824554-5.00003-3]
[249]
Hajipour MJ, Saei AA, Walker ED, et al. Nanotechnology for targeted detection and removal of bacteria: Opportunities and challenges. Adv Sci (Weinh) 2021; 8(21): 2100556.
[http://dx.doi.org/10.1002/advs.202100556] [PMID: 34558234]
[250]
Bodor R, Žúborová M, Ölvecká E, et al. Isotachophoresis and isotachophoresis-zone electrophoresis of food additives on a chip with column-coupling separation channels. J Sep Sci 2001; 24(9): 802-9.
[http://dx.doi.org/10.1002/1615-9314(20010901)24:9<802:AID-JSSC802>3.0.CO;2-1]
[251]
Ai K, Liu Y, Lu L. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J Am Chem Soc 2009; 131(27): 9496-7.
[http://dx.doi.org/10.1021/ja9037017] [PMID: 19537721]
[252]
Gupta R, Kennel E, Kim K. Polymer Nanocomposites Handbook. (1st ed.), CRC Press 2009.
[http://dx.doi.org/10.1201/9781420009804]
[253]
Liang XJ, Chen C, Zhao Y, Jia L, Wang P. Biopharmaceutics and therapeutic potential of engineered nanomaterials. Curr Drug Metab 2008; 9(8): 697-709.
[http://dx.doi.org/10.2174/138920008786049230] [PMID: 18855608]
[254]
Neethirajan S, Freund M, Jayas D, Shafai C, Thomson D, White N. Development of carbon dioxide (CO2) sensor using polymer nanoparticles for grain quality monitoring. CSBE100368-Presented at Symposium on Nanotechnologies Applied to Biosystems Engineering and the Environment. XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR). Canadian Society for Bioengineering (CSBE/SCGAB) Québec City, Canada. June 13-17, 2010.
[255]
Turner C, Rudnitskaya A, Legin A. Monitoring batch fermentations with an electronic tongue. J Biotechnol 2003; 103(1): 87-91.
[http://dx.doi.org/10.1016/S0168-1656(03)00066-X] [PMID: 12770507]
[256]
Bahrami A. Technology review-Nanocomposites. 2007. Available from: https://compositesuk.co.uk/wpcontent/uploads/2021/12/Nanocomposites.pdf
[257]
[258]
Rai M, Ribeiro C, Mattoso L, Duran N. Nanotechnologies in Food and Agriculture. Switzerland: Springer International Publishing 2015.
[http://dx.doi.org/10.1007/978-3-319-14024-7]
[259]
Wani AA, Singh P, Pant A, Langowski HC. Packaging methods for minimally processed foodsMinimally Processed Foods Food Engineering Series. Cham: Springer 2015.
[http://dx.doi.org/10.1007/978-3-319-10677-9_3]
[260]
Brody A, Strupinsky E, Kline L. Active packaging for food applications. (1st ed.), Taylor and Francis Group 2001.
[261]
Kim JY, Han SI, Kim DK, Kim SH. Mechanical reinforcement and crystallization behavior of poly(ethylene 2,6-naphthalate) nanocomposites induced by modified carbon nanotube. Compos, Part A Appl Sci Manuf 2009; 40(1): 45-53.
[http://dx.doi.org/10.1016/j.compositesa.2008.10.002]
[262]
Wakabayashi K, Pierre C, Dikin DA, et al. Polymergraphite nanocomposites: Effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules 2008; 41(6): 1905-8.
[http://dx.doi.org/10.1021/ma071687b]
[263]
Borriello C, De Maria A, Jovic N, Montone A, Schwarz M, Antisari MV. Mechanochemical exfoliation of graphite and its polyvinyl alcohol nanocomposites with enhanced barrier properties. Mater Manuf Process 2009; 24(10-11): 1053-7.
[http://dx.doi.org/10.1080/10426910903022346]
[264]
Silvestre C, Duraccio D, Cimmino S. Food packaging based on polymer nanomaterials. Prog Polym Sci 2011; 36(12): 1766-82.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy